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Abstract. This contribution overviews the approaches, results and history
of attempts at measuring uncertainty and information in the various theories
of imprecise probabilities. The main focus, however, is on the theory of belief
functions (or the Dempster-Shafer theory) [62] and the possibility theory [7] as
most of the development so far has happened there. Due to the limited space
I am focusing on the main ideas and point to references for details. There are
several other published overviews of the subject (e.g., [27, 31, 33, 35, 38, 39]),
one monograph [44], and parts of two other monographs touch upon the subject
also [36, 46]. This writing summarizes my personal view of the subject. I do
not cover measuring fuzziness here. Please, see one of the above references for
an introduction and relevant references.
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1. Approaches to measuring uncertainty

Before we can measure uncertainty or information, we have to be clear what
exactly we are trying to measure. This is not as straightforward as it might seem.
Even in the framework of classical probability theory there are at least two distinct
approaches to measuring “information”: classical (Shannonian) information theory
and algorithmic information theory [2].

Measuring uncertainty or information means assigning a number or a value from
some ordinal scale to a given model of an epistemic state (in our case imprecise
probability). For some work on ordinal measures of uncertainty and information
see [70]. In the rest of this document, I assume that we are interested in a function
of the form

U : B(X) → R,

where B(X) denotes the set of all lower previsions (possibly, from a certain class)
on a finite set X .

To qualify as an acceptable measure of the total uncertainty contained in a given
lower prevision, function U must satisfy certain requirements. The five requirements
below has been identified as basic requirements for uncertainty measure for belief
functions. I believe, however, that their appropriate generalizations are applicable
in general. The only potentially controversial point with generalization of the re-
quirements might be the definition of independence or non-interactivity in the last
requirement. For an introduction to belief functions see [62] or the introduction at
this site.
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(1) When Bel is a probability measure, U collapses to the Shannon entropy,
i.e.,

U(Bel ) = −
∑

x∈X

Bel({x}) log2 Bel({x}).

(2) When the basic probability assignment m corresponding to Bel has only one
focal element, U becomes the Hartley measure of the unique focal element.
Formally, for any ∅ 6= A ∈ P(X)

U(BelA) = log2 |A|,

where BelA denotes the belief function on X defined as

BelA(C) =

{

1 if A ⊆ C

0 otherwise
.

(3) When the uncertainty is measured in bits, which is the usually accepted
unit, the range of U should be [0, log2 |X |]. (U(Bel ) ∈ [0, log2 |X |] for any
belief function Bel on X .)

(4) The measure U is subadditive, i.e., whenever the system described by X

can be decomposed into two subsystems, the overall uncertainty is smaller
than or equal to the sum of uncertainties about the subsystems. Formally,
let Y1 = {A1, A2, . . . , AP } and Y2 = {B1, B2, . . . , BQ} be two distinct par-
titions of X , such that |Ai ∩ Bj | = 1 for all i ∈ {1, 2, . . . , P} and all
j ∈ {1, 2, . . . , Q}. Then for an arbitrary belief function Bel on X

U(Bel ) ≤ U(Bel ↓ Y1) + U(Bel ↓ Y2),

where Bel ↓ Yi denotes the projection of Bel onto Yi.
(5) The measure U is additive, i.e., whenever the system described by X can

be decomposed into two “independent” or “non-interactive” subsystems,
the overall uncertainty is equal to the sum of uncertainties about the sub-
systems. Formally, let Y1 = {A1, A2, . . . , AP } and Y2 = {B1, B2, . . . , BQ}
be two (different) partitions of X , such that |Ai ∩ Bj | = 1 for all i ∈
{1, 2, . . . , P} and all j ∈ {1, 2, . . . , Q}. Moreover, let Bel be a belief func-
tion on X with the corresponding basic probability assignment m such that
for every focal element A of m,

A = {y1 ∩ y2 | y1 ∈ A ↓ Y1, y
2 ∈ A ↓ Y2}

and m(A) = m ↓ Y1(A ↓ Y1) · m ↓ Y2(A ↓ Y2). Then,

U(Bel ) = U(Bel ↓ Y1) + U(Bel ↓ Y2). (1)

