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Abstract. Belief functions have been proposed for modeling someone’s de-
grees of belief. They provide alternatives to the models based on probability
functions or on possibility functions. There are several interpretations of belief
functions: the lower probabilities model, Dempster’s model, the hint model,
the probability of modal propositions model, the transferable belief model. All
these models are unfortunately clustered under the generic name of Dempster–

Shafer theory, which hides their differences and explains most of the confusion
and errors that appear in the literature.
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1. Introduction

1.1. Dempster–Shafer theories. Dempster–Shafer theory covers several models
that use the mathematical object called ‘belief function’. Usually their aim is in
the modeling of someone’s degrees of belief, where a degree of belief is understood
as a strength of opinion. We do not study the problem of vagueness and ambiguity
for which fuzzy set theory and possibility theory are appropriate.

Beliefs result from uncertainty. Uncertainty sometimes results from a random
process (the objective probability case), it sometimes results only from the lack of
information that induces some ‘belief’ (‘belief’ must be contrasted to ‘knowledge’
as what is believed can be false). The uncertainty studied here concerns the one
usually quantified by probability functions, as done by the Bayesians.

We will consider the upper and lower probabilities (ULP) model, Dempster’s
model, the theory of hints, the transferable belief model (TBM), the probability
of provability model. Each model corresponds to a different understanding of the
concept of uncertainty.

None of these models receives the qualification of ‘Dempster–Shafer’ and I do
not think any model deserves it. This qualification has an historical origin (Gordon
and Shortliffe, 1984) [9] but is misleading. Some people qualify any model that
uses belief functions as Dempster–Shafer. This might be acceptable provided they
did not blindly accept the applicability of both Dempster’s rules of conditioning
and combination. Such uncritical — and in fact often inappropriate — use of these
two rules explains most of the errors encountered in the so-called Dempster–Shafer
literature (Pearl, 1990) [23].

Both Dempster and Shafer introduced models but I do not think they would
recognise their model as a ‘Dempster–Shafer’ model. Dempster’s seminal work was
not orientated toward modeling someone’s beliefs. The idea of Shafer was to use the
mathematical model introduced by Dempster in order to model someone’s belief
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(Shafer, 1976a) [26]. In his 1976 book, Shafer models beliefs without considering
probability theory, but in later papers, he often used the concepts of random sets,
one-to-many mappings and upper and lower probabilities, creating confusion. We
introduced the concept of the transferable belief model (TBM) in order to justify the
use of belief functions (including Dempster’s rule of conditioning and Dempster’s
rule of combination) to model someone’s belief (Smets, 1988b) [32]. The TBM is a
theory in itself, not an adaptation of probability theory. It seems to fit essentially
with what Shafer developed in his book.

This presentation will successively introduce the transferable belief model, then
the upper and lower probability model, Dempster’s model, the model of hints, and
finally probabilities defined on modal propositions. We start with a definition of
what these models intend to represent.

1.2. The representation of quantified beliefs. We start from a finite set of
worlds Ω called the frame of discernment. One of its worlds, denoted ω0, corre-
sponds to the actual world. The term ‘world’ is used in a general sense. It covers
concepts like ‘state of affairs’, ’state of nature’, ‘situation’, ‘context’, ‘value of a
variable’ . . .

An agent, denoted You (but it might be a robot, a piece of software), does not
know which world in Ω corresponds to the actual world ω0. Nevertheless, You have
some idea, some opinion about which world might be the actual one. So for every
subset A of Ω, You can express the strength of Your opinion that the actual world
ω0 belongs to A. This strength is denoted belief(A), and belief means (weighted)
opinions. The larger belief(A), the stronger You believe ω0 ∈ A.

Formally, we suppose a finite propositional language L, supplemented by the
tautology and the contradiction. Extensions to infinite language could be consid-
ered but they are useless here as we focus on understanding, not on mathematical
generality. Let Ω denote the set of worlds that correspond to the interpretations
of L. It is built in such a way that no two worlds in Ω denote logically equivalent
propositions, i.e., for every pair of worlds in Ω, there exists a proposition in the
language L that is true in one world and false in the other (this avoids useless
repetition of worlds denoting logically equivalent propositions).

Among the worlds in Ω, a particular one corresponds to the actual world ω0.
Because the data available to You are imperfect, You do not know exactly which
world in a set of possible worlds is the actual world ω0. All You can express is Your
‘opinion’, represented by belief(A) for A ⊆ Ω, about the fact that the actual world
ω0 belongs to the various subsets A of Ω. The major problem is in the choice of
the properties that the function ‘belief’ should satisfy.

We first assume that for every pair of subsets A and B of Ω, belief(A) and
belief(B) are comparable, i.e.,

belief(A) ≤ belief(B) or belief(A) ≥ belief(B).

Such an assumption leads easily to the fact that belief(A) is a real number. It
is not so innocuous as it eliminates, among others, the theories based on sets of
probability functions as proposed by Kyburg (1987) [18] or Voorbraak (1991) [42].

Monotony with respect to inclusion is the next and quite obvious requirement:

if A ⊆ B ⊆ Ω then belief(A) ≤ belief(B).

That belief is non-negative and bounded are normal requirements, and using the
closed interval [0, 1] is just as good as any other choice: so, belief : 2Ω → [0, 1]
(where 2Ω denotes the power set of Ω). Other properties are less obvious, and the
differences between the models proposed for representing quantified belief result
from them.
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1.3. The static and dynamic components. Any model that wants to represent
quantified beliefs has, at least, two components: one, static, that describes Your
state of belief given the information available to You, and the other, dynamic,
that explains how to update Your beliefs given new pieces of information become
available to You. We insist on the fact that both components must be considered in
order to compare these models. Unfortunately, too many publications are restricted
to the static component and fail to detect the differences between the models based
on belief functions. In fact, these differences are essentially observed at the dynamic
level.

1.4. Credal versus pignistic levels. Intrinsically, belief is not a directly observ-
able property. Once a decision must be made, its impact can be observed. Studying
beliefs without considering the decision making process is useless. Any model could
be elaborated, but its values could not be assessed if it weren’t for the fact that de-
cisions can be observed. So both processes of holding beliefs and making decisions
must be described.

We have described a two-level mental model in order to distinguish between two
aspects of beliefs, belief as weighted opinions, and belief for decision making. The
two levels are: the credal level, where beliefs are entertained, and the pignistic level,
where beliefs are used to make decisions (credal and pignistic derive from the latin
words ‘credo’, I believe and ‘pignus ’, a wage, a bet).

Usually these two levels are not distinguished and probability functions are used
to quantify beliefs at both levels. The justification for the use of probability func-
tions is usually linked to “rational” behavior to be exhibited by an ideal agent
involved in some betting or decision contexts. If decisions must be “coherent”,
the uncertainty over the possible alternatives must be represented by a probability
function. This result justifies that a probability function must be used at the pig-
nistic level in order to compute the expected utilities that must be maximized by
selecting the ‘best’ act. Nevertheless that probability function does not represent
the agent’s beliefs, it is only the function needed to derive the best decision. What
is rejected when we distinguish between the two mental levels is the assumption
that the probability function used during the decision making process represents
the uncertainty at the credal level. We assume that the pignistic and the credal
levels are different in which case the justification for using probability functions at
the credal level does not hold anymore. At the credal level, we advocate in the
transferable belief model that beliefs are represented by belief functions. Of course,
we will have to explain and justify how decisions can be achieved, i.e., how to derive
the probability function needed at the pignistic level from the belief function that
represents Your beliefs at the credal level (see Section 6).

2. The transferable belief model

The transferable belief model (TBM) is a model developed to represent quantified
beliefs (Smets and Kennes, 1994). It covers the same domain as the Bayesian–
subjectivist probabilities except that it is based on belief functions (Shafer, 1976a)
[26] (Smets, 1988b) [32] (Smets and Magrez, 1987) [40] (Smets, 1994b) [38], instead
of probability functions as usually advocated by the Bayesians.

