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Introduction

...as to what probability is and how it is connected with statistics,
there has seldom been such complete disagreement and break-
down of communication since the Tower of Babel. —Savage

How can a discipline, central to science and to critical think-
ing, have two methodologies, two logics, two approaches that
frequently give substantially different answers to the same prob-
lems? —Fraser

Unlike most philosophical arguments, this one has important
practical consequences. The two philosophies represent com-
peting visions of how science progresses and how mathematical
thinking assists in that progress. —Efron
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Intro, cont.

If statistics can’t resolve these issues, then who are we?

With 100+ years of experience, we should be the authorities
on uncertainty, but instead we side-step:

Different measures of uncertainty can complement one another2

Lack of answers → confusion and distrust

Largely no motivation to find answers

Fraser: is complacency in the face of contradiction acceptable
for a central discipline of science?

2ASA President’s Task Force on Statistical Significance statement
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Intro, cont.

Problems boil down roughly to competing priorities:

behavioral reliability (Bayesian)
statistical reliability (frequentist)

Apparently neither is fully satisfactory — a compromise or
balance is needed to resolve the issues

But what should this balance look like?

My basic claim:

imprecision is inherent,3 plays an essential role
great opportunity for imprecise prob!

3Fisher wrote about how p-values, etc determined “no exact probability
statements” — what else could he mean if not imprecision?
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This talk: picture ≈ 1000 words

no-sure-loss

valid

strongly valid invulnerable

GBR

???
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This talk, cont.

Fisher’s underworld of probability & new perspectives

Background — inferential models (IMs)

“Invulnerability” and generalized Bayes

Towards balance: validity and “minimal vulnerability”

Strong validity and possibilistic IMs

Concluding remarks, etc

Heads-up:

probably more questions than answers here
suggestions? collaborations? ...
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Fisher’s underworld of probability

Fisher (1957) considers tossing a six-sided die, one face is called Ace

1 Agent 1 is sure that P(Ace) is 1
6 and is willing to accept bets

against an Ace at, say, odds 4:1

2 Agent 2 doesn’t know P(Ace) but he believes that at least 10% of
the dice in the box from which Agent 1’s die will be randomly
chosen have probability ≥ 1

5 of turning up Ace; therefore, Agent 2
would accept odds 9:1 that Agent 1 loses money in the long run

3 Agent 3 “does not know and does not think he knows... the
probability of throwing an Ace, but believes he knows how the
probability is distributed in a consignment of boxes, one of which
has been used to supply the die in question, may know with
confidence what odds he can profitably accept in betting against the
success of [Agent 2]’s wager” (Fisher)
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Fisher’s underworld, cont.

In true Fisher form, this is a cryptic paper!4

Basic idea (as I see it):

probability has different levels
e.g., top level is betting with known/assumed odds
deeper levels have different assumptions and objectives
in particular, agents at lower levels aren’t betting on the actual
outcome, they’re scrutinizing other agents

Clear hints toward imprecision...

My thought:

statistician is at one level making inferences
“society” is deeper scrutinizing the statistician’s methods
balance by being invulnerable to scrutiny?

4Hampel: one doesn’t understand Fisher, one feels Fisher
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Background

Statisticians want numerical measures of the degree to which
data support hypotheses. —Hacking

(PY ,Θ,PY ,Θ) is an imprecise joint dist for (Y ,Θ) ∈ Y× T
coherent lower & upper probabilities/previsions
e.g., precise likelihood for (Y | Θ = θ) and an imprecise prior
for Θ, possibly vacuous

Goal is to quantify uncertainty about Θ, given Y = y

Inferential model (IM): y 7→ (Πy ,Πy )

coherent for each y
duality Πy (H) = 1− Πy (Hc)
probabilistic reasoning
tests, confidence sets, etc can be extracted

Lots of IMs, choice depends on our priorities
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Back to the underworld

