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1. BACKGROUND.

It was John Maynard Keynes [Key52] who first forcibly argued that probabilities
cannot be simply ordered. There are cases, he argued, in which the probability of
the hypothesis h can be regarded neither as greater than that of hypothesis &, nor
less than that of hypothesis k, nor yet equal to that of hypothesis k. Although
he did not provide a mathematical structure for his probability values, he did
give us some hints: Every probability is comparable to the 0 probability and to
the 1 probability. In general, some probabilities (those that can be based on a
correct application of the principle of indifference) have rational numerical values,
and can serve to bound those that are not precisely comparable to rational valued
probabilities. The structure looks something like this, where a/h represents the
(not necessarily numerical) probability of the proposition a relative to the (total)
evidence h:

The points on the bold line represent the strength of arguments that can be
measured by real numbers; the other points represent other probability values; the
edges represent the possibility of comparison. There is, for example, no relation
(<, >, =) between a/h and a'/h' in the diagram. The sawtooth line reflects the
fact that even when the principle of indifference can be applied, there may be
arguments whose strength can be bounded no more precisely than by an adjacent
pair of indifference arguments. Note that a/h in the diagram is bounded numerically
only by 0.0 and the strength of a" /h".

Keynes’ ideas were taken up by B. O. Koopman [Koo40a, Koo40b, Koo41], who
provided an axiomatization for Keynes’ probability values. The axioms are qual-
itative, and reflect what Keynes said about probability judgment. (It should be
remembered that for Keynes probability judgment was intended to be objective in
the sense that logic is objective. Although different people may accept different
premises, whether or not a conclusion follows logically from a given set of premises
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is objective. Though Ramsey [Ram22] attacked this aspect of Keynes’ theory, it
can be argued that Keynes never completely gave in.)

Koopman provided qualitative axioms for probability judgment that yielded an
algebra of probabilities. This algebra included a set of rational-valued numerical
probabilities, based on the idea that we could always (hypothetically) construct a
deck of n cards such that the probability of getting m specified cards would be the
ratio m/n. Let us call these probabilities rational-valued probabilities. An arbitrary
probability value from the algebra may then be represented by the greatest lower
bound of the rational probabilities it is judged greater than, and the least upper
bound of the rational probabilities it is judged less than.

Terrence Fine, in a well known work Theories of Probability [Fin73], provides a
careful analysis of probability developed step by step from qualitative, to compar-
ative probability relations, to quantitative probability functions. He examines the
claims of Keynes and the structures developed by Koopman, but very early on in
this development — even for comparative probability — assumes that the proba-
bility relation is complete: for any two propositions, either one is more probable
than the other or they are equally probable. This does not hold for Keynes’ prob-
abilities, nor for probability as characterized by the axioms of Koopman. Indeed,
it precludes interval valued probabilities, which have a certain amount of intrin-
sic appeal, and which seem to conform to Keynes’ intuitions [Kyb97]. Once one
has the completeness of the probability relation, it is only a short hop and a skip
to real-valued probabilities. In later work, for example in [Fin88], interval-valued
probabilities are strongly advocated by Fine.

2. MOTIVATIONS

There are two motivations for turning to interval valued probabilities. One,
which may be attributed to C.A.B. Smith [Smi61], and is found in its most highly
developed state in Walley [Wal91], is to describe the states of individuals with regard
to their degrees of belief more adequately and more realistically than standard
subjective Bayesianism can. The classical view of personalism, as proposed by L
J. Savage [Sav54], assumes that we can be forced to specify our degree of belief in
a proposition to any number of decimal places. This is not only unrealistic, but
verges on inconsistency, since the procedures assume that the payoffs do not reflect
the value of the sanction that makes choice necessary. Thus I am not allowed to say
“I don’t know,” or to choose “none of the above,” or to choose in an undetermined,
arbitrary, or whimsical way, when faced with the choice of a ticket that returns a
dollar if Q. Albert is elected, and a ticket in a fair million-ticket lottery that returns
a dollar if one of 579,321 specified tickets is chosen. “Not allowed” can only mean
that there is some sanction, whose disutility I wish to avoid, that attends my failure
to answer the question. But of course that disutility should be taken account of in
the behavioral assessment of my degrees of belief, and the fine gradation of degrees
of belief may be lost.