The TBM departs from the Bayesian approach in that we do not assume the
additivity encountered in probability theory. It is replaced by inequalities like:

bel(A ∪ B) ≥ bel(A) + bel(B) − bel(A ∩ B), (1)

where bel(A) denotes belief(A).
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In the TBM, one assumes that bel is a ‘capacity monotone of order infinity’, i.e.,
bel satisfies the following inequalities:

∀n > 1, ∀A1, A2, . . . An ⊆ Ω, bel(A1 ∪ A2 ∪ . . . An) ≥
∑

i

bel(Ai) −
∑

i>j

bel(Ai ∩ Aj) · · · − (−1)nbel(A1 ∩ A2 ∩ . . . An). (2)

As such, the meaning of these inequalities is not obvious, except when n = 2 (see
(1)).

2.1. Basic belief assignment. The understanding of the inequalities (2) is clari-
fied once the concept of a basic belief assignment (bba) is introduced. A basic be-
lief assignment (bba) is a function m : 2Ω → [0, 1] that satisfies

∑

A : A⊆Ω m(A) = 1.

The term m(A) is called the basic belief mass (bbm) given to A.
The bbm m(A) represents that part of Your belief that supports A — i.e., the

fact that the actual world ω0 belongs to A — without supporting any more specific
subset, by lack of adequate information.

As an example, consider that You learn that ω0 belongs to A, and You know
nothing else about the value of ω0. Then some part of Your beliefs will be given to
A, but no subset of A will get any positive support. In that case, You would have
m(A) > 0 and m(B) = 0 for all B ⊆ A and B 6= A, a property that could not be
satisfied by a probability measure.

2.2. Belief functions. The bbm m(A) does not in itself quantify Your belief, that
we denote by bel(A), that the actual world ω0 belongs to A. Indeed, the bbm m(B)
given to some subset B of A also supports that ω0 ∈ A. Hence, the degree of belief
bel(A) is obtained by summing all the bbm m(B) for B ⊆ A. We have:

bel(∅) = 0 and bel(A) =
∑

∅6=B⊆A

m(B) ∀A ⊆ Ω, A 6= ∅. (3)

The degree of belief bel(A) for A ⊆ Ω quantifies the total amount of justified

specific support given to the fact that the actual world ω0 belongs to A. We say
justified because we include in bel(A) only the basic belief masses given to subsets
of A. For instance, consider two distinct elements x and y of Ω. The basic belief
mass m({x, y}) given to {x, y} could support x if further information indicates this.
However given the available information the basic belief mass can only be given to
{x, y}. We say specific because the basic belief mass m(∅) is not included in bel(A)
as it is given to the subset ∅ that supports not only A but also its complement A.

Note: Shafer assumes m(∅) = 0. In the TBM, such a requirement is not assumed.
The function bel so defined satisfies the inequalities (2). Thanks to the natural

interpretation that can be given to the basic belief masses, the meaning of the
inequalities (2) becomes somehow clearer. The originality of the model comes
from the non-null masses that may be given to non-singletons of Ω. Indeed, when
m(A) = 0 for all A ⊆ Ω with |A| 6= 1 (|A| denotes the number of elements in A),
then the inequalities of (2) become equalities, and the function bel is a probability
function. In that last case, the TBM reduces to the Bayesian theory. Of course, in
general, this requirement is not satisfied in the TBM.

The dual of bel is called a plausibility function pl : 2Ω → [0, 1]. It is defined as:

pl(A) = bel(Ω) − bel(A), for all A ⊆ Ω,

or

pl(A) =
∑

X⊆Ω: X∩A6=∅

m(X), for all A ⊆ Ω.
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The degree of plausibility pl(A) for A ⊆ Ω quantifies the maximum amount of
potential specific support that could be given to the fact that the actual world ω0

belongs to A. We say potential because the basic belief masses included in pl(A)
could be transferred to non-empty subsets of A if new information could justify
such a transfer. It would be the case if we learn that the actual world cannot be in
A.

2.3. Related functions. Two other functions related to bel are also defined: the
commonality function q: 2Ω → [0, 1] and the implicability function b: 2Ω → [0, 1]
with:

q(A) =
∑

X⊆Ω: A⊆X

m(X), for all A ⊆ Ω (4)

b(A) = bel(A) + m(∅) =
∑

X⊆Ω: X⊆A

m(X), for all A ⊆ Ω. (5)

Their major interest will appear when conditioning and combination will be intro-
duced.

It must be emphasized that each of these five functions is in one-to-one corre-
spondence, so none gives information not included in the others. Their interest
derives from the fact they enhance different aspects of the same underlying beliefs,
and that some are sometime computationally very convenient.

The advantage of the TBM over the classical Bayesian approach resides in its
large flexibility, its ability to represent every state of partial beliefs, up to the
state of total ignorance. In the TBM, total ignorance is represented by the
so-called vacuous belief function, i.e., a belief function such that m(Ω) = 1,
m(A) = 0 for all A with A ⊆ Ω, A 6= Ω. Hence bel(Ω) = 1 and bel(A) = 0
for all A with A ⊆ Ω, A 6= Ω. It expresses that all You know is that ω0 ∈
Ω. The representation of total ignorance in probability theory is hard to achieve
adequately, most proposed solutions being doomed to contradictions. With the
TBM, we claim we+ can represent every state of belief, full ignorance, partial
ignorance, probabilistic-additive beliefs, or even full belief (m(A) = 1 corresponds
to A is certain).

Example 1. Let us consider a somewhat reliable witness in a murder case who
testifies to You that the killer is male. Let α = .7 be the reliability You give to the
testimony. Suppose furthermore that a priori You have an equal belief that the
killer is male or female.

A classical probability analysis would compute the probability P (M) of M =
‘the killer is male’ given the witness testimony as:

P (M) = P (M |Reliable)P (Reliable) + P (M |NotReliable)P (NotReliable)

= 1 × 0.7 + 0.5 × 0.3 = 0.85,

where Reliable and Not Reliable refer to the witness’ reliability. The value 0.85 is
the sum of the probability of M given that the witness is reliable (1) weighted by
the probability that the witness is reliable (0.7) plus the probability of M given
that the witness is not reliable (0.5) weighted by the probability that the witness
is not reliable (0.3).

The TBM analysis is different. It goes as follows. You have some reason to
believe that the killer is a male, as the witness said so. But this belief is not total
(maximal) as the witness might be wrong. The 0.7 is the belief You give to the
fact that the witness tells the truth (is reliable), in which case the killer is male.
The remaining 0.3 mass is given to the fact that the witness is not really telling
the truth (he lies or he might have seen a male, but this was not the killer). In
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that last case, the testimony does not tell You anything about the killer’s sex. So
the TBM analysis will give a belief 0.7 to M : bel(M) = 0.7 (and bel(Not M) = 0).
The information relative the population of killers is not relevant to Your problem.
The fact that almost all crimes are committed by the members of some particular
group of individuals may not be used in court. It does not allow You (nor any
judge) to conclude to the culpability of a suspect.

In the probability analysis where P (M) = 0.7+0.15, the 0.7 value can be viewed
as the justified component of the probability given to M (called the belief or the
support) whereas the 0.15 value can be viewed as the random component of that
probability. It would become relevant to bel(M) only if the murderer had been
really selected by a random process from a population where 50% are male. In our
example, such a random selection does not apply, so the random component is not
considered when building Your beliefs. The transferable belief model deals only
with the justified components.

2.4. Conditioning. Suppose You have some belief on Ω represented by the basic
belief assignment m. Then some further evidence becomes available to You and this
piece of information implies that the actual world cannot be in one of the worlds
in A. Then the mass m(B) that initially was supporting that the actual world is
in B now supports that the actual world is in B ∩ A as every world in A must be
‘eliminated’. So m(B) is transferred to B ∩A after conditioning on A. (The model
gets its name from this transfer operation.)