Statistician is like Fisher’s Agent 2:

doesn’t know about the world, about Θ
has a model, data, etc
constructs an IM, i.e., probability statments about Θ

Scrutinizer (“society”) is like Fisher’s Agent 3:

looks for vulnerability in statistician’s IM
aims to expose these and capitalize off of them
not about money, it’s about accountability

Statisticians should want to be invulnerable

What does it mean for an IM to be invulnerable?
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Invulnerability

Underworld: Agent 3 suspects that Agent 2’s probability
statements are wrong, vulnerable to loss

WLOG, assume scrutinizer thinks the statistician’s support
ΠY (H) to hypothesis H tends to be too large

For suitable α ∈ [0, 1], the scrutinizer offers the statistician
the following (IM-dependent) gamble

WH,α = WH,α(Y ,Θ)

= {1(Θ ∈ H)− (1− α)} 1{ΠY (H) ≥ 1− α}

For each y it’s acceptable:5 Πy{WH,α(y , ·)} ≥ 0

Statistician’s IM is vulnerable if at least one of those given-y
acceptable gambles is unacceptable averaging over Y

5acceptable = almost desirable
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Invulnerability, cont.

Definition.

Given (PY ,Θ,PY ,Θ), the statistician’s IM is invulnerable if the gam-
bles {WH,α : H ⊆ T, α ∈ [0, 1]} are all acceptable, i.e., if

PY ,Θ(WH,α) ≥ 0 for all (H, α);

otherwise, the IM is vulnerable.

Similar to coherence, but I don’t think it’s the same

Compare to Kerckhoff’s principle in cryptography:

assume attackers are familiar with your encryption system
and design it to be secure anyway
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Invulnerability, cont.

Invulnerability might be a strong condition

Does any IM satisfy it?

Obvious first guess — the generalized Bayes IM?

That is, Πy (·) = PY ,Θ(Θ ∈ · | Y = y)

Theorem.

The generalized Bayes IM is invulnerable.

I don’t know (yet) if other IMs are invulnerable :(

New/interesting connection between Fisher & imprecise prob?
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Toward balance

One difficulty in using generalized Bayes rule is that the updated
previsions it defines may be highly imprecise... This suggests
that generalized Bayes rule should be regarded as one of many
possible strategies for updating beliefs. —Walley

Generalized Bayes is conservative, tends to dilate

While invulnerability, coherence, etc are nice, GB apparently
puts too much emphasis on behavioral reliability

For example:

vacuous prior implies vacuous generalized Bayes IM
but one can learn something from data alone
statisticians would never accept the vacuous solution

Other considerations...?
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Validity

Definition.

Given (PY ,Θ,PY ,Θ), the statistician’s IM (Πy ,Πy ) is valid if

PY ,Θ{ΠY (H) > 1− α, Θ 6∈ H} ≤ α for all (H, α)

Motivated by statistical reliability considerations

assigning large belief to a false hypothesis is erroneous
validity aims to control probability of errors

The above definition6 of validity generalizes that in my earlier
work beyond the vacuous prior case

Behavioral reliability properties...?

6M. (2022), arXiv:2203.06703
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Validity, cont.

Theorem (M., arXiv:2203.06703).

1 generalized Bayes IM is valid

2 validity implies (more than) no-sure-loss

I didn’t expect these behavioral–statistical connections

Take-away messages:

validity isn’t a particularly strong condition
validity doesn’t (and can’t) imply coherence
it’s nestled in between coherence and no-sure-loss

Potential for balancing distinct priorities?
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Validity, cont.

Theorem.

If an IM is invulnerable, then it’s valid — i.e., if an IM isn’t valid,
then there exists (H, α) such that statistician can be duped into
accepting WH,α and risk losing money in the “long run”

Valid = “minimally vulnerable”? i.e.,

GBR ∈ {invulnerable} ⊆ {valid} ⊆ {no-sure-loss}

New perspective on the false confidence theorem7

original version focused on vacuous prior case
described potential statistical unreliability of precise IMs, e.g.,
default-prior Bayes, fiducial, etc.
restatement of the FCT: wrt vacuous priors, precise IMs are
vulnerable because they aren’t valid

7Balch, M., and Ferson (2019), Proc. Roy. Soc. A, arXiv:1706.08565
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Towards balance, cont.

