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Part 1:   Some (Purely) Finitely Additive Probabilities for Logic 

    Using analysis by M. Amer (1985a,b) 
 
1.1  Structural assumptions for finitely additive probabilities.   

A finitely additive measure space, <Ω, B, P>,  

where P is a finitely additive probability (see below) 

defined on a field of sets B,  

with the sure-event Ω equal to a set of disjoint and mutually 

exhaustive possibilities, called “states”:  W = {wi: i Î I}.   

A set B is measurable if B Î B. 

  
 



Some Finitely Additive Probabilities and Decisions – SIPTA SEMINAR. Feb 17, 2023 3 

 
 
A numerical probability P is finitely additive [f.a.] if it satisfies: 

(i) For each measurable set B,  0 £ P(B) £ 1. 

(ii) P(W) = 1. 

(iii) If E and F are disjoint measurable sets, with G = E È F, then 

P(G) = P(E) + P(F). 
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For probability P to be countably additive is to require also either of 
the following two axioms, which, given P is f.a., are equivalent 
provided that B is at least a field of sets.  [See Billingsley, §2.] 
 
(iv-a) Let {Ai : i = 1, . . . } be a sequence of measurable, pairwise 
disjoint sets, and their union, A, is measurable.  

That is, assume Ai ∩ Aj = ∅ if i ¹ j, and A = ∪i Ai Î B.  
P is countably additive1 [c.a.1] if P(A) = åi P(Ai) for each such sequence. 
 
(iv-b) Let {Bi : i = 1, . . . } be a decreasing (or, respectively increasing) 
sequence of measurable sets, and their limit, B, is measurable.  

That is, Bi Ê Bi+1, and assume B = Çi Bi  
(or respectively Bi Í Bi+1 and B = Èi Bi is measurable).  

P is countably additive2 [c.a.2] if P(B) = limi P(Bi) for each such sequence. 
• Countable additivity2 is a continuity condition for probability.  
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If P is finitely but not countably additive, it is merely finitely additive. 
 
 
An extreme version of mere f.a. probability is a purely f.a. probability:  
 
A f.a. probability P is called a purely finitely additive if, for each e > 0,  

there exists a (measurable) denumerable partition of the sure event 

P = {Ai: i = 1, …}, such that åi P(Ai) < e. 

And P is called strongly f.a. if åi P(Ai) = 0. 
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1.2 Probabilities for infinite free Boolean algebras. 
 
Amer’s (1985b) Theorem 5 reports the following result: 

Proposition 1:  Let A be an infinite, free Boolean algebra.  
There are no countably additive probabilities on A. 
 

Amer proves that each infinite, free Boolean algebra embeds 
mandatory discontinuities in the sense of continuity required by c.a.2. 
 
Corollary:  Each f.a. probability on such a Boolean algebra is purely 
finitely additive.  (See the appendix to these slides for details.) 
 
 
 
  



Some Finitely Additive Probabilities and Decisions – SIPTA SEMINAR. Feb 17, 2023 7 

Example:  The Lindenbaum-Tarski algebra L for sentential logic 

(with top T and bottom ^) is a countable, free Boolean algebra with 

the denumerable set of sentence letters {Si: i = 1, … } serving as a set 

of free generators. 

   

Let ji be either one of Si or ¬Si.  

Regardless of which is chosen, the algebra compels: ⋁{ji} = T !! 

Then, L supports no countably additive probability.   

But L supports uncountably many merely f.a. probabilities. 
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Additional clarificatory remarks about this example. 
See Theorem 5 of Amer (1985a). 

There are 𝟐ℵ𝟎 	different, 2-valued, semantic models M for L. 

A model M provides a truth value (T or F) for each sentence letter Si.  
Each model M provides a 2-valued probability over all of L: 

For each lÎ L,  PM(l) = 1 if M(l) = T, and  

      PM(l) = 0 if M(l) = F. 
Consider the sequence of ji where each is F under model M. 
Then, for k = 1, …, PM(j1 Ú…Ú jk) = 0, but PM(⋁{ji}) = PM(T) = 1, 
which violates c.a.2. 
Thus, there are uncountably many (strongly) f.a. probabilities on L. 