The first two requirements say that the sought uncertainty measure should gener-
alize already established uncertainty measures for classical probability theory and
set theory. The third requirement is just a normalization requirement. The fourth
requirement says that if we can break the problem into two “orthogonal” subprob-
lems than the uncertainty about the original problem should be less than or equal
to the sum of uncertainties about the subproblems. The rationale is the fact that
by breaking the problem into two parts we may loose some knowledge (or infor-
mation) about the dependency or interaction between the subproblems, i.e., our
uncertainty would increase by the break up. The last requirement says that in the
situation of the fourth requirement, under the additional assumption that there is
no interaction or dependency between the subproblems, the uncertainty about the
original problem is equal to the sum of uncertainties about the subproblems. The
last two requirements could be conceivably weakened by requiring only existence of
a (continuous) function playing the role of addition in the requirements, but there
seems to be no real need for doing so.
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Most attempts at measuring uncertainty in belief functions divided the problem
into two parts: nonspecificity and conflict. The motivation was the observation that
uncertainty ingrained in a belief function can be attributed to two distinct phenom-
ena. One source of uncertainty, called nonspecificity, is our inability to distinguish
which of several possible alternatives is the true one in a particular situation. The
larger the set of possible alternatives is, the larger is the nonspecificity. The second
source of uncertainty, called conflict, is present whenever there is inconsistency or
disagreement in our evidence or information. One piece of evidence points in one
direction and second piece points in another direction. The more mutually dis-
agreeing pieces of evidence we have, the larger the conflict. Also, the more even the
strength of the disagreeing pieces of evidence is, the larger the conflict. The total
uncertainty was taken to be the sum of nonspecificity and conflict. The measure-
ment of nonspecificity was settled relatively easily by a measure generalizing the
Hartley measure [17]. Most proposals for the measure of conflict were generaliza-
tions of classical Shannon entropy [63]. For this reason, they are sometimes called
entropy-like measures. However, none of the proposals was fully satisfactory. The
most common drawback was the lack of subadditivity property. Consequently, the
corresponding measures of total uncertainty were unsatisfactory also.

It appears that, although there is an obvious relationship between the concepts,
the amounts of nonspecificity and conflict are features or measurements of ‘quality’
of evidence at hand rather than measurements of uncertainty about the system of
interest. If one is trying to decide on a message coding scheme, for example, it
seems irrelevant whether the uncertainty is caused by imprecision or by a discord
in one’s information. To require subadditivity for a measure of uncertainty is quite
natural, but it is not clear that it is also a desirable property of a measure of ‘quality’
of evidence. Given these observations, it is not surprising that the only proposed
measure of uncertainty, which satisfies all the five requirements stated above, did
not follow the path of dividing the uncertainty to nonspecificity and conflict, but
rather approached the problem directly.

2. Measures of uncertainty

This section overviews the main proposals for measures of uncertainty found in
the literature with their brief motivation and basic properties. As explained in
the previous section most of the research in the area aimed to generalize classical
results of Hartley [17] and Shannon [63]. For the sake of completeness, I include
their definitions here also. Hartley argued for the use of the function

I(A) = log2 |A|,

where ∅ 6= A ⊆ X , as a measure of uncertainty when our information is expressed in
terms of a subset of a universal set. Here, the set A represents the smallest subset
of X such that we are certain that the actual state is in A.

For a probability distribution p on X , the Shannon entropy, K, is defined as

K(p) = −
∑

x∈X

p(x) log2 p(x).

The measure of nonspecificity was first proposed for possibility and necessity
measures By Higashi and Klir [18]. It was later generalized by Dubois and Prade
for belief functions [6]. The measure of nonspecificity (or the nonspecificity, for
short) is defined as

N(m) =
∑

A∈P(X)−{∅}

m(A) log2 |A|,

where m denotes a basic probability assignment corresponding to the given belief
function. The measure of nonspecificity is a weighted average of Hartley measure
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of all focal elements weighted by their basic probability numbers. It has many
desirable properties, most notably additivity and subadditivity. For a more detailed
discussion of properties of nonspecificity and some alternative proposals see [69, 40,
61, 58, 48]. Recently, Abellán and Moral [1] proposed to use the same expression as
a measure of nonspecificity of a convex set of probability measures via the Möbius
inverse of its associated lower probability (capacity). This generalization appears
to preserve all the desirable properties from the case of belief functions. Klir and
Yuan [47] proposed a new measure of nonspecificity defined for convex subsets of
the n-dimensional Euclidean space. Given a convex universal set X ⊆ R

n for some
finite n ≥ 1, the proposed measure, cH , is defined for a convex subset A of X by
the formula

cH(A) = min
t∈T

ln

[

n
∏

i=1

[1 + µ1(Ait
)] + µn(A) −

n
∏

i=1

µ1(Ait
)

]

,

where µj denotes the j-dimensional Lebesgue measure (j = 1, n), T denotes the set
of all transformations from one orthogonal coordinate system to another, and Ait

denotes the i-th projection of A within the coordinate system t. The function cH

has been proven to satisfy all basic properties expected from an intuitive measure
of nonspecificity (monotonicity, additivity, continuity, and invariance with respect
to isomeric transformations of the coordinate system) [47, 71, 59].

The first attempt to measure the conflict was done by Höhle [20, 21]. He proposed
to use the function C defined by the formula

C(m) = −
∑

A∈P(X)

m(A) log2 Bel (A)

for any basic probability assignment m on X and its corresponding belief function
Bel . The function C is usually called the measure of confusion.