The other motivation reflects the idea that our degrees of belief ought to be
objectively determined, if they are to count as rational, and thus should reflect our
statistical knowledge; since our statistical knowledge is never precise, our beliefs are
never constrained more precisely than by sets of statistical distributions. This was
the motivation underlying the development in Probability and the Logic of Rational
Belief [Kyb61] and more recently [Kyb74] and [Kyb97]. We shall examine the two
kinds of motivation separately, the first in sections 3 — 6; the second in section 7.
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3. PROBABILITY INTERVALS AS DESCRIPTIVE

I. J. Good [Goo62] takes the necessity for intervals to arise from the fact that our
initial qualitative judgments are imperfect. If we were perfect logicians, and had
perfect self knowledge, we might be perfect point-valued Bayesians, but in fact the
judgments that are input to our scientific black box are only partially ordered. (p.
322). Good obtains upper and lower probabilities as constraints on the numerical
output (discriminations) produced by qualitative inputs (judgments of the form
P(E|H) < P(F|Q)). From the properties of point-valued probabilities he derives
(quite simply) a set of axioms similar to those provided directly by Koopman. It
is the nature of human judgment that leads to the intervals that are the output of
the ‘black box.’

It is true also of the ideas developed by C. A. B. Smith [Smi61, Smi65] that
the data we can obtain on degrees of belief only roughly constrain the (true?)
probabilities. To offer to bet at odds of m to n on the truth of a proposition S,
is to be willing to put up m units of utility, which will be lost if S turns out to
be false, in return for the chance of winning n units of utility if S turns out to be
true. These odds correspond to the assignment of a probability of m/(m +n) to S.
The agent, according to Smith, who is willing to bet at odds of m to n will also be
willing to bet at odds of m — k to n. Smith defines the ‘lower pignic odds’ [Smi65,
p. 5] to be the upper bound on the odds that the agent is willing to offer in a bet
on an event. ‘Upper pignic odds’ are similarly defined.

These odds lead to lower and upper probabilities by means of the transformation
just mentioned. The development of the 1961 paper focuses mainly on the existence
of (and constraints on) ‘medial’ probabilities — i.e., probabilities that strictly fall
between the upper and lower probabilities. Thus, for example, if we have exclusive
events A and B, it follows from the natural constraints on upper and lower pignistic
odds that there exist medial probabilities pA, pB, and p, lying between the upper
and lower probabilities of A, B, and A U B, respectively, such that p = pA + pB.

The representation of uncertainty can thus be looked on as a representation em-
ploying sets of probability functions: upper and lower probabilities are bounds on
sets of medial probabilities. Strictly speaking, of course, these upper and lower
‘probabilities’ are envelopes of probabilities rather than being probabilities them-
selves: for obvious reasons, they do not satisfy the standard probability axioms.

It is perfectly straight-forward to consider the updating of sets of probability
functions by conditionalization. The conditional probability of A given B, P(A|B),
is simply the ratio of P(A N B) to P(B), for each probability function P: The set
of values of the conditional probability P(.|B) is determined by the set of original
probability functions. If the original set is convex, so will the set of conditional
probabilities be convex. There is the question of what to do about conditioning
on events of 0 probability. The simplest approach is simply to disregard the set
of probability functions for which P(B) = 0. An alternative is to take probability
to be a two place function in the first place (so that conditional probabilities are
always defined [Pop57]) and to derive probability intervals from sets of these two-
place functions.

4. A BEHAVIORAL INTERPRETATION OF INTERVALS

A nearly encyclopedic analysis of an approach that takes intervals to be basic
is provided by Peter Walley [Wal91]. (For a brief characterization, see [Wal96]
Walley starts from a behavioral view much like that of Smith, but rejects the
assumption that the upper and lower probabilities are to be construed as envelopes
of probability functions. Standards of coherence are imposed directly on lower
probabilities: a lower probability P is coherent if it does not lead to a sure loss, and
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if it embodies the transitivity of preference for gambles (p. 29). It is an important
(and non-trivial) theorem of this approach that for the coherent agent upper and
lower probabilities may be represented as envelopes of sets of probability functions.
In Walley’s notation [Wal91, p. 134], where P is a coherent lower probability
function:

(1) P avoids sure loss if and only if it is dominated by a classical probability;
and

(2) P is coherent if and only if it is the lower envelope of some class of classical
probabilities.