This operation leads to the conditional basic belief assignment mA, belief func-
tion belA and plausibility function plA with:

mA(B) =
∑

C⊆A

m(B ∩ C)

belA(B) = bel(B ∪ A) − bel(A), plA(B) = pl(B ∩ A), bA(B) = b(B ∪ A)

qA(B) =

{

q(B) if B ⊆ A

0 otherwise

The rule by which these equations are built is called Dempster’s rule of conditioning.

Note: As already mentioned above, an important difference between the TBM and
the model introduced by Shafer is that we do not require that m(∅) = 0, or equiv-
alently that bel(Ω) = 1. Its origin can be explained in two ways: the open world
assumption (Smets, 1992c) [36] and the quantified conflict (Smets, 1988b) [32].
This difference explains why we do not normalize (we omit the denominator in)
Dempster’s rules of conditioning (and combination, see Section 4.1).

The open world assumption reflects the idea that Ω might not contain the actual
world. We do not consider such a generalization in this contribution.

The second interpretation of m(∅) > 0 is that there is some underlying conflict
between the sources that are combined in order to produce the bba m. Consider
for example a bba m0 defined on Ω with m0(∅) = 0 and bel0(A) > 0, where A is
the complement of A relative to Ω. Suppose you collect another piece of evidence,
a conditioning one, that just states that A is true for sure. Its related bba is given
by mA with mA(A) = 1. You had given some belief to A and now you learn that
no belief should have been given to A. So a conflict appears between the first belief
bel0 and the new one mA. The larger bel0(A), the larger the conflict. The worst
conflict between two pieces of evidence would be encountered if bel0(A) = 1, as it
means that you were sure that A holds and now you learn for sure that it is false.
This leads to a contradiction, the conflict encountered in classical logic. The best
case would be bel0(A) = 0, in which case there is no conflict between bel0 and the
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new piece of information. After combining the two pieces of information, we get a
new bba m = m0 ⊕ mA with m(∅) = bel0(A) (see also Section 4.1). So m(∅) can
be understood as the amount of conflict between m0 and the conditioning evidence
represented by mA. This can be generalized to any pair of belief functions, and we
can understand m(∅) as the amount of conflict present in m, and that results from
the pieces of evidence that were taken into account when building m.

Example 1: Continuation. Continuing with the murder case, suppose there are
only two potential male suspects: Phil and Tom, so m({Phil, Tom}) = 0.7. Then
You learn that Phil is not the killer. The initial testimony now supports that the
killer is Tom. The reliability α = 0.7 You gave to the testimony initially supported
‘the killer is Phil or Tom’. The new information about Phil implies that the value
0.7 now supports ‘the killer is Tom’, hence mnot Phil({Tom}) = 0.7.

2.5. The vacuous belief function. Total ignorance is represented by the vacuous
belief function, i.e. a belief function such that m(Ω) = 1, hence bel(A) = 0 for all
A ⊆ Ω, A 6= Ω, and bel(Ω) = 1. The origin of this particular quantification for
representing a state of total ignorance can be justified. Suppose that there are
three propositions written on three pieces of paper labeled A, B and C. You know
that one and only one of these propositions is true, but You even do not know
what the propositions are. You only know their number and the labels written
on the papers. By symmetry arguments, Your beliefs about their truth are equal:
bel(A) = bel(B) = bel(C) = α for some α ∈ [0, 1] where bel(A) is the belief You
give to the fact that the proposition written on the paper labeled A is true, . . . .
Furthermore, You have no reason to put more (or less) belief on C than on A ∪ B
(that one of the propositions written on A or on B is true): bel(A∪B) = bel(C) = α.
This requirement leads to the equalities: bel(A ∪ B) = bel(A) = bel(B) = α.
The vacuous belief function (α = 0) is the only belief function that satisfies these
equalities (and no probability function can satisfy simultaneously these equalities
and those obtained by symmetry).

2.6. The Principle of Minimal Commitment. Let Me (or I) be another agent,
different from You. Suppose You only know that My belief function over Ω =
{a, b, c} is such that belMe({a}) = 0.3 and belMe({b, c}) = 0.5, and You do not
know the value given to belMe for the other subsets of Ω. Suppose You have no
other information on Ω and You are ready to adopt My belief as Yours. How
to build Your beliefs given these partial constraints? Many belief functions can
satisfy them. If you adopt the principle that subsets of Ω should not get more
support than justified, then Your belief on Ω will be such that mYou({a}) = 0.3,
mYou({b, c}) = 0.5 and mYou({a, b, c}) = 0.2. Among all belief functions compatible
with the constraints given by known values of belMe, belYou is the one that gives the
smallest degree of belief to every subset of Ω. The principle evoked here is called
the Principle of Minimal Commitment. It is really at the core of the TBM,
where degrees of belief are degrees of ‘justified’ supports.

With un-normalized belief functions (where m(∅) can be positive), the definition
of the principle is based on the plausibility functions. Consider two plausibility
functions pl1 and pl2 such

pl1(A) ≤ pl2(A) ∀A ⊆ Ω.

We say that pl2 is not more committed than pl1 (and less committed if there is
at least one strict inequality). The same qualification is extended to their related
basic belief assignments and belief functions. Among all belief functions on Ω, the
least committed belief function is the vacuous belief function where pl(A) = 1 for
all A 6= ∅.
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When expressed with belief functions, the principle becomes:

b1(A) ≥ b2(A) ∀A ⊆ Ω

i.e., bel1(A) + m1(∅) ≥ bel2(A) + m2(∅) ∀A ⊆ Ω

The concept of ‘least commitment’ permits the construction of a partial order v
on the set of belief functions (Yager, 1986) [46] (Dubois and Prade, 1986) [5].

We write:

pl1 v pl2

to denote that pl1 is equal to or more committed than pl2. By analogy the derived
notations m1 v m2 and bel1 v bel2 have the same meaning.

The Principle of Minimal Commitment consists in selecting the least com-
mitted belief function in a set of equally justified belief functions. The principle
formalizes the idea that one should never give more support than justified to any
subset of Ω. It satisfies a form of skepticism, of uncommitment, of conservatism in
the allocation of our belief. In its spirit, it is not far from what the probabilists try
to achieve with the maximum entropy principle, see (Dubois and Prade, 1987) [4]
(Hsia, 1991) [11].

This principle does not work in every situation. The set of belief functions
compatible with a given set of constraints does not always admit a unique least
committed solution. In that case extra requirements must be introduced, like those
based on the information content of a belief function (Klir, 1987) [15] (Klir and
Wierman, 1998) [14] (Pal et al., 1992, 1993) [20, 21] (Smets, 1983) [30].

2.7. The Generalized Bayesian Theorem. Consider the finite spaces X and
Θ. Suppose that for each θ ∈ Θ, there is a basic belief assignment on X , denoted
mX [θ]. Given this set of basic belief assignments, what is the belief induced on Ω
if You come to know that x ⊆ X holds?

In statistics, this is the classical inference problem where Θ is a parameter space
and X an observation space. You know the probability functions on X given each
θ in Θ, You observe x ⊆ X and You compute, by applying Bayes’ theorem, the
probability function on Θ given x, using also an a priori probability function on Θ.

The Generalized Bayesian Theorem (GBT) performs the same task with belief
functions. The main point is that the needed prior can be a vacuous belief function,
which is the perfect representation of total ignorance. No informative prior belief
is needed, avoiding thus one of the major criticisms against the classical approach,
in particular when used for diagnostic applications.

Given the set of basic belief assignments mX [θ] known for every θ ∈ Θ and their

related b-functions bX [θ] and plausibility functions plX [θ], then for x ⊆ X and for
every A ⊆ Θ:

bΘ[x](A) =
∏

θ∈Θ\A

bX [θ](x)

plΘ[x](A) = 1 −
∏

θ∈A

(1 − plX [θ](x))

qΘ[x](A) =
∏

θ∈A

plX [θ](x)

where [x] is the piece of evidence stating that ‘x holds’.
Should You have some non-vacuous beliefs on Θ, represented by mΘ[E0], then

this belief is simply combined with mΘ[x](A) by the application of the conjunctive
rule of combination (see Section 4.1).

