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Abstract. We outline a brief review of the different approaches which use
sets of probability measures as models for prior imprecise knowledge.
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1. Justification of sets of probability measures as models for prior

uncertainty

It has been shown that behaviour can be coherent without satisfying the as-
sumption of precision, i.e. without the assumption that arbitrarily fine distinctions
between probabilities can be made — see (Walley, 1991) [17] for such a proof and
references. Coherence corresponds to subjective Bayesian behaviour, but with a less
restrictive set of assumptions. In this article we focus on strategies for choosing,
and ways of interpreting, classes of prior distributions, which attempt to model the
unavoidable imprecision in life and nature.

There are two different broad interpretations. The first is the sensitivity anal-

ysis or collection of individual priors interpretation, which is closer to the usual
Bayesian approach: classes of priors are composed of priors individually judged to
be reasonable and compatible with the (partial) available information. Thus each
prior is consistent with actual prior beliefs, but it is recognised that prior beliefs
are imprecise. This will be called ‘Bayesian robustness’. The second interpretation
may be called the collective prior or upper and lower probability interpretation.
Here it is the properties and features of the whole class that matter (particularly
the extremes reflected in upper and lower probabilities and expectations), and the
particular features of individual priors are unimportant.

The calculi of both interpretations are similar, but the assessment strategies are
different. In the first approach each of the priors should be sensible subjectively,
whereas in the second approach it is the whole class which matters — it is a reason-
able class of priors and not a class of reasonable priors. See (Pericchi and Walley,
1991) [14] for discussion and references. Also the problems addressed by each in-
terpretation are different: Bayesian robustness aims to establish a neighbourhood
around a sensible, a priori subjective measure. On the other hand, under the sec-
ond interpretation, ‘near ignorance priors ’ with natural invariance properties have
been proposed as a robust and imprecise alternative to a standard noninformative
(but precise) prior distribution. The behaviour with respect to different data is
also different: neighbourhood models are a posteriori more imprecise when there is
a conflict or inconsistency between the data and prior information, which cannot
arise for invariant classes.
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In this contribution we consider sets of measures only as models for prior uncer-
tainty. This is done for the following reasons:

(1) the prior is, or at least is perceived, to be the weakest link in the logic of
coherence;

(2) imprecision in the sampling model, although typically more important than
imprecision in the prior, is more effectively dealt with by model selection
and hypothesis testing procedures, as is usually done in statistics.

For a combination of robust Bayesian priors and model selection for models with
the same dimension, see (Pericchi and Pérez, 1994) [13]. For models with different
complexity, priors will always have a pronounced effect. Priors across different mod-
els should be reasonably ‘tied together’. Priors should not be completely unrelated
for different models. For discussion and developments see (Berger and Pericchi,
1996) [3] and (Sansó, Pericchi and Moreno, 1996) [16].

2. Bayesian robustness with respect to the prior

The following factors in choosing a class of priors were identified by Berger (1994)
[2]. The class should be:

• easy to elicit and interpret;
• easy to handle computationally;
• big enough to reflect prior uncertainty;
• extensible to higher dimensions.

2.1. Parametric classes of priors. This approach selects the class of priors Γ
to be indexed by a finite dimensional parameter. Advantages of these classes are
that they are simple with respect to both computation and communication. Also
the assessments may be more familiar. The main disadvantage is that the class
might be too narrow, not allowing enough variation in features. Still parametric
classes are certainly useful, unless the deviations from the basic assumptions are
completely unexpected.

Examples are classes of conjugate priors, but there are several other examples of
non-conjugate parametric classes as well. Modern simulation-based algorithms are
effective in computations with non-conjugate but parametric classes — see (Geweke,
1998) [7].

2.2. Non-parametric classes of priors. Non-parametric classes have been more
popular in recent research in the area. Partly this is due to the interesting math-
ematics they lead to. But the main advantage is the potentially wide range of be-
haviour that can be modelled with non-parametric classes. Here we mention only
the main classes that have been considered — see (Berger, 1994) [2], (Wasserman,
1992) [20] and (Walley, 1991) [17] for other classes and references.

Classes around a default prior: One of the first contributions on classes
of priors was the theory of precise measurement of Edwards, Lindman and
Savage (1963) [6]. This in fact defines a class around a default prior. This
class however is defined a posteriori and requires various assessments. Still
it is a very interesting class, and some improvements to the upper and
lower bounds in the original paper have been made by Moreno, Pericchi
and Kadane (1998) [12].