It is important to be clear about what is going on here. The fact that upper
and lower probabilities can be construed as sets of distributions does not mean that
they must be so construed. The statistical theory that emerges, for one thing, is
quite different. Furthermore, definitions of various structural properties, such as
independence and permutability can be given directly in terms of these lower prob-
abilities, and these definitions do not correspond directly to the classical concepts
applicable to classical probability functions. For example, according to Walley’s
view, two events are independent when betting rates on either one, conditional on
the other, are the same as the unconditional betting rates; according to the con-
ception that takes the probability functions of which the lower probability is an
envelope, two events are independent if they are independent according to every
probability within the envelope. These are clearly two quite different things.

Walley makes much of the fact that he can give direct behavioral interpretations
to these concepts, as well as to lower probabilities. Since the behavior of people
rarely conforms to any rational standards — including those that Walley takes as
axioms for lower probabilities — it is not clear how much weight should be given to
this aspect of his theory. On the other hand, that behavioral norms can be derived
independently of the existence of any underlying probability functions seems to be
a telling point.

Walley is concerned primarily with the foundations of statistical inference, but
also explores in detail questions concerning the representation of beliefs or judg-
ments. In Chapter 4 he discusses a number of ways in which the assessment of
beliefs can yield an interval characterization. Given a space (2 the agent may make
any finite number of judgments, including classificatory judgments (‘A is proba-
ble’), comparative judgments (‘A is more probable than B’), ratio judgments (‘C is
at least twice as probable as B’), as well as direct judgments (‘the probability of D
is at least 0.3”). These judgments may also include the use of neighborhood models,
and upper and lower distribution functions. In each case the problem discussed is
primarily that of finding an appropriate interval representation based on a feasible
amount of inquiry.

Note that the special case in which the agent is to make precise numerical judg-
ments on the atoms of the possibility space ! may require that the agent solve
an exponential problem: if the language of €2 contains n atomic formulas, 2 will
contain 2" elements, and require that many judgments on the part of an agent who
wants a point-valued probability. Without simplifications (for example a principle
of indifference) this is an intractable problem.

Thus there is indeed a virtue in the interval representation from a purely descrip-
tive point of view. Given a finite, feasible, amount of inquiry, we can determine the
beliefs of an ideally rational coherent agent only up to a lower probability, which
yields an upper probability through the identity P(H) = 1 — P(~H), and thus an
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interval on each proposition. (Note that this procedure does not yield a single clas-
sical probability function.) This is theoretically and practically important because
there do not need to be many propositions involved before 2™ — the number of
state descriptions we can generate from n logically independent atomic statements
— becomes unwieldy, and of course there is no way of soliciting the infinite number
of judgments required to yield a continuous distribution.

Given a finite number of judgments, there are two remaining problems: first, to
make sure that those judgments avoid sure loss i.e., that there exists a classical
probability function that satisfies the constraints embodied in those judgments, and
second, to extend those judgments to include judgments derived from them. This
leads to the closure under finite mixtures of the gambles corresponding to those
initial judgments. Thus we can obtain lower probability functions by means of a
feasible finite set of judgments.

One of the most attractive features of Walley’s treatment of interval-valued prob-
abilities is that it naturally lends itself to sequential use. Constraints on the lower
probability that may be taken to represent the agent’s opinions may be introduced
one at a time, checked for consistency, and used to modify the existing lower prob-
ability, until the representation is deemed adequate to the problem at hand. Fur-
thermore, the constraints themselves need not be taken as perfectly precise: that an
agent will accept a bet on A at less than even money may indicate a constraint to
the effect that P(A) = 0.5; it does not rule out the possibility of refining that con-
straint at a subsequent stage to P(A) = 0.50342. The usual personalist technique
of requiring that the agent pick a number such that he would be willing to take
either side of a bet at odds determined by that number precludes the possibility of
this kind of refinement.