 
Summary of Part 1:  Some Boolean algebras compel mere f.a. by 
mandating failures of continuity in the sense of c.a.2  
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Part 2:    Some Finitely Additive (Statistical) Decisions  
or 

How Bruno de Finetti might have channeled Abraham Wald 
------------ 

Based on our (2019) What Finite-Additivity Can Add to Decision Theory   
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Organization of Part 2 of this presentation. 

2.1 Three dominance principles and finitely additive expectations – in  
increasing strength: 

Uniform (bounded-away) dominance 
Simple dominance 
Admissibility (aka Strict Dominance) 

2.2 Finitely additive mixed strategies and Wald’s (statistical) Loss functions. 

• An example involving a discontinuous, strictly proper scoring rule. 

Some results – assuming that Loss is bounded below: 
Existence of a Minimal, Complete Class of Bayes Decisions 

Existence of a Minimax Strategy and a Worst-case prior 

Uniform dominance of never-Bayes decisions for bounded loss  
– generalized Rationalizability    

2.3  But, not all priors have Bayes-decisions (!) 
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2.1 Three dominance principles, in increasing order of logical strength 

Fix a partition p = {w1, …., wn, …}, which might be infinite. 
An Act is a function from p to a set of outcomes O. 

Assume that outcomes may be compared by preference, at least within each w. 

w1  w2  w3 … wn … 
Act1          o1,1  o1,2  o1,3 … o1,n   … 
Act2          o2,1  o2,2  o2,3 … o2,n   …  

Uniform dominance:   
For each wi in p, outcome o2,i is strictly preferred to o1,i by at least e > 0. 

Simple dominance:   
For each wi in p, outcome o2,i is strictly preferred to outcome o1,i. 

Admissibility (Wald, 1950) – Strict dominance (Shimony, 1955): 
For each wi     o2,i  is weakly preferred to  o1,i  

and for some wj    o2,j  is strictly preferred to  o1,j.  
 

Then, by dominance applied with partition in p,: Act2 is strictly preferred to Act1.  
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de Finetti (1974):   
A class {X} of real-valued variables defined on a privileged partition of states, W.  

Let P be a (f.a) probability on W. 
Denote by EP(X) the (f.a.) expected value of variable X with respect to W. 

Preference between pairs of variables based on finitely additive expectation:  
2. obeys Uniform Dominance in W 
3. but may fail Simple Dominance in W. 

Example1 – Let W be countably infinite W = {w1, w2, …}.  
Consider variables X(wn) = -1/n, and the constant Z(wn) = 0.  
Let P be a (strongly) finitely additive probability P({w}) = 0.   
Then EP(X) = 0 = EP(Z), so indifference between X and Z.   
But Z simply dominates X. 

w1  w2  w3 …   wn   … 
    X           -1       -1/2       -1/3 …    -1/n    … 
    Z          0   0   0 …   0      … 

  



Some Finitely Additive Probabilities and Decisions – SIPTA SEMINAR. Feb 17, 2023 13 

Finitely additive mixed strategies: Making lemonade from lemons. 

 

Example2:  Decision making under certainty: W = {w}. 

Consider the half-open interval of constant rewards, X = {X: 0 < X < 1}. 

Each pure strategy X is (uniformly) dominated. 

Likewise, each countably additive mixed strategy Ps over X has expectation < 1. 

But let be P a f.a. mixed strategy over X  where, for each e > 0, P[X  > 1-e] = 1.  

• Then, EP(X) = 1. 

 

  In f.a. jargon, P agglutinates X at the (missing) value 1. 
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2.2 Elementary Statistical Decision Theory in the fashion of A.Wald. 

• An agent has a set A of available (pure strategy) actions, and  

there is uncertainty over a set Q of parameters or states of Nature. 
Q forms a privileged partition. 

• The agent suffers loss L(q; a) if she chooses a and q is the state of Nature. 

• Sometimes the agent is allowed to choose action a using a probability 
measure (a mixed strategy) d over A, and (when there are no data) we 

replace loss L(q; ×) by the  risk R(q; d)  = òA L(q; a) d(da). 
 
Aside:  As usual, the probability measure   da(A) = IA(a) for every A Í A  

 is equivalent to the pure strategy a. 

 

The agent wants to choose d to minimize Risk: respect dominance in Q. 

A.Wald (1950):  Respect Admissibility for Risk in Q. 
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Example 3a Brier Score for two complementary events.  