This rule has been derived axiomatically by Smets (1978, 1993) [29, 37] and by
Appriou (1991) [1].
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Some particular cases are worth mentioning. 1. We consider the case of two ‘inde-
pendent’ observations x defined on X and y defined on Y , and the inference on Θ
obtained from their joint observation.

Suppose the two variables X and Y satisfy the Conditional Cognitive Inde-

pendence property defined as:

plX×Y [θ](x, y) = plX [θ](x)plY [θ](y) ∀x ⊆ X, ∀y ⊆ Y, ∀θ ∈ Θ.

This property is a generalization of the classical independence described in prob-
ability theory. It reduces to the classical conditional independence property when
all plausibility functions are probability functions.

Let bΘ[x] and bΘ[y] be computed by the GBT (with a vacuous a priori belief
on Θ) from the set of basic belief assignment mX [θ] and mY [θ] known for every
θ ∈ Θ. We then combine by the conjunctive rule of combination (see Section 4.1)
these two functions in order to build the belief bΘ[x, y] on Θ induced by the pair
of observations.

We could as well consider the basic belief assignment mX×Y [θ] built on the space
X × Y thanks to the Conditional Cognitive Independence property, and compute
bΘ[x, y] from it using the GBT. Both results are the same, a property that is
essential and at the core of the axiomatic derivation of the rule.

2. If for each θ ∈ Θ, bX [θ] is a probability function P (·|θ) on X , then the
GBT for |θ| = 1 becomes:

plΘ[x](θ) = P (x|θ) ∀x ⊆ X

That is, on the singletons θ of Θ, plΘ[x] reduces to the likelihood of θ given x. The
analogy stops there as the solution for the likelihood of subsets of Θ is different.

If, furthermore, the a priori belief on θ is also a probability function P0(θ), then
the normalized GBT becomes:

belΘ[x](A) =

∑

θ∈A P (x|θ)P0(θ)
∑

θ∈Θ P (x|θ)P0(θ)
= P (A|x)

i.e., the (normalized) GBT reduces itself into the classical Bayesian theorem, which
explains the origin of its name.

3. Conditioning

Besides the representation of beliefs by a belief function, the most characteristic
component of the TBM is the use of Dempster’s rule of conditioning to represent
the impact of a conditioning piece of evidence. Conditioning Your belief on A ⊆ Ω
means that You accept as true the conditioning piece of evidence EvA that states
that the actual world is not one of those in A. This piece of evidence usually means
that the actual world is in A, but this last expression states a little more than the
previous one. It states that the actual world is really in Ω, what is not necessarily
required in the TBM; see (Smets, 1988b) [32] where the difference between the open
and the closed world assumptions is described, and (Smets, 1992c) [36], where the
meaning of m(∅) > 0 is analysed.

Given the importance of the conditioning process, we present an example that
illustrates its nature. Differentiating between factual and generic revisions is used,
details can be found in Dubois and Prade (1994) [6] and Smets (1998) [28].

Example 2: Failure diagnosis. Suppose some electric equipment has failed and
You know that one and only one circuit has failed. There are two types of circuits,
the A- and the B-circuits made at the FA and FB factories, respectively. You
know that circuits made at factory FA are of high quality whereas those made at
factory FB are of a lower quality. Hence You might have good reasons to believe
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that the broken circuit is a B-circuit, even though it might be an A-circuit. Let
bel0 represents Your belief about which type of circuit is broken, with bel0(A) and
bel0(B) being the degree of belief given by You to the fact that the broken circuit
is an A- or a B-circuit, respectively. bel0 is built on the frame Ω = {A, B}.

Then You learn that the A-circuits are painted in green (G) and the B-circuits

are painted in white (W ) and pink (P ). Let 2Ω′

be the power set of a new frame
of discernment Ω′ = {G, W, P}. Let R denote the operator that transforms the
elements of Ω into those of Ω′. R is called a refinement.

Refinement: A refinement R is a mapping from a frame Ω to a frame Ω′ such
that 1) each element of Ω is mapped into one or several elements of Ω′, 2) each
element of Ω′ is derived from one and only one element of Ω, and 3) R(∅) = ∅.

By construction, we have in the example: R(A) = G and R(B) = {P, W}.
For You, the color has nothing to do with failure (as far as You know), thus

from Your point of view, R is an uninformative refinement, i.e., R reflects only a
change of the frame on which beliefs are held. Let bel′ quantify Your beliefs about
the color of the broken circuit. The uninformative nature of the refinement R is
reflected by the fact that we require:

bel′(G) = bel0(A), bel′(P ∪ W ) = bel0(B) and bel′(G ∪ P ∪ W ) = bel0(A ∪ B),

i.e., subsets denoting equivalent propositions receive the same beliefs.

Example 2: The conditioning process. We consider now what happens to bel0
and bel′ when new pieces of evidence become available to You. We restrict ourselves
to the form of changes encountered in probability theory, i.e., conditioning. Two
forms of revisions are presented. Each one must be considered independently of the
other.

Example 2: Generic Revision. You learn that none of the circuits made at factory
FB used in the failed equipment was painted pink. This piece of evidence is denoted
Ev1. So knowing that the circuit has been made at factory FB is now equivalent to
knowing that the circuit is white. The impact of the conditioning information Ev 1

results in a transformation of bel′ into a new belief represented by bel1. To keep ad-
equate coherence between the various beliefs, bel1 must satisfy certain constraints.
We have now:

bel1(G) = bel0(A), bel1(P ) = 0, bel1(W ) = bel0(B)

bel1(G ∪ P ) = bel0(A), bel1(G ∪ W ) = bel0(A ∪ B), bel1(P ∪ W ) = bel0(B)

and

bel1(G ∪ P ∪ W ) = bel0(A ∪ B). (6)

Example 2: Factual Revision. Suppose we are in the situation as described in the
beginning of this section, so the revision information Ev1 considered above is not
taken into consideration. Instead, You possess a fully reliable sensor that is only
able to detect whether the color of a circuit is pink or not, so it cannot distinguish
between green and white circuits. You learn that Your sensor has been applied to
the broken circuit and has reported that the broken circuit is not pink. This new
piece of evidence is denoted Ev 2.

Under Ev 2, B and W denote equivalent propositions, as knowing that the broken
circuit has been made at factory FB is now equivalent to knowing that the broken
circuit is white. Let bel2 be the belief function obtained after conditioning bel′ on
Ev2. To keep adequate coherence between the various beliefs, bel2 must satisfy
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certain constraints. We have now:

bel2(G) = bel0(A), bel2(P ) = 0, bel2(W ) = bel0(B)

bel2(G ∪ P ) = bel0(A), bel2(G ∪ W ) = bel0(A ∪ B), bel2(P ∪ W ) = bel0(B)

and

bel2(G ∪ P ∪ W ) = bel0(A ∪ B). (7)

The constraints on bel1 and bel2 happen to be identical. The difference between the
pieces of evidence that lead to the two revisions resides in the fact that the second
concerns only the broken circuit, whereas the first concerns all circuits made at
factory FB . But as far as Your beliefs concern only the broken circuit, the two

cases are equivalent for the problem You try to solve.
The two cases would be different if You had to select one circuit at random

and bet on its color. In the case of generic revision, You would start with some
probability that the circuit that will be selected has been made in FA (in FB).
Then learning about the three colors, You would build a probability measure over
the three colors. Finally, learning that all B-circuits are in fact white, You would
reassess Your beliefs over the two remaining colors and obtain the same solution
as we obtained (6). What You had built over the three colors was based on the
assumption that there were three colors, an assumption that turns out to be erro-
neous, and thus probabilities must be reassessed from scratch, i.e., from the state of
belief You had before learning about the three colors. The generic revision solution
is uncontroversial and will not be further discussed.

In the case of factual revision, You would build the same probability measure
over the three colors as in the previous case. Then You would learn that the selected
circuit is not pink. You would condition Your beliefs over the two remaining colors
through the Bayesian conditioning rule. This is where the Bayesian model seems
to diverge from ours.

