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1. Introduction

The term comparative or qualitative probability is used to denote an ordering
relation among events which actually means a comparison of probability. This
term has been used from three different points of view: the first one is the intro-
duction of the concept as a rational and natural approach to numerical probability
theory, as by de Finetti, Savage and Koopman. The second one is the idea of an au-
tonomous theory of probability, possibly weaker than the classical numerical theory
of probability (e.g. Keynes, Fishburn, Fine). The third one proposes comparative
probability as a first natural step of the (numerical) probability elicitation process.
This point of view is is explicit in (Good, 1950 [25]).

De Finetti (1931 [14]), from the first point of view, proposed four axioms for
a comparative probability (CP) ordering which have been considered the basis
for any axiomatic theory of comparative probability. His purpose was to show
that “starting out from a purely qualitative system of axioms, one arrives at a
quantitative measure of probability, and then at the theorem of total probability
which permits the construction of the whole calculus of probability” (de Finetti,
1937 [15]). In fact, with the additional assumption that there is an uniform partition
on an arbitrary number of events, he proved the existence of a unique probability
measure representing the given comparisons. This point of view has led toward the
search for general conditions for the existence and unicity of a probability measure
representing the given ordering.

From the second point of view, there are some attempts to select qualitative
axioms of probability and to develop alternative concepts of probability which take
into account the limited precision of our beliefs (Fine, 1973 [19]; Kaplan and Fine,
1977 [30]; Walley and Fine, 1979 [63]). On the other hand, the four axioms have
been weakened and linked with numerical tools different from probability, in order
to incorporate various behavioral attitudes. In his excellent review on comparative
probability, Fishburn (1986 [21]) also surveys those attempts and exhibits examples
of behavioral “inconsistency” with de Finetti’s axioms. In most of the examples,
the inconsistency seems to depend on the requirement of completeness.

Using comparisons as the first step of an elicitation process, completeness is ob-
viously abandoned. From this point of view it is quite natural to consider also
comparative prevision or preference (Buehler, 1976 [2]; Giron and Rios, 1980 [24];
Walley, 1991 [61]; Regoli, 1994b [46]), that is, comparisons amongst random quan-
tities.
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In the first and third approaches, the main issue is the consistency of comparative
assessments with a numerical probability measure. A more general tool for repre-
senting a comparative prevision (probability) is de Finetti’s concept of coherent
prevision (probability) (de Finetti, 1937 [15], 1970 [16]; Regazzini, 1988 [45]). This
concept does not need any structure on the set of random quantities (events) where
the comparisons are made; therefore, such a set can be extended and updated. If
all the random quantities are bounded, a coherent prevision P can be considered as
the expected value with respect to a suitable finitely additive probability measure
(for short finitely additive probability). In fact if P is a coherent prevision on a
set of bounded random quantities, F , then there is a finitely additive probability
P ′, defined on the algebra A spanned by F , such that P equals the extension of P ′

as a nonnegative linear functional to the linear space of all bounded A-measurable
random quantities. De Finetti’s coherent conditional prevision (probability) can be
seen as the restriction of a complete conditional finitely additive expectation (prob-
ability), e.g. (Regazzini, 1987 [44]), where complete means that it is permissible to
condition on every possible event, including those with zero probability (Dubins,
1975 [18]). Links between complete conditional finitely additive probability and
probability taking values on a nonstandard model of the real field can be found in
(Krauss, 1968 [36]).

All the necessary and sufficient conditions for the representability of a compara-
tive probability ordering have been proved by embedding the events in a linear space
of random variables, which is equipped with the linear order induced by the given
comparisons. Separating hyperplane theorems or alternative theorems for systems
of linear inequalities give the representation criteria; therefore the same criteria and
proofs can be used for events and random quantities. Therefore, those conditions
are necessary and sufficient conditions for the representability of a comparative
prevision, and we review them in this form in the next section.

2. Comparative probability and comparative prevision

Let F be an arbitrary family of events (possibly represented as a family of subsets
of a set Ω). A comparative probability on F is a partial binary relation R on F .
For every (B, A) ∈ R we denote by B � A the assertion that “B is not more

probable than A”. The assertion that “B is equally likely as A” summarizes the two
assertions that B � A and A � B, and it will be denoted by B ∼ A. Observe that
not all the pairs of events are necessarily compared.