The updating of probability intervals in Walley’s system is non-trivial. First,
we must take account of the fact that we cannot simply look at the underlying
probability functions and perform classical conditionalization: there may be no
such functions! Second, it can easily happen that that the lower probability of the
event on which we want to condition is 0.0. If we look at the intervals as derived
from classical probability functions there may be some justification for ignoring
those that assign probability 0 to the conditioning event; on Walley’s view there is
no such justification. Chapter Six of [Wal91] contains an extensive analysis of the
complexities involved.

5. BELIEF FUNCTIONS

A representation of belief that is presented as an alternative to the classical per-
sonalistic representation is provided Shafer [Sha76]. The theory of belief functions
assigns a number, Bel(A), to each subset A of a frame of discernment (universe of
possibilities) 2. The function Bel satisfies the axioms
(1) Bel(0) = 0,

(2) Bel(R2) =1,
(3) Bel(AyU---UA,) = Y (=)' Bel(()A).
0#1C{1,...,n} i€l

It has been shown [Dem68, Kyb87] that to every representation of beliefs in terms
of belief functions, there corresponds a representation in terms of sets of probabil-
ities. This set of probability functions will be convex: given any two functions in
the set, their a : (1 — a) mixture will also be in the set. When it comes to the
representation of degrees of belief, this makes perfectly good sense. It is difficult
to imagine grounds on which an agent would be inclined to regard 2:3 odds on as
fair (correspondiong to a lower probability of 0.4), and also inclined to regard 2:3
odds against as fair (corresponding to an upper probability of 0.6), but would not
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regard even money as fair. As we shall see later, construing set valued probabilities
as reflections of objective statistical reality may put a different light on the issue of
convexity.

It has also been shown [Kyb87] that there are convex sets of probabilities that
do not have a representation as belief functions. It could thus be argued that belief
functions correspond to a special case of the convex set representation.

While this is true formally, it can be claimed that the interpretation of belief
functions is quite different from that of convex sets of probabilities. A belief function
represents “the impact of evidence” rather than a “behavioral disposition”, as might
a set of probabilities. In itself it is not clear what this distinction comes to: perhaps
it is that all the evidence I have could support the proposition A to the degree 0.44
(Bel(A) = 0.44), and yet I might not be willing to pay more than $.40 for a ticket
returning a dollar on A. This is just to say that my behavioral dispositions could be
less precise than the evidence requires. Nevertheless, in accordance with Walley’s
model, we could think of a belief function as simply imposing another constraint
on the intervals that are being taken to represent our distribution of belief.

When it comes to updating, however, matters are quite different. Belief functions
come with their own rule of combination, “Dempster’s rule of combination,” [Sha76,
Dem68] which does not correspond to conditionalization. Suppose Bel' represents
a belief function that corresponds to the acceptance of evidence E. Then the rule
of combination leads to the simple updating formulas,

Bel(H V —E) — Bel(~E)

Bel'(E) = Bel(H|E) = 1= Bel(=F) )

for belief, and

P*(HAE)
P*(E)
for plausibility P*, the upper bound on credence, where

P*(A) =1 — Bel(—A).

It is shown in [Kyb87] that belief functions combine in a way that yields new
belief functions that are representable by a proper subset of the corresponding set
of conditional probabilities. For example, let H be a hypothesis and E be some
evidence concerning it. Suppose that we have the following lower probabilities
(Which also determine a belief function, though not all sets of lower probabilities
do):!

P*(E) = P*(H|E) =

P(H) =0.5 P(-H) =04

P(E) = 0.4P(-E) = 0.3

P(HE) = 0.2 P(H-E) = 0.2

P(-HE) = 0.2 P(-H-E) = 0.1

P(HEV H-E) = 0.5 P(H-EV —HE) = 0.5

P(HEV -HE) =04 P(H-EV —H-E) = 0.3
P(HEV -H-E) =03 P(~HEV —H-E) = 04
P(HEVH-EV-HE)=08 P(HEVH-EV—H-E) = 0.6
P(HEVﬁHEV—!H—!E)—O.ﬁ B(ﬁHEVH—!EV—!H—lE)ZO.ﬁ

Let us now update the belief in H given the evidence E. It will be easily verified
that P(H|E) = 4/14; Bel(H|E) = 6/14; P*(H|E) = 7/14; and P(H|E) = 8/14.