Yager [69] proposed to use the function E, usually called the measure of disso-

nance, defined by

E(m) = −
∑

A∈P(X)

m(A) log2 Pl(A)

for any basic probability assignment m on X and its corresponding plausibility
function Pl .

Klir and Ramer [43] introduced a new measure defined by

D(m) = −
∑

A∈P(X)

m(A) log2

∑

B∈P(X)

m(B)
|A ∩ B|

|B|

for all basic probability assignments m on X . They gave it the name discord. (For
additional discussion of discord see also [8, 65, 60].)

Klir and Parvitz [41] suggested yet another measure, which is called strife, and
defined by the formula

S(m) = −
∑

A∈P(X)

m(A) log2

∑

B∈P(X)

m(B)
|A ∩ B|

|A|

for all basic probability assignments m on X . (See also [45, 67].)
All four of the above measures have the same interpretation: they define conflict

as a weighted average of a logarithmic transformation of a ‘local’ measure of conflict
for individual focal elements, i.e., measure of conflict of a particular focal element
with all the other focal elements. The proposals differ in the definition of such
‘local’ measure. Unfortunately, none of the proposed measures is subadditive. The
measure of dissonance also does not have the proper range.
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Slightly different, but similar, approach was taken by George and Pal [10]. They
defined conflict as a weighted average over all pairs of focal elements of a measure
of conflict of two focal elements. They postulated a set of desirable properties for a
measure of conflict of two focal elements. Then they proved that there is only one
measure satisfying them. The resulting measure is defined by

GP(m) =
∑

A∈P(X)

m(A)
∑

B∈P(X)

m(B)[1 −
|A ∩ B|

|A ∪ B|
]

for all basic probability assignments m on X . This measure is not a generalization
of the Shannon entropy but rather quadratic entropy, hence it is neither additive
nor subadditive.

Lamata and Moral [49] were the first to propose the sum of the measure of
nonspecificity and entropy-like measure as a measure of total uncertainty. They
suggested to use the measure of dissonance as the measure of conflict. Later the
original authors of the respective measures of conflict also suggested to use them
in a measure of total uncertainty. In the same paper [49], Lamata and Moral also
proposed an alternative measure of total uncertainty. The alternative measure is
defined as

LM (Bel) =

∫ ∞

0

Bel ({x ∈ X | − log(
Pl({x})

∑

y∈X Pl({y})
) ≥ α})dα

for any belief function Bel on X , where Pl denotes the plausibility function corre-
sponding to Bel . This measure can be understood as the “expected value” of

− log(
Pl({x})

∑

y∈X Pl({y})
)

with respect to Bel . The main appeal of this proposal was the fact that it is readily
generalizable to a larger class of coherent lower probabilities than belief functions.
Unfortunately the measure LM is neither additive nor subadditive.

Pal et al. [55, 56] started by postulating requirements on a ‘local’ measure of
total uncertainty for a single focal element. They proved that their requirements
uniquely determine this ‘local’ measure to be the following expression

log2

|A|

m(A)

for a given focal element A and basic probability assignment m. As a measure of
total uncertainty, they proposed to use the weighted average of this ‘local’ measure:

PE(m) =
∑

A∈P(X)

m(A) log2

|A|

m(A)

for any basic probability assignment m on X .
Smets [64] pursued a quite different approach than the rest of researchers in the

area. He was trying to identify a measure of “information content” of a given belief
function. The main requirement for such a measure was additivity with respect
to the Dempster rule of combination (i.e., U(Bel 1 ⊕ Bel 2) = U(Bel 1) + U(Bel 2)).
This requirement together with few other basic requirements can be satisfied only
when the belief functions of interest are so called non-dogmatic belief functions.
A belief function Bel is called non-dogmatic if it holds for its corresponding basic
probability assignment m that m(X) > 0. For an arbitrary non-dogmatic belief
function Bel , a measure of information content has to be in the form:

IN (Bel) = −
∑

A∈P(X)

c(A) log Q(A),



6 DAVID HARMANEC

where Q denotes the commonality function corresponding to Bel and c is an arbi-
trary non-negative monotonic set function. Smets suggested to use c(A) = 1 for all
A. For a discussion of Smets’s approach see [12].

From the above it is clear that the search for a satisfactory measure was not
straightforward. Several groups of researchers worked independently at approxi-
mately the same time on related research ideas that ultimately resulted in finding a
measure of total uncertainty for belief functions that satisfies all five basic require-
ments stated in the previous section [50, 3, 51, 54, 13]. Harmanec and Klir [13]
proved that the measure satisfies all five requirements from the previous section,
most notably subadditivity. The measure is defined as follows:

Definition 1. The measure of the total amount of uncertainty contained in Bel ,

denoted as AU (Bel ), is defined by

AU (Bel ) = max{−
∑

x∈X

px log2 px},

where the maximum is taken over all {px}x∈X such that px ∈ [0, 1] for all x ∈ X,
∑

x∈X px = 1, and for all A ⊆ X, Bel(A) ≤
∑

x∈A px.