An additional strict comparative probability , R′, can be elicitated by assertions
such as “B is strictly less probable than A”, denoted by B ≺ A. Let R∗ be the
asymmetric relation formally deduced from R, namely R∗ = R \RT , where RT =
{(A, B) : (B, A) ∈ R} and let us denote it by B ≺∗ A. If the relations R and
R′ represent the opinion of an expert, then it is natural to have R′ ⊂ R∗: in
fact, in case of partial or gradual information, it is possible that, at a first stage of
judgment, the expert has not decided yet if B ≺ A or B ∼ A and he summarizes
his opinion by B � A.

A comparative probability is said to be consistent on F if there exists a finitely
additive probability P on the algebra generated by F such that

B � A ⇒ P (B) ≤ P (A).

In such a case we say that P almost represents (or is compatible with, or almost

agrees with) R. Moreover, if also

B ≺ A ⇒ P (B) < P (A),

we say that P represents (or is strictly compatible with, or agrees with) R. Note
that in case of ambiguity, we would write: P represents (R,R′).
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Let F be a family of real bounded random quantities and let AF be the spanned
algebra of events, that is the minimal algebra containing the events (X ∈ S) for
all X ∈ F and for all real sets S. Let KF be the linear space of AF -measurable
random quantities. An event and its indicator function will be denoted by the same
letter.

A comparative prevision on F is a finite or infinite list, R, of comparisons among
random quantities, equivalently it is a partial binary relation on F . For every
(Y, X) ∈ R we denote by Y � X the assertion that “Y is not bigger than X on

average”, or “I expect Y not to be bigger than X”. The restriction of R to the set of
the indicators of events is a comparative probability. If R′ ⊂ R is a given subset of
strict comparisons, then, for every (Y, X) ∈ R′ we denote by Y ≺ X the assertion
that “Y is smaller than X on average”.

A comparative prevision, R, is said to be consistent on F if there exists a finitely
additive probability P on AF such that

Y � X ⇒ P (Y ) ≤ P (X)

where P (X) is the expected value of X with respect to P . In such a case we say
that P almost represents (or is compatible with) R. Moreover, if also

Y ≺ X ⇒ P (Y ) < P (X),

we say that P represents (or is strictly compatible with) R and that R is strongly

consistent on F .
In particular, when only indicators are considered, a consistent comparative

prevision is a consistent comparative probability.

2.1. Representation and almost representation. Every comparative prevision
R on F has an extension defined by R̂ = R ∪ {(0, X) : X ∈ F ,0 ≤ X}; if R is a

comparative probability then its extension can be written as R̂ = R∪{(∅, A) : A ∈
F}. The obvious meaning is that for every event A ∈ F and every nonnegative

random quantity X ∈ F , the relations ∅ � A and 0 � X are in R̂.

Fact 1. With this notation, if F is an arbitrary set of bounded random quantities

the following conditions are equivalent:

a) The comparative prevision R is consistent.

b) For every finite set F , every set of comparisons {(Yj , Xj) ∈ R}, and all

positive real numbers yj, j ∈ F ,

sup
∑

j∈F

yj(Xj − Yj) ≥ 0. (1)

c) For every finite set F , every set of comparisons {(Yj , Xj) ∈ R̂}, and all

positive real numbers yj, j ∈ F ,

1 +
∑

j∈F

yj(Xj − Yj) 6= 0. (2)

To obtain a representation which takes into account the strict elicited compar-
isons, R′, analogous conditions work only for simple sets of random quantities, for
example, a finite set of events.

Fact 2. When F is a finite set of finite-valued random quantities, the following

conditions are equivalent:

a’) The comparative prevision R is strongly consistent.



4 GIULIANA REGOLI

b’) For every finite set F , every set of comparisons SF = {(Yj , Xj) ∈ R, j ∈
F}, SF ∩ R′ 6= ∅, and all positive real numbers yj , j ∈ F ,

sup
∑

j∈F

yj(Xj − Yj) > 0. (3)

c’) For every finite set F , every set of comparisons SF = {(Yj , Xj) ∈ R̂, j ∈
F}, SF ∩ R′ 6= ∅, and all positive real numbers yj , j ∈ F ,

∑

j∈F

yj(Xj − Yj) 6= 0. (4)

Conditions b) and b’) can be interpreted as coherence conditions by considering
hypothetical bets in favour of each Xi versus Yi; or in the case of events, consider
bets on the more probable events and against the less probable, e.g. (Hartigan,
1983, p.20 [26]). Another point of view interprets these conditions as a dominance

principle: if a positive linear combination of random quantities, Xi, dominates the
same linear combination of others, Yi, then it is rational to expect at least one of
the Xi’s to be bigger than the corresponding Yi.