This could, of course, be regarded as a virtue of belief functions: their rule of
combination gives more precise results than the corresponding application of con-
ditional probability. This is not an uncontroversial advantage. It could be argued

IThese lower probabilities correspond to the following mass function: m(HE) = m(H—E) =
m(—~HE); m(—~HnegE) = m(HE V H-E) = m(-HEV H-E) = m(-HE V ~H-E) = 0.1.
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that this precision is fraught with peril, at least if the probabilities in the corre-
sponding envelope are in any sense “objective,” for we could then be arguing from
objective probabilities to (uncertain) conclusions that represent probabilities that
transcend our evidence. It is perhaps these considerations that lend the greatest
support to the claim that belief functions have nothing to do with probabilities.
They do not combine as probabilities do.

Nevertheless, belief functions must be mentioned here in view of the fact that,
barring the question of updating, they can be represented as (convex) sets of prob-
ability functions or as probability envelopes.

6. TRANSFERRABLE BELIEF

Although the representation by belief functions formally corresponds to a repre-
sentation in terms of convex sets of probability, there can be a significant difference
in interpretation. This difference is exploited in the transferable belief model of
Smets [Sme88, SK94]. According to this model, the credibility of a proposition A
is represented directly by a number Cr(A); this number is determined not as the
lower bound of a set of numbers corresponding to a set of probability functions,
but through the “basic probability assignment” underlying belief. This basic prob-
ability assignment assigns a measurs m to the subsets of the set of possible worlds,
just as for Shafer. There is no direct connection between credibility and behavior
(as distinct from Walley’s view), and no direct connection between credibility and
probability. This distinction of interpretation has two important consequences.

First, it allows a variety of procedures for combining evidence. We have just
observed that the rule of combination that goes with belief functions is controver-
sial. If we construe belief functions as lower envelopes of probability functions, it
is not only controversial, but perhaps even wrong: there are arguments that prob-
abilities must be combined by conditionalization, and conditionalization, applied
to convex sets of probability functions may conflict with the result of applying the
rule of combination. To the extent that these arguments are right (they themselves
are not uncontroversiall) the rule of combination, under the set of probabilities
interpretation of belief functions, is wrong.

Under Smets’ transferable belief model nothing is “built in” concerning the up-
dating procedure. There are several procedures, including conditionalization and
Dempster conditioning, as well as imaging [Lew76], and others, for modifying belief
distributions in the light of new evidence. Which one or ones are appropriate under
what circumstances is a matter for investigation, on Smets’ view. This is a great
advance over the rigid adherence to Dempster’s rule required by Shafer in 1976.

Second, the transferable belief model allows us to focus on a single probability
function for a given practical framework — a betting frame. While the convex set
of probabilities treatment — for example, that of C. A. B. Smith [Smi61, Smi65]
— treats all members of that convex set equally, the transferable belief model pro-
vides a mechanism for selecting a particular probability distribution (a distribution
of pignistic probabilities determining betting odds) corresponding to a credibility
function Cr and a betting frame, by means of a special version of the (historically
notorious) principle of indifference. The fact that the betting frame is involved
allows for the possibility two propositions, A and B, known to be equivalent, and
therefore having the same credibility value, may have different pignistic probabili-
ties.

7. STATISTICAL KNOWLEDGE

Our treatment of uncertainty may be taken to depend on our having objective
statistical knowledge. If so, then we must ask about the source of that knowledge.
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The source is generally a matter of statistical inference, and so the foundations of
statistical inference is where we must look for enlightenment concerning statistical
knowledge. Alas, we will find the foundations of statistical inference to be as
controversial as the representation of uncertainty in the first place. In fact, many
of the same issues are involved. While one approach to statistical inference demands
that it depend on prior probability distributions, and requires that the output of
statistical inference be a distribution over a family of statistical hypotheses, another
approach to statistical inference demands that it depend on objective frequency
distributions, and that its output be the rejection of a set of statistical hypotheses.
(Almost no one talks of “accepting” statistical hypotheses, but it is widely regarded
as All Right to fail-to-reject a collection of hypotheses.)