But these are not the stories we are considering. In the factual revision case, we
do not have any underlying random selection: there is a broken circuit and we learn
some information about it. For instance, does the information about the colors and
the fact that the broken circuit happens not to be painted in pink give any reason
to modify Your belief that the broken circuit is an A-circuit? We don’t think so.
You had some reasons to believe that the broken circuit was an A-circuit, and the
factual information should not change Your beliefs about it, i.e.,

bel2(G) = bel0(A),

By a similar argument, we get the equalities (7).
The Bayesian solution is also derived from the TBM once the random element

has been taken in due consideration. The analysis that leads to the equalities (7)
is not based on the assumption of any underlying random selection. It translates
the process by which we try to discover which circuit is broken and we analyze the
impact of new information.

The mathematical consequences of the equalities (7) are enormous. They almost
imply the mathematical structure of both the conditioning and the uninformative
refinement processes. In the example we get:

• for the uninformative refinement process:

bel′(P ) = bel′(W ) = 0,

bel′(G ∪ P ) = bel′(G ∪ W ) = bel0(A), . . .
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• for the conditioning process:

bel2(G) = bel′(G ∪ P ) − bel′(P ) = bel0(A)

bel2(W ) = bel′(W ∪ P ) − bel′(P ) = bel0(B), . . .

The solution for the conditioning process is the so-called Dempster’s rule of condi-
tioning encountered in belief functions-based theories. It is the solution described
in the TBM and Dempster-Shafer theory, and detailed in Section 2.4.

4. General combination rules

4.1. Non-interactive combinations.

Notation: let the symbols between [ and ] denote the pieces of evidence taken in
consideration when building Your belief function on a frame Ω. So bel[E1 ∧ E2] is
the belief function built when both the pieces of evidence E1 and E2 are taken in
consideration. bel[E1](A) denotes then the value of the belief function bel[E1] at
A ⊆ Ω.

All pieces of evidence are considered as ‘distinct’, an ill-defined concept but some
justifications can be found in Shafer and Tversky (1985) [27] and Smets (1990a)
[33]. Mathematically, it means that bel[E1∧E2] is a function of bel[E1] and bel[E2].

Let m[E1] and m[E2] be two basic belief assignments on 2Ω, induced by the
distinct pieces of evidence E1 and E2, respectively. Then:

m[E1 ∧ E2](C) =
∑

A⊆Ω,B⊆Ω,A∩B=C

m[E1](A)m[E2](B) for all C ⊆ Ω,

in which case:

q[E1 ∧ E2](A) = q[E1](A)q[E2](A) for all A ⊆ Ω.

This rule is called Dempster’s rule of combination. It corresponds to a conjunctive
combination rule, as it results from the conjunction of the two pieces of evidence.
We also denote use the following standard notation: m[E1 ∧E2] = m[E1]⊕m[E2].

Other rules can be defined.
A disjunction of two pieces of evidence could occur if You only know that the

disjunction ‘E1 or E2’ holds. Then:

m[E1 ∨ E2](C) =
∑

A⊆Ω,B⊆Ω,A∪B=C

m[E1](A)m[E2](B) for all C ⊆ Ω,

in which case:

b[E1 ∨ E2](A) = b[E1](A)b[E2](A) for all A ⊆ Ω.

This rule is called the disjunctive rule of combination (Smets, 1993b) [37].
The concept of negation has also been described. Let Ẽ denote the fact that the

source of the piece of evidence E lies, what means that whenever it says that the
actual world belongs to A, it means that it belongs to A. One has:

m[̃ E](A) = m[E](A) for all A ⊆ Ω,

in which case: b[̃ E](A) = q[E](A).
Finally the exclusive disjunctive rule of combination can also be defined. It

applies when You accept that one source of evidence tells the truth and the other
lies, but You don’t know which is which. We have:

m[E1∨E2](C) =
∑

A⊆Ω,B⊆Ω,A∪B=C

m[E1](A)m[E2](B) for all C ⊆ Ω.

where ∨ denotes the excluve disjunction and ∪ denotes the disjoint union, or sym-
metric difference.
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These three rules can be extended to any number of pieces of evidence and any
combination formula that states which source You accept as telling the true. So
let E1, E2, . . . En be a set of pieces of evidence produced by the sources S1, S2,
. . . Sn, with bel[Ei], i = 1, 2, . . . n, being the belief functions induced by each piece
of evidence individually. Suppose the pieces of evidence are non-interactive,
maybe a better name than distinct, and by which we mean only that the belief
function built from the combination of the pieces of evidence is a function of the
individual belief functions bel[Ei]). For instance, suppose all You accept is that
(E1 ∧E2)∨E3)∨(E4 ∧E1) holds. It means You accept that one and only one of the
two following cases holds: (E1 ∧E2) ∨E3 or E4 ∧E1. In the first case, You accept
that at least one of the next two cases holds: (E1 ∧ E2) or E3. It means that You
accept that either S1 and S2 tell the truth or S3 tells the truth, in a non-exclusive
way. In the second case, You accept that both S4 and S1 tell the truth. Given this
complex piece of evidence, the basic belief assignment related to the belief function
bel[((E1 ∧ E2) ∨ E3)∨(E4 ∧ E1)] is:

m[((E1 ∧ E2) ∨ E3)∨(E4 ∧ E1)](A)

=
∑

X,Y,Z,T⊆Ω,((X∩Y )∪Z)∪(T∩X)=A

m[E1](X)m[E2](Y )m[E3](Z)m[E4](T )

for all A ⊆ Ω. This result was known for long (e.g., Dubois and Prade, 1986) [5].
Further generalization has been achieved in Smets (1997a) [39] where conjunc-

tions and disjunctions are even weighted. The practical meaning of these so-called
α-junctions is still unclear.

4.2. Cautious combinations. Consider 6 agents (You, You1 and You2, Witness1,
Witness2, Witness3). The three witnesses are three distinct sources of evidence on
Ω. Let bel[Wi], i = 1, 2, 3, be the belief functions built on Ω by each witness
(denoted Wi). Suppose You1 collects the beliefs of W1 and W2, and these were
his only sources of beliefs over Ω. Let bel1 be the belief function built by You1 by
conjunctively combining bel[W1] and bel[W2], so bel1 = bel[W1 ∧W2]. Similarly let
bel2 = bel[W2 ∧ W3].

Then You collect the beliefs produced by You1 and You2. If You blindly apply
Dempster’s rule of combination on bel1 and bel2, what You get is bel[W1∧W2∧W2∧
W3], whereas You should have computed bel[W1 ∧W2 ∧W3] (Note that Dempster’s
rule of combination is not idempotent: bel[E ∧ E) 6= bel[E]).

Should You know the bel[Wi]’s, You would have just combined them in order to
compute bel[W1 ∧ W2 ∧ W3], but the real situation we want to model is the case
where You know there is some evidence that has been used by both You1 and You2,
but You don’t know which one.

Being cautious, and applying somehow the least commitment principle, what
You can do is to compute the set B of belief functions that could be obtained from
bel1 and bel2 through their combination with some belief functions:

B =
{

bel : ∃bel′, bel′′ on Ω, bel = bel1 ⊕ bel′ = bel2 ⊕ bel′′
}

.

Then applying the least commitment principle, You might find the ‘minimal’ el-
ement of B. Special solutions have already been derived; the general solution is
based on the information content of a belief function (Smets, forthcoming).