The equivalence between a) and b) can be found in (Buehler, 1976 [2]) or (Heath
and Sudderth, 1972 [27], 1978 [28]). The equivalence between a) and c) can be
proved by extending to random quantities the proof that Cohen (1991 [7]) has
given for events. Condition b’) extends to random quantities the condition given
by Kraft et al. (1959 [34]). Condition c) has been given by Scott (1964 [53]) for a
complete relation on an algebra of events and it has been studied by Cohen (1991
[7]) and Rios Insua (1992 [50]) for incomplete relations. Coletti (1990 [8]) gives a
coherence condition for the existence of a positive almost representation in a finite
set of events.

All these proofs are based on alternative theorems for linear systems of inequal-
ities, e.g. (Kuhn and Tucker, 1956 [37]; Gale, 1960 [23]), or separating hyperplane
theorems, e.g. (Holmes, 1975 [29]).

2.2. Archimedean conditions. When F is infinite, Scott’s condition c’), or equiv-
alently b’), implies only the representability of R in any finite subset and it is
equivalent (Narens, 1974 [42]) to representability by a measure taking values in
a nonstandard model of the real field. In the infinite case, representability by a
finitely additive probability measure needs some further property which prevents
the existence of “infinitesimal” differences between events. These properties are
usually referred to as Archimedean axioms .

S — Separability : there exists a countable family B ⊂ F such that for every
pair of quantities Y, X ∈ F such that Y ≺ X , there exists a Z ∈ B such
that Y � Z � X .

A — Archimedean condition: for every pair Y, X ∈ F such that Y ≺ X ,
there exists a natural number n(X, Y ) ∈ N such that if

kΩ − m(X − Y ) =
∑

j∈F

(Xj − Yj)

for some k, m ∈ N, m 6= 0, a finite set F ⊂ R and {(Yj , Xj) ∈ F}, then

k

m
>

1

n(X, Y )
.

Condition S is due to Cantor and it is a necessary and sufficient condition for a pre-
order, R, to be representable by a real function. Condition A, due to Chateauneuf
and Jaffray (1984 [5]), gives numerical bounds which involve additivity. Chateauneuf
(1985 [4]) has proved that for a complete preorder R on an algebra of events F ,
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conditions S and A hold if and only if R is representable by a finitely additive
probability. Since condition A implies the above condition b’), completeness can
be dropped and the same proof can be used for a set of random quantities. Cohen
(1991 [7]) suggested the following version of axiom A:

A’ — Archimedean condition 1 : for every pair Y, X ∈ F such that Y ≺
X ,

0 < inf{λ : λ − (X − Y ) =
∑

j∈F

(Xj − Yj) for some (Yj , Xj) ∈ R̂}

Cohen (1991 [7]) proved that this is a necessary and sufficient condition for repre-
sentability of a relation R on a set of events, in the case that the family of strict
comparisons, R′, is countably generated in the sense of linear combinations.

Other similar Archimedean conditions, given in terms of numerical bounds, are
due to Suppes and Zanotti (1976 [55], 1982 [56]), Lehrer (1991 [38]) and Domotor
(1994 [17]).

Another kind of Archimedean axiom requires the finiteness of standard sequences .
There are different types of standard sequences (Luce, 1967 [39]; Krantz et al., 1971
[35]; Fine, 1973 [19]; Narens, 1974 [42]; Domotor, 1994 [17]) which are generaliza-
tions of the following definition: A1, A2, . . . is a Luce’s standard sequence relative
to the event A if there are Bi ∼ A such that Bi ∩ Ai = ∅ and Ai+1 = Bi ∪ Ai.
It is worthwhile to emphasize that such a condition has a nice version in the con-
ditional comparative context (Luce, 1968 [40]). All these conditions arise in an
axiomatic framework (see further on) and they need other structural assumptions
to be applied.