W  = {B, Bc}2  where B is also the indicator function IB for some event B. 

A = [0, 1]2.   There are no data.   

L(q; (a1, a2)) = (IB - a1)2 + (IBc - a2)2 

 

• The only admissible actions are {(a1, a2): a1 + a2 = 1}, 

which correspond to the lower boundary of the Risk set – see next slide. 

• Brier Score is a strictly proper scoring rule. 

The Bayesian agent minimizes expected score uniquely by announcing 

her degrees of belief for (B, Bc):  a1 = Prob(B)  and  a2 = Prob(Bc) 
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Example 3b:  A discontinuous Brier Score. 

W  = {B, Bc}2  where B is also the indicator function IB for some event B. 
A = [0, 1]2.   Again, there are no data.   

L(q; (a1, a2))  =  (IB - a1)2  +  (IBc - a2)2  

           ( I[0,.5](a1) + I(.5,1](a2) )   if q = B 
+ (½) ´  

( I(.5, 1](a1) + I[0, .5](a2) )   if q = Bc 

This Loss carries an added penalty when the forecast is on the wrong side of ½. 

• The only admissible actions are {(a1, a2): a1 + a2 = 1}. 

• This discontinuous Brier Score is a strictly proper scoring rule. 

The Bayesian agent (uniquely) minimizes expected score by announcing her 
degrees of belief for (B, Bc):  a1 = Prob(B)  and  a2 = Prob(Bc) 
 

but ...   
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L(q; (a1, a2)) is a point in a two-dimensional set [0, 3]2. 
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Recall:  The admissible options are on the lower boundary. 

The shaded risk set has the properties that for pairs (p, 1-p): 

Top  From (0, 3) down to but not including (.5, 1.5) are the 
points on the lower boundary, which correspond to 0 £  p < .5. 

 
Middle   In the middle section, only the point (1, 1) is on the  

lower boundary, corresponding to p = .5.  
 

Bottom  From (but not including) (1.5, .5) to (3, 0) are the points on 
the lower boundary, which correspond to .5 < p £ 1. 

 
So, points in the middle section (other than (1,1) ) are inadmissible though 

some are not dominated by (1,1).   
But those are dominated too, but only by other inadmissible options. 
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The discontinuous (strictly proper) Brier Score carves up the continuous Brier Score. 
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 Some decision-theory results in the fashion of Wald (1950)  

Definitions:   
Call a subclass C Í A of available decisions Complete  

if for each decision d Ï C there is d0 Î C where d0 dominates d 
in the sense of admissibility. 
 
Call a subclass C Í A of available decisions Minimally Complete  

if C is complete and no proper subset of C is Complete. 
 

• If there exists a Minimally Complete class it consists of the admissible decisions. 
 

• In Example 3b (discontinuous Brier), there is no Minimally Complete class. 
 
And using countably additive mixed strategies does not help this way. 
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BUT, augment the decision space by allowing (merely) f.a. mixed strategies. 

Then, these f.a. mixed strategies fill in the missing lower boundary for Risk. 

For example, consider f.a. mixed strategies d1 and d2 with the features that 

 "e > 0,     d1{ a1: .5 - e  <  a1  <  .5 } = 1    

 and    d2{ a1: .5  <  a1  <  .5 + e } = 1, 

and    where  a2  =  1 - a1. 

Then   R(q; d1)   =  (.5, 1.5)     and  R(q; d2)   =  (1.5, .5)    

 

Aside: As R(q; (.5,.5) ) = (1,1), the 3 risk points R(q; d1), R(q; (.5,.5) ) and R(q; d2) are colinear.            
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Some results – assuming that Loss is bounded below: 
 

Strategies are (f.a.) mixed strategies.   

Strategy d is admissible if there is no strategy d¢ such that 
("q)   R(q; d)  ³  R(q; d¢)   and    ($q)  R(q; d)  >  R(q; d¢). 

 

Strategy d0 is Bayes with respect to a f.a. “prior” probability l on Q if 
òQ R(q; d0) l(dq)  =  infimumd  òQ R(q; d) l(dq). 

 

Strategy d* is minimax provided that 
supremumq R(q; d*) = infimumd supremumq R(q; d) 

 

Denote the Bayes-risk for d wrt “prior” l by r(l, d) = òQ R(q; d) l(dq). 
 