No progress toward balance yet

i.e., the only valid IM I’ve mentioned
is generalized Bayes

What other valid IMs are out there?

This isn’t straightforward:

my previous work focused exclusively on vacuous priors
those ideas applied to this more general context satisfy a
stronger strong validity property (next)

Good IMs that are valid but not strongly valid?

one idea8 is to take an IM that’s valid wrt a vacuous prior and
combine it with the prior using, say, Dempster’s rule
empirical evidence supports validity, but no proof yet :(

8M. (2022), arXiv:2203.06703, Sec. 6
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Possibilistic IMs

My instinct: strongest possible statistical reliability

This led me on an unexpected journey

outer consonant approximations
imprecise-probability-to-possibility-transforms
...

Long story short,9 the new possibilistic IM framework

incorporates partial prior info
is “likelihood-based”
is possibility-theoretic → relatively simple
achieves strong validity, etc
allows adjustments for improved efficiency

ISIPTA’23:10 possibilistic IM’s credal sets & fiducial

9M. (2022/3), arXiv:2211.14567
10https://proceedings.mlr.press/v215/martin23a.html
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Possibilistic IMs, cont.

For simplicity: precise model with imprecise prior

Πy is a possibility measure given by

Πy (H) = sup
θ∈H

πy (θ), H ⊆ T

where the contour function—the workhorse—is

πy (θ) = PY ,Θ{R(Y ,Θ) ≤ R(y , θ)}, θ ∈ T

and R is a “relative likelihood”

R(y , θ) =
pθ(y) · PΘ({θ})

supϑ∈T pϑ(y) · PΘ({ϑ})
, (y , θ) ∈ Y× T

Vacuous prior: R is the usual likelihood ratio

20 / 35



Possibilistic IMs, cont.

Contour is (the correct interpretation of) a p-value

Practicalities:

contour is a Choquet integral, not too difficult
my naive computational strategies can surely be improved

Statistical properties...

Theorem (M., arXiv:2211.14567).

The possibilistic IM is strongly valid in the sense that

PY ,Θ{πY (Θ) ≤ α} ≤ α, α ∈ [0, 1]

Consequently, if Cα(y) = {θ : πy (θ) > α}, then

PY ,Θ{Cα(Y ) 63 Θ} ≤ α
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Possibilistic IMs, cont. — tangent 1

For illustration: precise model + vacuous prior

With GBR, learning is impossible in this case

Strongly valid IMs can learn!

πy (θ) := sup
ϑ∈T

PY |ϑ{R(Y , ϑ) ≤ R(y , θ)} 6≡ 1

R(Y , ϑ) is often an approximate pivot under PY |ϑ, in which
case the supremum has little effect

Also, general principles for an efficiency bump11

In the above case, the efficiency-bumped IM is

πbump
y (θ) := PY |θ{R(Y , θ) ≤ R(y , θ)} � πy (θ)

11M. (2022/3), arXiv:2211.14567, Sec. 5.4
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Possibilistic IMs, cont. — tangent 2

For simplicity: precise model + vacuous prior

Strong validity has an interesting consequence:

sup
θ

PY |θ{ΠY (H) > 1− α for some H 63 θ} ≤ α

“Uniformity” in H explains why strong validity � validity

Practical implications:

not just controlling error for static null hypotheses
uniformity allows for reliable probing

Possibilistic IMs � hypothesis testing procedures!12

12Cella and M. (2023), IJAR, to appear; arXiv:2304.05740
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Possibilistic IMs: Example 1

(Y | Θ = θ) ∼ Bin(n, θ)

Partial prior for Θ: “90% sure that Θ ≤ 0.6”