Finally, for a non-Archimedean comparative probability, several representations
have been proposed: first of all, the one mentioned previously, using a measure
taking values in a nonstandard model of the real field (Narens, 1974 [42]; Chuaqui
and Malitz, 1983 [6]; Coletti, 1990 [8], Domotor, 1994 [17]). Another representation
is based on an idea suggested by de Finetti: under a suitable set of axioms, a non-
Archimedean comparative probability matches the order induced by a complete
conditional probability (Coletti and Regoli, 1983a [12], 1983b [11], 1986 [13]) in the
sense that

B � A ⇔ P (B | A ∪ B) ≤ P (A | A ∪ B).

2.3. Countable additivity. The existence of a countably additive representation
needs some continuity axioms and a more structured framework. The two main
assumptions are due respectively to Villegas (1964 [59]) and Giron and Rios (1980
[24]).

MC — Monotone continuity : Let R be a complete comparative proba-
bility on an algebra of events A. It is said to be monotonely continuous if,
given an increasing sequence of events Ai ∈ A, i ∈ N, with A =

⋃
Ai, then

Ai � B implies A � B.

If R is monotonely continuous, every representing probability measure is countably
additive. Moreover, if R satisfies de Finetti’s axioms and A is atomless (i.e. every
event A can be partitioned into two events, B1, B2, and ∅ ≺ Bi ≺ A), then a
countably additive representation exists (and it is unique). In Villegas (1964 [59]),
A is a σ-algebra. Chateauneuf and Jaffray (1984 [5]) remarked that an algebra is
sufficient for these results.

If MC is added to Scott’s condition and there exists at least one event which is
atomless, then the relation R is representable by a countably additive probability
measure (Chuaqui and Malitz, 1983 [6]).

Giron and Rios (1980 [24]) gave a continuity condition for a comparative pre-
vision defined on a well structured set of random quantities. Let Ω be a compact
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Hausdorff topological space; let C be the space of all real-valued continuous func-
tions, equipped with the topology of uniform convergence. Let F ⊂ C be a convex
set containing all nonnegative functions. Consider a complete transitive relation R
on F which is linear , i.e., Y � X if and only if λY + (1 − λ)H � λX + (1 − λ)H ,
for every H and λ > 0. R is said to be continuous if, whenever a sequence Xn

converges uniformly in F to X , then Y � Xn � Z implies Y � X � Z. Under
all these hypotheses, R is representable as the expected value of some countably
additive probability defined on the Boolean subsets of Ω. Such a probability is
unique if F = C.

3. Families of compatible probabilities

Let F be a set of random quantities and let R be a consistent comparative
prevision on F . Let P be the set of all finitely additive probabilities on the algebra,
AF , spanned by F . The family of compatible probabilities is the convex set Γ given
by

Γ = {P ∈ P : P (X) ≥ P (Y ), (Y, X) ∈ R}.

Γ is the weak*-closure of the convex hull of its extreme points. If AF is finite and
generated by n atoms, then Γ has a finite number of extreme points {Qs ∈ R

n : s =
1, . . . , m}, and it is simply the convex hull of {Qs}s, e.g. (Walley, 1991, Chapter 3
[61]).

If R satisfies one of the continuity axioms given in the previous section (either
in the algebra or in the linear space), then Γ contains only countably additive
probabilities (Villegas, 1964 [59]; Giron and Rios, 1980 [24]).

3.1. Unicity. Let a comparative prevision be consistent. When is its (almost)
representation unique? A general necessary and sufficient criterion for unicity can
be deduced from the bounds of the family of (almost) representing previsions, such
as the one given by Cohen (1991 [7]) (see next subsection). Other explicit necessary
and sufficient criteria have been given for finite set of events by Cohen (1991 [7])
and Fishburn (1986 [21]). The following is in Fishburn (1986 [21]):
When a set of events generates a finite set of n atoms aj , i = 1, 2, . . . , n, a positive

probability representation of a comparative probability is unique if and only if there

are n − 1 pairs of events (Bi, Ai), with Bi ∼ A and Bi ∩ Ai = ∅, such that the

corresponding n − 1 equations,
∑

aj∈Ai

pj −
∑

aj∈Bi

pj = 0; i = 1, 2, . . . , n − 1,

are linearly independent.