A “prior” l* on Q is least favorable provided that 
infimumd r(l*, d) =  supremuml infimumd r(l; d). 
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• Assume that the Loss function is bounded below, that decision rules are 
mixed strategies, and that “prior” probabilities are finitely additive. 

 
Theorem1:   The decision rules whose risks form the lower boundary of the  

risk function constitute a minimal complete class of admissible rules.  

Each admissible rule is a Bayes rule. 

Theorem2:  There exists a minimax decision rule and a corresponding 
least-favorable prior.   

Each minimax rule is Bayes wrt each least-favorable prior. 
 

Theorem3 (Rationalizability for infinite games):   
Assume that the loss function is bounded above and below.   
Suppose that d0 is a decision rule that is not Bayes for any prior, 
 i.e., d0 is not E-admissible against the vacuous prior. 

  Then there is decision rule d1 and e > 0 such that  
("q)   R(q; d0)  >  R(q; d1) + e. 

That is, then there is a rival d1 that uniformly dominates d0 in Risk. 
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3.    But not all priors have Bayes-decisions (!) 
 
One of the challenges associated with (merely) f.a. expectations is that the 

order of integration matters – Fubini’s Theorem has restricted validity. 

 

So, even though the Risk function has a closed (lower) boundary composed 

of Bayes decisions, it does not follow that for an arbitrary “prior” l on Q 

there is a Bayes decision d0 wrt  l, where  

òQ R(q; d0) l(dq)  =  infimumd  òQ R(q; d) l(dq). 
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Example4:    
Parameter space, Q = (0, 1) 
A is the set of all non-empty open subintervals of (0, 1). 

  That is, A = { (x, y):  0  £  x  <  y  £  1}.   
Denote by Len[(x, y)] = y - x, the length of interval a. 

 
The Loss function reflects a goal of anti-estimation for q:   

L(q; a)   =   Ia(q)/Len[a]  +  (1-Len[a])/10 
 
Consider a (strongly) f.a. “prior” l# on Q where, for each y > 0,  

l#{q: 0 < q < y] = 1. 
In f.a. jargon, l# agglutinates its mass at the (missing) q = 0. 
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The Bayes risk with respect to l# satisfies, for each n = 1, 2, …,  

r(l#; (1/n, 1) ) = òQ R(q; (1/n, 1) l#(dq)   

     =  òQ [Ia(q)/Len[a] + (1-Len[a])/10] l#(dq) 

     =  òQ [I(1/n, 1)(q) / (n-1)/n]  +  (1/n)/10] l#(dq) 

   = 0 + 1/10n = 1/10n. 

Hence,    infimumd r(l#; d) = 0. 

• But, there is no decision rule d# with Bayes risk r(l#; d#) = 0. 

To see this, note that, by indirect reasoning: 

If r(l#; d) = 0, then – from the 2nd term in the Loss function – El#[Len(d)] = 1. 

But then, because of the order of integration, with the “prior” l#(dq) integration 

on the outside – from the 1st term in the Risk function –  

òQ (Id(q)/Len[d]) l#(dq)  >  0. 
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SUMMARY – Part 2 

We have reviewed how the use of some merely f.a. mixed strategies convert  

the failure of simple dominance – a lemon,  

into  the closure of the lower-boundary for a (bounded-below) statistical 

Loss function, understood in the fashion of A. Wald – lemonade! 

It follows that there exist:  

• a Minimal Complete Class of Admissible decisions, each of which is Bayes  

with respect to some (f.a.) “prior”; 

• a Minimax rule and Worst-case “prior” for which the Minimax is Bayes; 

and 

• a generalized Rationalizability result where each never-Bayes decision is  

uniformly dominated by some alternative (mixed strategy) decision. 

BUT –  not every “prior” has its Bayes rule. 
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Appendix 

• Corollary: Let A be an infinite, free Boolean algebra. Each finitely additive probability P on A is purely finitely additive.   

We establish the result for a subalgebra AG Í A generated by G = {g1, …}, a denumerable subset of generators of A.  Without loss of 

generality, we use the Lindenbaum-Tarksi algebra L of sentential logic for this subalgebra.  That is, up to isomorphism, L is the free 

Boolean algebra with countably many generators.  Next, we summarize relevant details of L.  