5. Specialization

The concept of specialization is at the core of the transferable belief model. Let
m0 be the basic belief assignment that represents Your belief on Ω. The impact of a
new piece of evidence Ev induces a change in m0 characterized by a redistribution
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of m0 such that m0(A) is distributed among the subsets of A. Let s(B, A) ∈ [0, 1]
be the proportion of m(A) that flows into B ⊆ A when You learn the new piece
of evidence Ev . In order to conserve the whole mass m(A) after this transfer, the
coefficients s(B, A) must satisfy:

∑

B⊆Ω

s(B, A) = 1 ∀A ⊆ Ω

As masses can flow only to subsets, s(B, A) = 0, ∀B 6⊆ A. The matrix S of the
coefficients s(B, A) for A, B ⊆ Ω is called a specialization matrix on Ω; see (Yager,
1986) [46] (Dubois and Prade, 1986) [5], (Kruse and Schwecke, 1990) [17] (Moral,
1985) [19] (Delgado and Moral, 1987) [2]. In order to simplify the notation, we
switch to the classical matrix notation. By convention the lines and columns of
the matrices and the elements of the vectors are ordered as follow: ∅, {a}, {b},
{a, b}, {c}, {a, c}, {b, c}, {a, b, c}, {d}, {a, d}, etc. The vectors whose components
are the values of a basic belief assignment, belief function, plausibility function,
commonality function, implicability function are vertical vectors denoted m, bel,
pl, q, b, respectively.

After learning Ev , the basic belief assignment m0 is transformed into the new
basic belief assignment m such that:

m(B) =
∑

A⊆Ω

s(B, A)m0(A) for all B ⊆ Ω.

or in matricial notation,

m = S · m0.

The basic belief assignment m is called a specialization of m0.
Whenever a bba m is a specialization of a bba m0, then m is at least as committed

as m0 (Yager, 1986) [46]. So S · m0 v m0 for any bba m0 and any specialization
matrix S (all defined on Ω).

It is easy to show that the effects of both Dempster’s rules can be obtained by
specialization matrices.

Let m : 2Ω → [0, 1] be a bba and Σ be the set of specialization matrices on Ω.

1. Dempster’s rule of conditioning: let C ⊆ Ω and SC be the specialization
matrix such that

sC(B, A) =

{

1 if B = A ∩ C

0 otherwise.

Let mC be the bba obtained after conditioning the bba m on C by Dempster’s rule
of conditioning. Then mC = SC ·m. We call SC the C-conditionating specialization
matrix. We define Σcond ⊆ Σ as the set of C-conditionating specializations where
C ⊆ Ω.

2. Dempster’s rule of combination: let m be a bba on Ω and let Sm be a
specialization matrix with coefficients

sm(B, A) = mA(B) ∀A, B ⊆ Ω

where mA is the bba obtained after conditioning the bba m on A by Dempster’s
rule of conditioning. The coefficients sm(B, A) satisfy:

sm(B, Ω) = m(B) ∀B ⊆ Ω

and ∀A ⊂ Ω,
{

sm(B, A) =
∑

X⊆A sm(B ∪ X, Ω) if B ⊆ Ω

0 otherwise

Consider two bba m and m′. One can prove that m′ ⊕ m = Sm · m′.
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Sm is called the Dempsterian specialization matrix associated with m as it up-
dates any m′ on Ω into m ⊕ m′. We define ΣD ⊆ Σ as the set of the Dempsterian
specialization matrices.

In particular, if m is such that m(C) = 1 (the bba that corresponds to a condi-
tioning on C), then SC = Sm, so Σcond ⊆ ΣD .

We consider that the expansion procedure (the revision of a belief by a new
piece of evidence) achieved by a specialization is one of the fundamental ideas for
the dynamic part of the transferable belief model. Accepting that every expansion
is defined by a specialization matrix, we have shown that:

(1) When conditioning on A ⊆ Ω, SA ∈ Σcond is the specialization matrix
that induces the least committed revised plausibility on Ω such that the
updated plausibility given to A is 0. The requirement pl(A) = 0 after
expansion translates the fact that all elements of Ω in A are impossible.

(2) ΣD is the largest family of specialization matrices that commute, which in-
cludes Σcond . The commutativity translates the idea that the combination
of two pieces of evidence should lead to the same result whatever the order
with which they are considered.

These requirements provide excellent justifications for Dempster’s rules.

Note: let m be a bba on Ω, with q its related commonality function. Let Sm be
the Dempsterian specialization matrix generated by m. Let T be the matrix that
transforms a bba into a commonality function, where the elements tA,B of T are:

tA,B =

{

1 if A ⊆ B ⊆ Ω

0 otherwise,

in which case q = T · m.
It can be shown that:

(1) the commonalities q(A), A ⊆ Ω, are the diagonal elements and the eigen-
values of Sm; and

(2) the columns of T−1 are the eigenvectors of Sm. One has the representation:

Sm = TΛT−1

where Λ is a diagonal matrix with elements λA,A = q(A), A ⊆ Ω. Among
others, this property may be useful when m(Ω) = 0, in which case the
theory of generalized inverses described in matrix calculus can be helpful.

Example 3. We present a matrix Sm and show the computation when Ω =
{a, b, c}. The table presents the subsets that correspond to each row and column
(column 1 and top row), the m0 vector (column 11), the specialization matrix Sm

(columns 3 to 10), and m1 = Sm · m0 (column 2). The m vector is given in the
{a, b, c} column of the Sm matrix.

1 2

2Ω
m1

∅ 0.4227

{a} 0.1186

{b} 0.1394

{a,b} 0.0628

{c} 0.1825

{a,c} 0.0152

{b,c} 0.0540

{a,b,c} 0.0048

=

3 4 5 6 7 8 9 10

∅ {a} {b} {a,b} {c} {a,c} {b,c} {a,b,c}
1 0.62 0.42 0.3 0.55 0.25 0.18 0.11

0 0.38 0 0.12 0 0.3 0 0.07

0 0 0.58 0.32 0 0 0.37 0.14

0 0 0 0.26 0 0 0 0.23

0 0 0 0 0.45 0.37 0.24 0.19

0 0 0 0 0 0.08 0 0.05

0 0 0 0 0 0 0.21 0.18

0 0 0 0 0 0 0 0.03

-

11

m0

0.08

0.18

0.07

0.10

0.20

0.09

0.12

0.16



16 PHILIPPE SMETS

Generalization of the specialization concept. Suppose two spaces X and Y
and a 2|X| by 2|Y | matrix M whose columns are basic belief assignments on 2X .
These vectors of basic belief masses are denoted by mX [y] for y ⊆ Y . The vector
mX [y] would correspond to Your belief on X given You only knew that the actual
value y0 belongs to subset y of Y . Let mY be Your belief about the actual value of
y0 (this would correspond to the a priori belief on Y as described by the Bayesians).
It can be shown that the belief mX [M, mY ] induced on X by all the basic belief
assignments in M and Your a priori belief mY on Y is:

mX [M, mY ] = M · mY .

Several special cases of this equation are worth considering.

Markov chains. Suppose that y0 is the actual state of a system at time t, and
that x0 is the state of the same system at t + 1. Then |Y | = |X |. The bba mY

describes thus the belief about the state of the system at t, M is the transition
matrix, and mX [M, mY ] describes the belief about the state of the system at t + 1.
The relation could be written as:

mt+1 = M · mt.

What we have here is the generalization of the Markov process within the realm of
belief functions.

Specializations. Then consider that Y = X . In that case the vector mX [x] of M
described Your belief on X given You only know that x0 belongs to x ⊆ X . Then
mX [x](A) = 0 whenever A 6⊆ x, what just means that M is a specialization matrix.

Dempsterian specializations. If furthermore You had some belief mX
0 on X ,

and the mX [x] results from the conditioning of mX
0 on x, then the specialization

matrix becomes Dempsterian.
Results similar to those obtained from the concepts of specialization are derivable

when the conjunctive combination is replaced by other types of combinations like
the disjunctive combination and the α-junctions (Smets, 1997a) [39]. Concepts of
generalization matrices appear in the disjunctive case (Klawonn and Smets, 1992)
[13].

6. Decision Making

6.1. The pignistic probability function for decision making. Consider a
frame of discernment Ω with bel quantifying Your beliefs on Ω at the credal level.
When a decision must be made that depends on the actual state of affairs ω0 where
ω0 ∈ Ω, You must construct a probability function on 2Ω in order to make the
optimal decision, i.e., the one that maximizes the expected utility. If You did not,
Your behavior could be shown to be ‘irrational’. We assume that the probability
function defined on 2Ω is a function of the belief function bel also defined on 2Ω.
It translates the saying that beliefs guide our actions. Hence one must transform
bel into a probability function, denoted BetP. This transformation is called the
pignistic transformation and denoted Γ; it depends on both bel and the betting
frame F on which bets are built.