Most of the conditions given in the literature are only sufficient for the unicity of a
representation. They arise in the axiomatic, foundational approach to comparative
probability (see the next section); they usually require a complete relation on an
algebra; moreover they involve the logical structure of the set of events and they
need other structural conditions in order to imply representability. In particular,
given a complete relation on an atomless algebra, if a representation exists then it
is unique (Lehrer, 1991 [38]).

3.2. Precision and robustness. Since, in general, the family of compatible prob-
abilities, Γ, contains more than one probability, in applications an analysis of both
the precision and the robustness of inferences is necessary. A natural tool to mea-
sure precision or robustness is based on the bounds of the compatible previsions.
The following bounds for the compatible previsions can be found in Cohen (1991
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[7]) and Walley (1991 [61], 1996 [62]). For every Z ∈ KF define

P ∗(Z) = inf{α : (α − Z) ≥
k∑

i=1

ri(Xi − Yi); for some Yi � Xi, ri ≥ 0},

and

P∗(Z) = sup{α : (Z − α) ≥
k∑

i=1

ri(Xi − Yi); for some Yi � Xi, ri ≥ 0}.

If R is consistent, then a real number p ∈ [P∗(Z), P ∗(Z)] if and only if there is a
finitely additive probability P ∈ Γ such that P (Z) = p.

If C is an event and P∗(C) > 0 then P (C) > 0 for every P ∈ Γ. In that case,
bounds for compatible conditional expectations are given by

P∗(Z | C) = sup{a : C(Z − a) ≥
k∑

i=1

ri(Xi − Yi); for some Yi � Xi, ri ≥ 0},

and

P ∗(Z | C) = inf{a : C(a − Z) ≥
k∑

i=1

ri(Xi − Yi); for some Yi � Xi, ri ≥ 0}.

Contributions to robust Bayesian inference for comparative probability and pre-
vision can be found in Giron and Rios (1980 [24]) and related discussion, and in
Regoli (1994b [46], 1996b [48]). Robust Bayesian tools, deduced from Moment
Problem Theory (Berger, 1994 [1]; Kemperman, 1987 [31]; Salinetti, 1994 [51]) are
available for this kind of analysis as indicated in (Regoli, 1996b [48]). Morever, to
measure the robustness of a particular updated expected value, the above condi-
tional bounds can be used. If the cardinality of R is not too large, these bounds
can be found by minimizing and maximizing the updated extreme points of Γ: this
technique allows sequential updating, but the computations are not always feasi-
ble; they are feasible for particular types of comparative assessments, such as the
identification of some almost uniform partitions (see later the axiom AU due to
Savage; the formula for the bounds is in (Regoli, 1996b [48])).

3.3. Extensions. Given a comparative prevision (R,R′) on a family F , we say
that a comparative prevision (T , T ′) on a family G is an extension of (R,R′) if
F ⊂ G, R ⊂ T and R′ ⊂ T ′. Note that this definition includes the case R = T
and R′ 6= T ′, which is the one obtained by specifying additional strict comparisons.
Every order induced by an arbitrary P ∈ Γ is a complete extension of the given R
to the linear space KF .

If R is consistent, we consider the set of all comparisons which are implied by
the given ones, and call it Rw . It is the intersection of all consistent comparative
prevision extensions of R. The following properties can be deduced from Cohen
(1991 [7]).

If R is consistent, then (Y, X) ∈ Rw (i.e. Y �w X) if and only if

X − Y =
∑

j∈F

yj(Xj − Yj) for some finite set (Yj , Xj) ∈ R̂ and yj ≥ 0 (5)

When AF is finite, the following procedure extends a consistent comparative pre-
vision to a strongly consistent one. In fact, defining R∗

w = Rw \RT
w, (Rw ,R∗

w) is a
strongly consistent extension of R. Moreover, if (R,R′) is strongly consistent then
R′ ⊂ R∗

w and Y ≺∗ X if and only if equation (5) holds and it contains some strict
comparison Yj ≺ Xj .
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Another procedure for extension uses directly the above bounds of Γ: given two
random variables, X and Y , define Z = X − Y . Then Y � X is compatible with
(or implied by) the given R if and only if P ∗(Z) ≥ 0 (respectively P∗(Z) ≥ 0).

4. Axiomatic approach

The literature dealing with the foundational point of view of comparative proba-
bility tries to point out those qualitative aspects which are basic to the probability
concept. A weakened form of de Finetti’s (1931 [14]) axioms is usually assumed.