ε-contamination classes: The class of priors Γ is defined by

Γ = {(1 − ε)π0 + εφ : φ ∈ Φ},
where π0 is the base prior or origin, ε is the assessed amount of error
in the base prior, and Φ is the class of contaminations considered. This
class is reasonably tractable, and some variation in size is obtained by
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imposing constraints like unimodality and symmetry on the permissible
contaminations. See (Berger, 1994) [2], (Walley, 1991) [17], (Moreno and
Cano, 1991) [10] and (Moreno and Pericchi, 1993) [11] for discussion.

Density-ratio classes: These were proposed by DeRobertis and Hartigan
(1981) [5]. The class is defined as:

Γ = {π : L(θ) ≤ π(θ) ≤ U(θ)},
where the measure π is a prior which does not necessarily integrate to
one. This class has many advantages, not only computational — see for
example (Wasserman, 1992) [20]. Assessment of L and U can be very
difficult however. Pericchi and Walley (1991) [14] have proposed choosing
L to be an assessed (possibly conjugate) prior and U to be a default or
‘non-informative’ prior which touches L(θ) at its maximum.

Quantile classes: These have the form:

Γ = {π : αi ≤ π(Θi) ≤ βi, i = 1, ..., m},
where Θi are specified subsets of Θ. This is natural for elicitation but it
allows very wild priors, and it is not sensible in higher dimensions unless
shape constraints are introduced which make the model less tractable.

Mixture classes: These are defined as:

Γ = {π : π(θ) =

∫

π(θ|α)g(α)dα, g ∈ G}.

These classes are quite useful, particularly in high dimensions, since such a
class is very smooth.

3. Collective robustness of classes

The desiderata here have points in common with the previous ones. There is
one important point of difference however. Recall that these classes are intended to
model prior ignorance. Thus, with respect to important aspects, the class should
be as imprecise as it can be. This leads us to near ignorance classes.

3.1. Near ignorance classes. The natural candidate for a class to represent com-
plete ignorance is the class of all distributions. When this class leads to non-vacuous
and useful conclusions, these are quite compelling and uncontroversial. An instance
of this is the proof in (Berger and Sellke, 1987) [4] that p-values cannot be con-
sidered as evidence for or against a point null hypothesis. There are rather few
examples of the usefulness of the class of all distributions, however. More often it
turns out that the posterior probabilities obtained from this class are vacuous, i.e.,
their lower and upper bounds are 0 and 1. There is then a compromise to be made,
and this is the compromise of near -ignorance. The near-ignorance class should be
vacuous a priori in some respects, typically the most important ones. For instance,
if we are are interested in a location parameter, the class should be translation
invariant, but such that, for example, posterior expectations or posterior probabil-
ities of intervals are not vacuous. An example in (Pericchi and Walley, 1991) [14]
is the following: assume a normal location likelihood, i.e., with unknown location θ

and known scale σ. A very reasonable near ignorance class for this problem turns
out to be a class of double exponential priors:

∆ = {π : π(θ) =
1√
2τ

exp

(

−
√

2

τ
|θ − µ|

)

,−∞ < µ < ∞},

which is location invariant and depends upon a single assessment τ . See (Walley,
1991) [17] and (Sansó and Pericchi, 1992) [15] for other examples. Unfortunately
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however, the classes proposed there, although appropriate for the examples consid-
ered, still require some prior elicitation and are not fully automatic.

4. Conclusions

There are two interpretations and two broad kind of models involving sets of
probability measures. The first (and more developed) is the robust Bayesian ap-
proach of neighbourhood models. The second is the collective prior approach of
upper and lower probability theory, which aims to provide an imprecise alternative
to objective Bayesian default analyses. This ambitious aim still needs to be devel-
oped so that it is elicitation free and can be constructed with knowledge only of
the likelihood, to have more influence on the practice of statistics.
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Note added by editors

This article has concentrated on the ways in which sets of probability measures
can be used to model imprecise prior information in statistical problems, and it
has not attempted to survey other theories which use sets of probability measures
to model uncertainty. Some references to the other theories can be found in the
bibliography on this site, under the heading Sets of probability measures . We espe-
cially want to point out the theory of Levi (1980 and later references) [9]. Other
important references concerning the topics of this article are (Good, 1962) [8] and
(Berger, 1984) [1] on robust Bayesian inference, and (Walley, 1996) [18] and (Walley,
1997a) [19] on near ignorance models.
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