 

Let L be the first order sentential language with denumerably many proposition letters, p, which are the atomic propositions of L,    

P  = {p1, p2, …}.  For convenience, let ‘&’, ‘n’ and ‘¬’ be the sentential operators in L, whose semantics are respectively the usual 

truth functions ‘and’, ‘or’, and ‘not’.  Let WFF be the denumerable set of well formed formulas in L, which is the syntactic, recursive 

closure of the atomic propositions under the sentential operators.   

Let º denote (semantic) logical equivalence, an equivalence relation between pairs of well formed formulas in L. 

For s Î WFF, let 𝑠̅ be the equivalence class of its logically equivalent well formed formulas.  

L is the Lindenbaum-Tarski algebra over WFF/º.    

L is a countable Boolean algebra, where, for s, t Î WFF  

the algebraic join 𝑠̅ Ú 𝑡 ̅ = 𝑠	n	𝑡%%%%%% , 

  the algebraic meet 𝑠̅ Ù 𝑡̅  = 𝑠	&	𝑡%%%%%% 

  the algebraic complement 𝑠̅′ = ¬𝑠%%%%. 

For convenience, denote  T = equivalence class of tautologies, 

and     ^ = equivalence class of contradictions.  
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Define the (transitive) partial order ≼	on L by 𝑠̅ ≼ 𝑡̅  if s (semantically) entails t. 

Note that ≼ is a strict partial order; that is, if 𝑠̅ ≼ 𝑡̅ and 𝑡̅ ≼ 𝑠̅ then 𝑠̅ = 𝑡̅. 

Denote by 𝑠̅ ≺ 𝑡̅ the asymmetric, transitive relation, 𝑠̅ ≼ 𝑡 ̅and 𝑠̅ ¹ 𝑡̅. 

T is the maximal element and ^ is the minimal element of this strict partial order. 

That is, ^ ≺ T and if ^ ¹	𝑠̅ ¹ T then ^ ≺	 𝑠̅  ≺ T. 

When neither 𝑠̅ ≼ 𝑡 ̅nor 𝑡̅ ≼ 𝑠̅, say that 𝑠̅ and 𝑡̅ are independent. 

Observe that L is atomless: That is, consider s Î WFF where 𝑠̅ ¹ ^.  Let t = s & p, where ‘p’ does not appear among the atomic 

propositions in s.  Then  ^ ≺	 𝑡̅  ≺ 𝑠̅.  So 𝑠̅ is not an atom of L. 

L is (up to isomorphism) the countable, atomless Boolean algebra.  Because L is a countable Boolean algebra, it is not a Boolean s-

algebra. (See Sikorski [1969, p. 66, (E)].)  So we have to be careful about the existence of infinitary joins and infinitary meets within 

L.  That is, an infinitary join is the least upper bound under ≼	and the infinitary meet is the greatest lower bound under ≼	of a 

(countable) set of elements of the Boolean algebra. These need not exist in L. 

For 𝑆̅ = {𝑠̅!ÎL:		i =	1,	2,	…},	say	that	𝑡̅ÎL is the infinitary join of 𝑆̅, written 𝑡̅ = ⋁𝑆̅,	provided that,  

for each 𝑠̅!Î𝑆̅,	𝑠̅!  ≼ 𝑡̅, and 

if also there exists 𝑡′8Î	L where, for each 𝑠!̅Î𝑆̅,	𝑠̅!  ≼ 𝑡′8, then 𝑡̅ ≼ 𝑡̅’. 

The infinitary meet of 𝑆̅ is defined similarly. 
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A (finitely additive) probability P on L satisfies: 

(i) 0 £ P(𝑠̅)	£ 1 

(ii) P(T) = 1, P(^) = 0 

(iii) P(𝑠̅ Ú 𝑡)̅ = P(𝑠̅) + P(𝑡̅) whenever 𝑠̅ Ù 𝑡̅  = ^. 

Definition: P is countably additive1 on L provided that, whenever 𝑆̅ = {𝑠̅!ÎL:		i =	1,	2,	…}	is	a	denumerable	partition,	i.e.,	satisfying	 

(i) 𝑠̅!  Ù 𝑠̅"   = ^ whenever i ¹ j, and  

(ii) where the infinitary join 𝑡̅ = ⋁𝑆̅ exists,  

 then P(𝑡̅) = åi P(𝑠̅!). 

