Chapter 1. Description of stochastic events
1.1 Interval probabilities and means
1.2 Extension of primary means
1.3 Relations between interval models
1.4 Interval probability distributions
1.5 Models' representation
1.6 Conditional interval models
1.7 Conclusions

Chapter 2. Combined analysis
2.1 Determinate transformations of outcomes
2.2 Random transformations
2.3 Fuzzy events and fuzzy probabilities
2.4 Combined interval models
2.5 Independence
2.6 Conclusions

Chapter 3. Random variables, sequences, sums
3.1 Random variables, sequences
3.2 Convergences
3.3 Prelimit and limit problems
3.4 Limit models of general type sums
3.5 Conclusions

Chapter 4. Stochastic process
4.1 Descriptions of stochastic processes
4.2 Correlation properties
4.3 Homogeneous and stationary processes
4.4 Linear transformations of a process
4.5 Conclusions

Chapter 5. Decision-making theory
5.1 Statistical models
5.2 Optimal rules
5.3 Sufficient reduction of observations
5.4 Reduction of observations and invariance
5.5 Determinate solutions and filtration
5.6 Conclusions

Chapter 6. Fuzzy evaluation

6.1 General questions

6.2 Confidence estimation given probability distributions of fluctuations
6.3 Estimate of regression parameters given energy and correlation data of fluctuations
6.4 Estimate of shift parameters by moments and harmonic means
6.5 Confidence estimation of scale parameter
6.6 Conclusions

Chapter 7. Test of hypotheses
7.1 General statements
7.2 Correlation theory of hypotheses' test
7.3 Using confidence estimates for hypotheses' test
7.4 Special methods for rule synthesis
7.5 Test of hypotheses about the given parameter value
7.6 Discrimination of several hypotheses
7.7 Conclusions

Chapter 8. Reliability synthesis
8.1 General questions of the model synthesis
8.2 Construction of the confidence model on a given set of events
8.3 Coherent synthesis of models and rules
8.4 Conclusions