A promising line of attack, explored by [Wal95] in one special case, takes the
set-of-distributions approach to statistical inference itself. For example, if we have a
population that we can characterize as binomial By, , for p in [0,1], then, whatever
p may be, the distribution of a relative frequency close to that in the parent popu-
lation itself among all m-membered samples of that population can be determined
by making use of the Dirichlet distribution. There is thus the possibility of an
objective, or largely objective, method of statistical inference that yields intervals,
corresponding to sets of statistical hypotheses.

The next controversial issue has to do with whether the result of such a statisti-
cal inference is the assignment of a probability to a set of statistical hypotheses, or
the acceptance of those hypotheses. Do we infer “The degree of certainty of the in-
terval valued hypothesis that the process is binomial with a parameter p € [py, pm],
relative to what we know, is 0.95,” or do we infer “The process is binomial with
a parameter p € [py,pm)” (and the evidence we have allows us to infer this with
acceptance level, or confidence, 0.95).

This distinction was called forcibly to our attention by Carl Hempel [Hem61], and
is still a matter of controversy. It is, in fact, at the heart of the controversy between
“probabilists” who take the output of uncertain inference to include an index of
the uncertainty, and “logicists” who argue that nonmonotonic inference issues in
categorical statements (like the second one quoted above) that are nevertheless
subject to withdrawal in the light of new evidence. For further discussion of this
distinction, see [Kyb88].

This is not the place to review this controversy, though it is interesting and rele-
vant that a matter so basic has become an issue in such a wide variety of contexts.
In any event, if we assume that statistical inference can yield the acceptance of
anything, it must the the acceptance of sets of hypotheses, such as “The process
is binomial with a parameter p € [py,pm].” If we want to ground uncertainty in
statistical knowledge, it must be approximate knowledge. This is the approach
followed in [Kyb74] and [Kyb97].

It follows that since the statistical knowledge we obtain inductively can only
be approximiate, uncertainy itself can at most be measured by intervals. This
is so quite independently of the propensity of the agent to accept or reject bets,
quite independently of the agent’s belief function (hypothesized by Shafer), quite
independently of the agent’s credibility function (Smets). If our uncertainties are
determined objectively, by what we know of the empirical world, they must gener-
ally be represented by intervals.

8. RECONCILIATION

Subjective probability doesn’t take itself too literally; it either has an explicitly
normative element, or it is construed as the theory of belief of a “rational” individ-
ual. The individual whose lower belief in A is 0.4, and whose lower belief in —A is
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0.7 is, by anybody’s standards, irrational. Thus the question is not whether or not
a plausible subjective view embodies constraints other than that of reflecting how
people really order their beliefs, but the degree and source of such constraints.

Ramsey’s view was that the axioms of the probability calculus functioned like
laws of logic: they represented, on his view, all the constraints that you could
impose on the credibilities of a rational individual. “... we do not regard it as
belonging to formal logic to say what should be a man’s expectation of drawing a
white or a black ball from an urn; his original expectations may within the limits of
consistency be any he likes...” [Ram31, p. 189]. Carnap and other writers thought
that some more constraints could be imposed. These are constraints expressed in
terms of symmetries [Car50, Car80] or entropy [Jay58]. Similar constraints are
suggested by [BGHK92, GK92, Hal90].

According the objective view developed in [Kyb61], [Kyb74], and [Kyb97], con-
straints on the functions representing uncertainty are imposed by the statistical
knowledge of the agent. These constraings may take either of two forms.

First, we may stipulate that the credibilities of the agent ought to form the
lower envelope of a set of propositional probability functions which themselves are
constrained by a priori or assumed statistical knowledge.

Second, we may stipulate that these credibilities be the corresponding intervals,
where these intervals are based on inferred statistical knowledge.

Most writers who accept at all that we can have statistical knowledge will agree,
I think, that the bounds imposed by this knowledge should be honored when they
are relevant. (Even this, of course, requires a resolution of the problem of relevance:
the reference class problem discussed in [Kyb83].)

What remains controversial, even among writers who agree so far, is the ques-
tion of whether all statements in our object language can be tied to statistical
background knowledge, or whether there are other, non-statistical sources of uncer-
tainty. If there are other sources of uncertain knowledge, analogy, say, or similarity,
it may still be the case that the inferential import of such sources of knowledge can
only or best be expressed by statistical constraints on the metalinguistic level. Thus
we might support an argument by analogy by the claim that among the worlds in
which the analogical premises are true, a high proportion are also such that the
analogical conclusion is true.