 

Proof of the Corollary:  Let P be a finitely additive probability on L.  Let e > 0.  We show there exists a denumerable partition Y  = 

{y1, y2, …} in L with åi P(yi) < e.   

Let  G = {g1, …} be the set of the sentential generators of L: the set of (equivalence classes of the) atomic propositions.  

Choose integer k that satisfies, (1+e)/e  < 2k ; equivalently, #/%!

#	'	#/%!
  <  e. 

For j = 1, 2, …, define successive (disjoint) blocks bj containing j´k many generators from G.   

That is,  bj = { 𝛾!(#$%)#
' (#

, …, 𝛾!(#(%)#
'

	}.   

Specifically, b1 = {𝛾#, …, 𝛾)}, b2 = {𝛾)(#, …, 𝛾*)}, b3 = {𝛾*)(#, …, 𝛾+)}, etc.  

The set of blocks partitions the set of generators in G.  
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Each block, bj, generates 2j´k many Boolean elements 𝛽,
"  (m = 1, …, 2j´k) of AG of the form  

𝛽,
"   =  𝛿!(#$%)#

' (#
 Ù … Ù  𝛿!(#(%)#

'
 

where 𝛿!  = 𝛾!  or 𝛿!  = 𝛾!′.     

Note that, since the algebra AG is free, each 𝛽,
"  satisfies:  ^ ≺	 𝛽,

"
 ≺ T. 

Trivially, for each block bj, if 𝛽,
"  ¹ 𝛽-

"  then 𝛽,
"

 Ù 𝛽-
" 	= ^.   

Equally evident, for each block bj, T = ⋁{𝛽,
" : m = 1, …, 2j´k}. 

 

Because the generators are independent, the Boolean elements 𝛽,
"   𝛽-) from different blocks bj and bk are also independent, i.e., 

neither 𝛽,
" ≼ 𝛽-) nor 𝛽-) ≼ 𝛽,

" . 

 

As P is finitely additive, then for each block bj (j = 1, 2, …), there exists (at least) one Boolean element 𝛽,
"  with P(𝛽,

" )  £  1/2j´k.  For 

ease of notation, denote this element of AG as bj. 

Define elements yj of AG as follows: 

for j = 1, y1 = b1; and for j ³ 2, yj = bj Ù y1’ Ù … Ù yj-1’ 

and let Y = {yj: j = 1 , …}. 

Claim:  Y is	a	partition:		

(i)	yj Ù yk  = 0 whenever j ¹ k.  (So, also Y is an anti-chain.)  

  (ii) T = ⋁Y 
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Proof:  (i) Immediate from the definition of the yj. 

(ii ) Trivially, yj ≼ T.  Next we show T is the least upper bound for Y. 

By a simple induction, for each n = 1, 2, …,  y1 Ú … Ú yn = b1 Ú … Ú bn.  So, for each n,  y1 Ú … Ú yn and b1 Ú … Ú bn share the same 

upper bounds in L.  Argue indirectly.  Let 𝑠̅  ≺  T and suppose 𝑠̅ is an upper bound for Y.  Then (b1 v … v bk-1) entails 𝑠̅.   Let g k be an 

atomic proposition not appearing in s.  So bk ⋠ 𝑠̅, i.e., there is a truth assignment where t(bk) = T and t(𝑠̅) = F.  Since the atomic 

propositions have independent truth assignments, there is a semantic model where, also, t(b1 v … v bk-1) = F and t(𝑠̅) = F.  (If not, i.e., if 

t(b1 v … v bk-1) = F entails t(s) = T, then (b1 v … v bk-1)’ entails 𝑠̅.  And then, as (b1 v … v bk-1) entails 𝑠̅, T ≼ 𝑠̅.)  Thus, (b1 v … v bk) ⋠ 𝑠̅.  

Therefore, T = ⋁Y, and the claim is verified. 

 

It is evident that P(yj) £ P(bj).  So, P(yj)  £  1/2j´k. 

Then åj P(yj) £  åj 1/2j´k = #/%!

#	'#/%!
 < e, which establishes that P is purely finitely additive.àCorollary 

 

Note:  What drives this result is the fact that T = ⋁Y.    Were A a s-algebra then ⋁Y=  (y1 Ú … Ú yn Ú …) ≺ T. 
 

 