Let A be an algebra of events, represented as an algebra of subsets of a sample
space Ω. Let R be a nontrivial binary relation defined on A, written as B � A.
The triplet (Ω,A,R) is called a comparative probability structure (for short CPS)
if it satisfies the following axioms:

– R is a weak order A: i.e. it is a reflexive, transitive, complete binary rela-
tion.

– R is nonnegative: ∀A ∈ A, ∅ � A.
– R is additive: if A ∩ C = B ∩ C = ∅, then B � A ⇔ B ∪ C � A ∪ C.

In this case the relation ∼ is an equivalence relation; the only asymmetric relation
considered is R∗ = R − RT , that is, B ≺ A if B � A and not A � B. De
Finetti proposed these properties as an axiomatic qualitative basis for the theory
of probability. (In the original version, rather than nonnegativity, he required
positivity, i.e., ∀A ∈ A, ∅ ≺ A.)

Without some additional structural properties, these axioms do not guarantee
consistency with a numerical probability model (neither strong nor weak). In fact
Kraft et al . (1959 [34]) have given two examples: in the first, the sample space
consists of five atoms and the CPS is consistent but not strongly consistent; in the
second, a CPS is given on a set of six atoms and it is not consistent. De Finetti
(1931 [14]) and Koopman (1940 [33]) have obtained strong consistency, with a
unique representation in infinite algebras, by requiring the existence of a uniform

partition on an arbitrary number of events (i.e. a partition into n events which are
equally likely, for every n ∈ N).

This axiom has been weakened by Savage (1954 [52]) in several ways:

AU: There exists an n-almost uniform partition of Ω for infinitely many
n ∈ N, where a partition of Ω, {Ci : i = 1, ...n}, is called an n-almost
uniform partition if

r⋃

j=1

Cij
�

r+1⋃

j=1

Ckj
, ∀r < n; ∀ij , kj ∈ {1, . . . , n}. (6)

F: Relation R is fine in a set Ω if, ∀B � ∅, there is a partition of Ω into a
finite number of events, each of which is not more probable than B.

AEP: For every n ∈ N, there exists a partition of Ω into n almost equivalent

events, where two events, A1 and A2, are almost equivalent if Aj � Ai∪Ci,
for every Ci � ∅ with Ci ∩ Ai = ∅, i, j = 1, 2.

Properties AU and F are equivalent. Property AU is a necessary and sufficient
condition for the existence of a unique, nonatomic finitely additive probability
which almost represents R. Property AEP implies property AU and for a CPS
on a σ-algebra, the two properties are equivalent (Savage, 1954 [52]; Niiniluoto,
1972 [43]; Wakker, 1981 [60]). Moreover, if almost equivalence implies equivalence,
the almost representation is a (strong) representation. Another partition axiom,
called trisplittability by Narens (1974 [42]), implies existence and unicity of the
representation; in this case there are no atoms.
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In order to consider finite algebras, or, more generally, models containing atoms,
structural solvability axioms have been introduced. Luce (1967 [39]), Suppes (1974
[54]), Krantz et al. (1971 [35]) and Van Lier (1989 [57]) require that the algebra
is rich in equally likely “copies” of suitable events; they couple this requirement
with some standard-scale conditions to obtain a unique representation. Coletti
and Regoli (1986 [13]) get the same consequence by requiring that R be fine in
some event A and satisfy a scale condition: namely Ω ∈ An for some n where
An = {

⋃
i∈F Ei : F finite, ∃Ai ∈ An−1, Ei � Ai} and A0 = {A}. Essentially, these

properties characterize the CPS representable by a finitely additive probability with
a nonnull continuous component.

Neglecting the problem of consistency with a probability measure, the axiomatic
approach has been carried on as an autonomous theory (Keynes, 1921 [32]; Fine,
1977 [20]; Walley and Fine, 1979 [63]). This case is usually referred to as nonadditive

CPS . From this point of view, some improvement has been made in developing the
concepts of conditional and joint probability and independence (next sections).