6.2. The betting frame. The pignistic transformation depends on the structure
of the frame on which decisions must be made. The betting frame F on Ω is the
set of ‘atoms’ on which stakes will be allocated. Bets can then be built only on the
elements of the power set of that frame. The granularity of the frame F is defined
so that a stake could be given to each atom of F independently of the stakes given
to the other atoms of F . Suppose one starts with a credibility function on a frame
F0. If the stakes given to atoms A and B of F0 must necessarily be always equal,
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both A and B belong to the same granule of the betting frame F . The betting
frame is organized so that its granules are the atoms of F . F results from the
application of a sequence of coarsenings and/or refinements on F0. The pignistic
probability BetP is then built from the belief function bel so derived on F , and we
write:

BetP = Γ(bel, F ).

We call BetP a pignistic probability to insist on the fact that it is a probability
measure used to make decisions (Bet is for betting). Of course BetP is a classical
probability measure.

6.3. The pignistic transformation. The mathematical structure of the pignistic
transformation is derived from the following scenario.

Example 4: Buying Your friend a drink. Suppose You have two friends, G
and J . You know they will toss a fair coin and the winner will visit You tonight.
You want to buy the drink Your friend would like to have tonight: coke, wine or
beer. You can only buy one drink. Let D = {coke, wine, beer}.

Let belG(d), for all d ⊆ D, quantify Your belief about the drink G will ask for.
Given belG, You build the pignistic probability BetPG about the drink G will ask
by applying the (still to be defined) pignistic transformation. You build in the same
way the pignistic probability BetPJ based on belJ , Your belief about the drink J
will ask for. The two pignistic probability distributions BetPG and BetPJ are the
conditional probability distributions about the drink that will be asked for, given
G or J comes. The pignistic probability distribution BetPGJ about the drink that
Your visitor will ask for is then:

BetPGJ(d) = 0.5BetPG(d) + 0.5BetPJ (d) for all d ⊆ D

You will use these pignistic probabilities BetPGJ(d) to decide which drink to buy.
But You might as well reconsider the whole problem and first compute Your

belief belV about the drink Your visitor (V ) would like to have. It can be proved
that belV satisfies:

belV (d) = 0.5belG(d) + 0.5belJ(d) for all d ⊆ D

Given belV , You could then build the pignistic probability BetPV You should use to
decide which drink to buy. It seems reasonable to assume that BetPV and BetPGJ

must be equal. In such a case, the pignistic transformation is uniquely defined.
Formally, we have assumed:

Linearity Axiom: Let a betting frame F and let bel1 and bel2 be two belief functions
on 2F . Let Γ be the pignistic transformation that transforms a belief function over
2F into a probability function BetP over F . Then Γ satisfies, for any α ∈ [0, 1],

Γ(αbel1 + (1 − α)bel2, F ) = αΓ(bel1, F ) + (1 − α)Γ(bel2, F )

Two technical axioms must be added that are hardly arguable. Informally, they
state:

Anonymity Axiom: The pignistic probability given to the image of A ⊆ F after a
permutation of the atoms of F is the same as the pignistic probability given to A
before applying the permutation.

Impossible Event Axiom: The pignistic probability of an impossible event is zero.
Under these three axioms, it is possible to derive Γ. It is easily expressed when

using the basic belief assignment m related to bel.
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The pignistic transformation. Let m be the basic belief assignment on 2F re-
lated to the belief function bel also defined on 2F . Let BetP = Γ(bel, F ). Then:

BetP(ω) =
∑

A : ω∈A⊆Ω

m(A)

|A|(1 − m(∅))
(8)

where |A| is the number of elements of Ω in A and n = |Ω|.
It is easy to show that the function BetP is indeed a probability function and the

pignistic transformation of a probability function is the probability function itself.

6.4. Betting under total ignorance. To show the potency of our approach, let
us consider one of those disturbing examples based on total ignorance.

Example 5. Consider a guard in a huge power plant. On the emergency panel,
alarms A1 and A2 are both on. The guard never heard about these two alarms.
They were hidden in a remote place. He takes the instruction book and discovers
that alarm A1 is on when circuit C is either in state C1 or in state C2 and that
alarm A2 is on when circuit D is one state of D1, D2 or D3. He never heard about
these C and D circuits. Therefore, his beliefs on the C circuits will be characterized
by a vacuous belief function on space ΩC = {C1, C2}. By the application of (8) his
pignistic probability will be given by BetPC(C1) = BetPC(C2) = 1/2. Similarly
for the D circuit, the guard’s belief on space ΩD = {D1, D2, D3} will be vacuous
and the pignistic probabilities are BetPD(D1) = BetPD(D2) = BetPD(D3) = 1/3.
Now, by reading the next page on the manual, the guard discovers that circuits C
and D are so made that whenever circuit C is in state C1, circuit D is in state D1

and vice-versa. So he learns that C1 and D1 are equivalent and that C2 and D2

or D3 are also equivalent. This information does modify neither his belief nor his
pignistic probability.

If the guard had been a trained Bayesian, he would have assigned values for
PC(C1) and PD(D1) (given the lack of any information, they would probably be
1/2 and 1/3, but any value could be used). Once he learns about the equivalence be-
tween C1 and D1, he must adapt his probabilities because they must give the same
probabilities to C1 and D1. Which set of probabilities he is going to update: PC or
PD, and why?, especially since it must be remembered that he has no knowledge
whatsoever about what the circuits are. In a probabilistic approach, the difficulty
raised by this type of example results from the requirement that equivalent propo-
sitions should receive identical beliefs, and therefore identical probabilities. This
reflects that the credal and the pignistic levels are not distinguished.

Within the transferable belief model, the only requirement is that equivalent
propositions should receive equal beliefs (it is satisfied as belC(C1) = belD(D1) =
0). Pignistic probabilities depend not only on these beliefs but also on the structure
of the betting frame. The difference between BetPC(C1) and BetPD(D1) reflects
the difference between the two betting frames.

6.5. The family of probability functions compatible with bel. The literature
dealing with belief functions is poisoned by a serious confusion that often leads to
erroneous results. In the TBM, the values of bel do not result from some probability.
The theory for quantifying the strength of Your belief that the actual world belongs
to the subsets of Ω is developed and justified without considering the existence of
some underlying, maybe hidden, probability. In Shafer’s (1976a) book [26], the same
approach prevails. But in the early 80’s, authors understood the approaches based
on belief functions as a theory of lower probabilities. Indeed it is mathematically
true that given a normalized (i.e., where m(∅) = 0) belief function bel on Ω, it is
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always possible to define a family Π of probability functions P defined on Ω that
satisfy the following constraints:

∀P ∈ Π, ∀A ⊆ Ω, bel(A) ≤ P (A) ≤ pl(A)

This property has often been used to claim that belief functions are just lower
probability functions. The danger comes from the fact that some authors generalize
this statement and claim that belief functions concern an ill-known probability
function. In that case, the existence of a probability function P that belongs to Π is
assumed and P represents ‘something’, the ‘something’ being of course understood
as Your degree of belief on Ω. At the static level, the difference is the following.
In the TBM, bel represents Your beliefs. In the lower probability approach, one
assumes that Your belief is represented by a probability function, whose value is
only known to belong to Π, and bel is just the lower limit of that family Π. (Note
there exist families Π such that their lower envelopes are not belief functions.)

The difference becomes more obvious once conditioning on an event X is intro-
duced. In the TBM, conditioning of bel on X into belX is achieved by Dempster’s
rule of conditioning, hence by the transfer of the basic belief masses as explained
above. In the lower probability approach, the conditioning is obtained by consider-
ing every probability function P in Π, conditioning P on X and collecting them in
a new family ΠX of conditional probability functions PX . The results are different:
indeed belX is not the lower envelope of ΠX (Kyburg, 1987) [18] (Voorbraak, 1993)
[43].