Observe that in the above definition we maximize a continuous function on a
closed convex set; therefore, the maximum always exists.

An interesting question is whether the measure AU is the only measure satisfying
the requirements. It is still an open question, but Harmanec [11] proved that the
measure AU is the smallest measure (if any other exists) that satisfies a set of eight
basic requirements. The requirements used in [11] are more elementary but as a set
stronger than the ones discussed in the previous section. Unfortunately, as shown
by Vejnarová [66] the measure AU is not strictly subadditive and submodular. (A
measure U is strictly subadditive if Eq. 1 holds if and only if the condition of the
requirement 5 from the previous section is satisfied; it is submodular if

U(Bel ) + U(Bel ↓ Y1) ≤ U(Bel ↓ Y3 ∩ Y1) + U(Bel ↓ Y2 ∩ Y1)

for all belief functions Bel and all triplets Y1, Y2, Y3 of orthogonal partitions of X).
The properties of strict subadditivity and (strict) modularity are useful in classical
information theory as tools for characterization of (conditional) independence. If
one accepts the requirements from [11] it follows using the counter example from
[66] and the fact that the measure AU is minimal that there cannot be any measure
satisfying these requirements that is strictly subadditive. Clearly, the measure AU

can be directly generalized to any class of coherent lower probabilities. It is an
open question, however, whether the generalization would preserve all the desirable
properties also.

The measure AU is defined implicitly as a solution to an optimization problem.
Using standard optimization techniques would be computationally infeasible in this
case. Fortunately, a relatively efficient algorithm for its computation was developed
by Meyerowitz et al. [53], and, independently, by Harmanec et al. [16]. For some
preliminary results, see also [52]. Jaffray developed a generalization of the algorithm
for 2-monotone capacities [22]. For some related results see also [26].

3. Applications of measures of uncertainty

As noted in the previous section, even the measure AU , which is the best justified
measure so far, does not seem to be a suitable tool for work related to independence
concepts. However, well justified measure of uncertainty can be used in many
other contexts. Three basic principles of uncertainty were developed to guide the
use of uncertainty measures in different situations [28, 34]. These principles are:
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a principle of minimum uncertainty, a principle of maximum uncertainty, and a
principle of uncertainty invariance.

The principle of minimum uncertainty is an arbitration principle. It guides the
selection of meaningful alternatives from possible solutions of problems in which
some of the initial information is inevitably lost but in different solutions it is
lost in varying degrees. The principle states that we should accept only those
solutions with the least loss of information. This principle is applicable, for example,
in simplification and conflict resolution problems. For some development of this
principle see [23].

The principle of maximum uncertainty is applicable in situations in which we
need to go beyond conclusions entailed by verified premises. The principle states
that any conclusion we make should maximize the relevant uncertainty within con-
straints given by the verified premises. In other words, the principle guides us to
utilize all the available information but at the same time fully recognize our igno-
rance. This principle is useful, for example, when we need to reconstruct an overall
system from the knowledge of (some) subsystems. The principle is widely used
within classical probability framework [4, 5, 57], but has yet to be developed in a
more general setting.

The last principle, the principle of uncertainty invariance, is of relatively recent
origin [29, 30]. Its purpose is to guide meaningful transformations between various
theories of uncertainty. The principle postulates that the amount of uncertainty
should be preserved in each transformation of uncertainty from one mathematical
framework to another. The principle was first studied in the context of probability-
possibility transformations [29, 30, 32, 9, 42, 68]. For an alternative approach see
also [24, 25]. Unfortunately, at the time, no well justified measure of uncertainty was
available. Consequently, these transformations as well as transformations to/from
belief functions were again investigated using the measure AU after its discovery
[37, 14, 15].

Though important, the principles of uncertainty are not the only situations a
measure of uncertainty can be used. Some other examples where the measures of
uncertainty were used include measuring of closeness of possibility distribution [19]
and investigating dynamics of combination of evidence [12].

4. Conclusion

This introduction aims to present the current status quo in the field of gener-
alized information theory. It is clear from the presentation that most of the work
has concentrated on justification and investigation of various uncertainty measures.
This is only a start and much remains to be done, especially in developing method-
ologies based on the uncertainty principles.

I hope I covered the main results and developments, but any suggestions or
pointers to work that should also be included is very welcome and appreciated.
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[20] U. Höhle. Fuzzy plausibility measures. In E. P. Klement, editor, Proceedings of the 3rd In-
ternational Seminar on Fuzzy Set Theory, pages 249–260, Johannes Kepler University, Linz,
1981.
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