Interest in comparative probability axioms weaker than CPS has been shown
from the decision theoretic point of view: Fishburn (1986 [21]) reviews some of
these aspects and, in particular, discusses the problem of representation by an
“imprecise numerical probability” (Koopman, Good, Suppes, Walley and Fine).
More recently, Wong et al. (1991 [64]), Regoli (1994a [47]), Fishburn (1996 [22]),
and Capotorti, Coletti and Vantaggi (1998 [3]) deal with comparative relations
representable by some “nonadditive probabilities” such as Dempster-Shafer belief
functions or convex capacities. In particular, the last paper shows that comparative
structures on a set of events do not distinguish between belief functions and convex
capacities, or between lower probabilities and 0-monotone capacities.

5. Comparative conditional probability

Conditional probability can be considered basic in subjective probability theory:
unconditional probability is just a simple particular case. It is even more natural
to consider comparative conditional probability judgments as basic in the theory of
comparative probability, e.g. (Koopman, 1940 [33]).

A comparative conditional probability is a binary relation on a set of pairs of
events, E × F . We denote by (A, B) � (C, D) or A | B � C | D the assertion
that “A given B is not more probable than C given D”. A comparative conditional
probability is consistent if there exists a numerical conditional probability, P , such
that

A | B � C | D ⇒ P (A | B) ≤ P (C | D).

Classically this problem has been studied by assuming that E is an algebra, F ⊂ E
(typically F is an ideal of E), and � is a complete relation on E ×F . In such a case
the representation P is the conditional probability derived by ratio from a finitely
additive probability P defined on the algebra E and such that P (F ) > 0 for all
F ∈ F .

In this framework, conditions for consistency are given by Koopman (1940 [33]),
Luce (1968 [40]), Krantz et al. (1971 [35]), Suppes and Zanotti (several papers:
e.g. 1982 [56]).

Neglecting the completeness of the relation, Buehler (1976 [2]) has given a coher-
ence condition in order to apply Bayes’ theorem to conditional preferences. Given
finite sets X and T , he considers two families of conditional comparisons on real-
valued functions defined on X × T . In one family, the comparisons are conditional
given some value θ ∈ T and in the other family they are conditional given some
value x ∈ X . The coherence condition is necessary and sufficient for the relations to
be compatible with a joint finitely additive probability, P , on the subsets of X ×T ,
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such that its conditional previsions P (h(x, θ) | θ) and P (h(x, θ) | x), represent
respectively the two given families of conditional comparisons.

Via coherence conditions, Coletti, Gilio and Scozzafava (1993 [10]), Coletti (1994
[9]) and Vicig (1995 [58]) treat the problem of consistency of a comparative condi-
tional probability on an arbitrary set of pairs of events: the relation is represented
by de Finetti’s coherent conditional probability and allows conditioning on events
which may have probability 0. Their work also deals with the search for algorithms
which could be implemented in an automatic support system.

6. Independence and joint comparative probability

Starting with Fine (1973 [19]), the concepts of independence and joint compar-
ative probability have been studied with emphasis on the nonadditive case. The
concept of independence in a CPS is characterized by some version of the following
property (Fine, 1973 [19]; Kaplan and Fine, 1977 [30]; Luce and Narens, 1978 [41]):

if A ⊥ B, C ⊥ D, A ∼ C then B � D ⇒ A ∩ B � C ∩ D.

where the symbol A ⊥ B means A is independent of B.
Even assuming consistency of the CPS, this property is not sufficient for the

existence of a multiplicative representation by a probability measure P , i.e.,

A ⊥ B ⇒ P (A ∩ B) = P (A)P (B).

To obtain sufficient conditions, solvability and Archimedean conditions are required
by Luce and Narens (1978 [41]). Regoli (1996a [49]) obtains a multiplicative prob-
ability representation, via a coherence condition on a set of logically independent
events.

Finally, the existence of general joint comparative probability structures for given
CPS marginals is investigated by Kaplan and Fine (1977 [30]); from their natural
definitions of joint CPS several interesting results follow:

(1) There are pairs of CPS marginals which cannot be combined into any joint
CPS.

(2) There is a class of CPS (strictly containing the consistent CPS) which can
be combined with every other CPS into a joint CPS.

(3) A given CPS admits an arbitrary number of independent identically dis-
tributed repetitions (i.e. n jointly independent copies of the given CPS, for
every natural number n) if and only if it is consistent with a finitely additive
probability.

Sufficient conditions for the consistency of independent identical CPS are also in
Luce and Narens (1978 [41]).
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