This is the thesis of combinatorial semantics, [Kyb97] which purports to be a
general framework for the analysis of uncertain inference. Combinatorial semantics
says it doesn’t matter what the source of the uncertainty is — any uncertainty, at
some level, can be looked on as statistical in character.

But statistical constraints, if they derive from empirical observation, can only
be rough and ready, which is to say that what observation can warrant is the
acceptance of a set of statistical statements as embodying our statistical knowledge
about the world. Ordinarily this set will be convex in at least one parameter,
such as {Bnp : p € [pi,pu]} — the set of binomial distributions with parameter
p in the interval [p;,p,] — or {N(p,0) : p € [, pu] A 0 € [0, Sigmay])} — a set
of normal distributions similarly bounded. If our degrees of belief are to reflect
our statistical knowledge, it is natural to suppose that they will be determined
either directly by this approximate statistical knowledge, or by corresponding sets
of probabilities. Even Bayesians will agree that the interval-valued constraints
inherited from approximate statistical knowledge should be honored. (I leave to
one side those extreme Bayesians who deny that we ever have even approximate
statistical knowledge.)

And thus there is a degree of rapprochement between the generalized Bayesian
view of uncertainties as given by convex sets of probability distributions, and the
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objectivistic view of uncertainties as determined by sets of statistical distributions
known to hold in the world. Given some (approximate) knowledge about frequencies
in the world, agents having that knowledge would be expected to constrain their ra-
tional credences by those frequencies. A natural way of representing these rational
credences is by lower probabilities. Thus there is a close connection among a collec-
tion of views, ranging from that of Isaac Levi [Lev80], according to which rational
credences of the agent are given by a convex set of probabilities over the sentences
of the agent’s language, to belief functions or the transferable belief model, in which
it is the envelope itself, and not the fact that it is an envelope of probabilities that
is important, to the view that takes the source of interval valued probabilities to
be the (not necessarily convex) set of objective frequency distributions in the world
that the agent can rationally claim to know.

It could be claimed that the various views we have mentioned reflect different
ways of groping toward a realistic, approximate, objective, and evidence driven
approach to uncertainty. If so, it is clear that we have not achieved that approach
yet. But it remains, for many of us, an exciting goal toward which to strive.

From - Wed Nov 4 15:35:43 1998 Received: from mserv.rug.ac.be (mserv.rug.ac.be
[157.193.40.37]) by allserv.rug.ac.be (8.9.0/8.9.0) with ESMTP id GAA08856 for
jgdcooma@allserv.rug.ac.bej; Sun, 11 Oct 1998 06:04:53 +0200 (MET DST) From:
kyburg@cs.rochester.edu Received: from cayuga.cs.rochester.edu (cayuga.cs.rochester.edu
[192.5.53.209]) by mserv.rug.ac.be (8.9.0/8.9.0) with SMTP id GAA29422 for jgert.decooman@rug.ac.be;;
Sun, 11 Oct 1998 06:04:50 +0200 (MET DST) Received: from slate.cs.rochester.edu
(slate.cs.rochester.edu [192.5.53.101]) by cayuga.cs.rochester.edu (8.6.9/0) with ESMTP
id AAA06828; Sun, 11 Oct 1998 00:04:46 -0400 Received: from heart.cs.rochester.edu
(heart.cs.rochester.edu [192.5.53.109]) by slate.cs.rochester.edu (8.6.9/0) with ESMTP
id AAA20299; Sun, 11 Oct 1998 00:04:45 -0400 Received: (from kyburg@localhost)
by heart.cs.rochester.edu (SMI-8.6/N++) id AAA16993; Sun, 11 Oct 1998 00:04:39
-0400 Date: Sun, 11 Oct 1998 00:04:39 -0400 Message-Id: ;199810110404.AAA16993@heart.cs.rochester.edu;,
To: gert.decooman@rug.ac.be, peter@ambrox.ugr.es Subject: the bbl file Content-
Type: text X-UIDL: 38c006904c52a2239d7f63cfa71c976¢ Status: RO X-Status: X-
Mozilla-Status: 8001
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