The family Π of probability functions compatible with a given belief function has
nevertheless a meaning in the TBM, but quite different from the one considered in
the lower probabilities approach. Given a belief function, the probability function
used to compute the expected utilities at the pignistic level when a decision is
involved is computed by the so-called pignistic transformation. The result depends
of course on bel, but also on the betting frame, the set of elementary options
considered in the decision process. Suppose we consider all the possible betting
frames. For each possible betting frame we get a probability function. Collect all
these probability functions into a family. This family is the same as the family Π
(Wilson, 1993) [45]. So we can derive Π in the TBM. The difference with the lower
probability approach is that we start with bel and derive Π as a by-product, whereas
the lower probability approach starts with Π and derive bel as a by-product.

7. Non-standard probabilities and belief functions

7.1. Upper and lower probabilities. Smith (1961) [41], Good (1962) [8] and
Walley (1991) [44] suggested that personal degrees of belief cannot be expressed
by a single number but that one can only assess intervals that bound them. The
interval is described by its boundaries called the upper and lower probabilities.
Such an interval can easily be obtained in a two-agent situation when one agent,
Y1, communicates the probability of some events in Ω to a second agent, Y2, by
only saying that, for each A ⊆ Ω, the probability P (A) belongs to some interval.
Suppose Y2 has no other information about the probability on Ω. In that case, Y2

can only build a set Π of probability measures on Ω compatible with the boundaries
provided by Y1. All that is known to Y2 is that there exists a probability measure
P and that P ∈ Π. Should Y2 learn then that an event A ∈ Ω has occurred, Π
should be updated to ΠA where ΠA is this set of conditional probability measures
obtained by conditioning the probability measures P ∈ Π on A (Smets, 1987) [31]
(Fagin and Halpern, 1991a) [7] (Jaffray, 1992) [12].

One obtains a similar result by assuming that one’s belief is not described by
a single probability measure as do the Bayesians but by a family of probability
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measures (usually the family is assumed to be convex). Conditioning on some
event A ⊆ B ⊆ Ω is obtained as in the previous case.

7.2. Dempster’s model. A special case of upper and lower probabilities has been
described by Dempster (1967) [3]. He assumes the existence of a probability measure
on a space X and a one-to-many mapping M from X to Y . Then the lower
probability of A in Y is equal to the probability of the largest subset of X such
that its image under M is included in A. The upper probability of A in Y is
the probability of the largest subset of X such that the images under M of all
its elements have a non-empty intersection with A. In the Artificial Intelligence
community, this theory is what people often call the Dempster–Shafer theory.

7.3. The theory of hints. Kohlas and Monney (1995) [16] have proposed a the-
ory of hints. They assume Dempster’s original structure (Ω, P, Γ, Θ) where Ω and
Θ are two sets, P is a probability measure on Ω and Γ is a one-to-many mapping
from Ω to Θ. They assume a question, whose answer is unknown. The set Θ is
the set of possible answers to the question. One and only one element of Θ is the
correct answer to the question. The goal is to make assertions about the answer
in the light of the available information. We assume that this information allows
for several different interpretations, depending on some unknown circumstances.
These interpretations are regrouped into the set Ω and there is exactly one correct
interpretation. Not all interpretations are equally likely and the known probability
measure P on Ω reflects our information in that respect. Furthermore, if the inter-
pretation ω ∈ Ω is the correct one, then the answer is known to be in the subset
Γ(ω) ⊆ Θ. Such a structure H = (Ω, P, Γ, Θ) is called a hint. An interpretation
ω ∈ Ω supports the hypothesis H if Γ(ω) ⊆ H because in that case the answer is
necessarily in H . The degree of support of H , denoted sp(H), is defined as the
probability of all supporting interpretation of H ′ (Kohlas and Monney, 1995, page
vi) [16].

The theory of hints corresponds to Dempster’s original approach. Kohlas and
Monney call their measure a degree of support, instead of belief, to avoid personal,
subjective connotation, but degrees of support and degrees of belief are mathemat-
ically equivalent and conceptually very close. In the hints theory, the primitive
concept is the hint from which degrees of supports are deduced, whereas the TBM
and Shafer’s initial approach (Shafer, 1976a) [26], consider the degrees of belief
as a primitive concept. The theory of hints is quite similar to the probability of
provability theory (see Section 7.5). All details on the theory of hints can be found
in Kohlas and Monney (1995) [16].

7.4. Inner and outer measures. Halpern and Fagin (1992) [10], and Voorbraak
(1993) [43] have studied the following problem. Suppose two algebras A and B
defined on the set Ω, where A is a subalgebra of B. Suppose the values of the
probability measure are known only on the elements of the algebra A. Fagin and
Halpern try to determine the values of the probability measure on the subsets of the
algebra B. Because of the missing information, only the inner and outer measures
for every event B in B can be determined. By construction, the inner (outer)
measure is a lower (upper) probability function, and even a special one as the inner
(outer) measure is a belief (plausibility) function, an obvious result when Ω is finite,
and that is easily derived once Dempster’s one-to-many relation is considered.

7.5. Probabilities defined on modal propositions. Classically probability the-
ory is defined on propositional logic. The whole presentation of probability theory
could be realized by using propositions instead of events and subsets. So for a
proposition p, P (p) would be the probability that p is true (hence that p is true
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in the actual world). Extending the domain of the probability functions to modal
propositions is quite feasible. Ruspini (1986) [24] examines the ‘probability of know-
ing’. Pearl (1988) [22] examines the ‘probability of provability’. Both approaches
fit essentially with the same ideas.

The probability P (2p) is the probability that 2p is true in the actual world.
The worlds of Ω can be partitioned in three categories: those where 2p holds,
those where 2¬p holds, and those where neither 2p nor 2¬p hold. Hence,

P (2p) + P (2¬p) + P (¬2p&¬2¬p) = 1. (9)

Suppose You define bel(p) as P (2p), i.e., You define bel(p) as the probability that p
is proved, is known, is necessary, depending on the meaning given to the 2 operator.
The equality (9) becomes then:

bel(p) + bel(¬p) ≤ 1,

Similarly the other inequalities described with belief functions (2) are also satisfied.
This approach provides a nice interpretation of bel as the probability of provability,
of knowing, etc. Nevertheless the theory so derived is not the TBM, as seen once
conditioning is involved (Smets, 1991b) [34]. The probability P (2p|2q) of knowing
p when knowing q is:

P (2p|2q) =
P (2p&2q)

P (2q)
=

P (2(p&q))

P (2q)
=

bel(p&q)

bel(q)

This is not Dempster’s rule of conditioning. It happens to be the so-called geo-
metrical rule of conditioning (Shafer, 1976b) [25]. Dempster’s rule of conditioning
is obtained if the impact of the conditioning event results in an adaptation of the
accessibility relation underlying the modal logic (Smets, 1991c) [35].

Where to find what?

Major conferences where papers on belief functions are presented:

• IPMU: Information Processing and Management of Uncertainty, in Europe,
every two years, since 1986

• UAI: Uncertainty in Artificial Intelligence, mainly USA, yearly, since 1985
• ECSQARU: European Conference on Symbolic and Quantitative Approaches

to Reasoning under Uncertainty, in Europe, every two years, since 1991
• ISIPTA: International Symposium on Imprecise Probabilities and Their

Applications, in Europe and the USA, every two years, since 1999

Major journals publishing on belief functions:

• International Journal of Approximate Reasoning
• International Journal of Intelligent Systems
• International Journal of General Systems
• IEEE Transactions on Pattern analysis and Machine Intelligence (PAMI)
• IEEE Transactions on Systems, Machines and Cybernetics (SMC)
• Artificial Intelligence
• International Journal of Uncertainty, Fuzziness and Knowledge-Based Sys-

tems.

For books and papers on belief functions, see the IPP Bibliography.
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