Three different IMs:

vacuous prior (with efficiency bump)
partial prior
partial prior (with efficiency bump)13

Contours: n = 8 (left) and n = 16 (right), θ̂ = 0.5
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13I think partial prior efficiency bump can be improved...
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Possibilistic IMs: Example 2

Two-sample binomial, Θ denotes the log odds ratio

Data (n1, y1) = (43, 1) and (n2, y2) = (39, 2)

Nuisance parameters eliminated via conditioning14

Two (marginal) IM contours:

vacuous prior (with efficiency bump)
partial prior — “E|Θ| ≤ 1”
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14M. (2023), arXiv:2309.13454
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Possibilistic IMs: Example 3

Fieller–Creasy: ratio Φ of two normal means

No set estimator has finite length a.s. and coverage prob > 015

Two strongly valid marginal IM contours:16

vacuous prior (with efficiency bump)
partial prior — “E|Φ| ≤ 5”
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15Gleser & Hwang, Ann. Statist., 1987
16M. (2023), arXiv:2309.13454
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Possibilistic IMs: Example 4

Behrens–Fisher: difference of normal means — “unsolved”

New marginal IM solution17 is strongly valid

Simulation study to check efficiency:

difficult unbalanced case, (n1, n2) = (2, 20)
compare coverage prob of 90% confidence intervals

Method Coverage Prob
Hsu–Scheffe 0.9738

Jeffreys 0.9296
Ghosh & Kim 0.7873

Welch 0.8362
1st order 0.7399

Fraser et al 0.8617
IM 0.9082

17M. (2023), arXiv:2309.13454
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Possibilistic IMs, cont.18

18“Possibilistic” connection drawn in M. (2023), arXiv:2309.13454
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Towards balance, cont.

Back to Fisher and the underworld...

Where does strong validity fit in?

strong validity =⇒ validity =⇒ no-sure-loss
but GBR isn’t strongly valid
so invulnerable 6=⇒ strongly valid
and, therefore, connection to invulnerability isn’t clear

Question: Are any strongly valid IMs invulnerable?

I don’t know yet... :(
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1000+ words later

no-sure-loss

valid

strongly valid invulnerable

GBR

???

30 / 35



Conclusion

Recall the goal:

two-theory (B vs F) problem threatens statistics’ identity
need to balance behavioral & statistical reliability

Started with Fisher’s underworld of probability

Used this to motivate invulnerability

Showed that

generalized Bayes IM is invulnerable
invulnerability implies validity (which implies no-sure-loss)

New connections between Fisher and imprecision

Still no clear behavioral–statistical reliability balance :(
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Conclusion, cont.

Possibilistic IMs are my go-to solution

strong validity
all the desired statistical properties
opportunities for efficiency gains
computation is doable

Possibilistic IMs have extra structure, so their connection in
invulnerability isn’t clear yet

In particular, {strongly valid} ∩ {invulnerable} 6= ∅?

if non-empty, then balance is within reach
if empty, then I/we have to keep looking
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Conclusion, cont.

Open questions I already mentioned:

is generalized Bayes the only invulnerable IM?
construct valid but not strongly-valid IMs?
improvements to the partial prior efficiency bump?
strongly valid IMs that are also invulnerable?

Other open questions:

efficient Choquet integral computation?
high-dim cases: computation & elicitation?
valid (possibilistic) model assessment/selection?
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Conclusion, cont. — tangent

frequentist Bayesian

every prior one prior← some priors →

Statisticians generally don’t understand this spectrum

Classical problems: in some sense it doesn’t matter much

High-dim problems: regularization matters!

Real problems fall in the middle of the spectrum

Frequentists & Bayesians fumble focusing on the endpoints

Excellent opportunity for (IP and) partial-prior IMs!
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The end

https://wordpress-courses2223.wolfware.ncsu.edu/

st-790-001-fall-2022/

Papers, talks, etc? www4.stat.ncsu.edu/~rmartin/

Question, etc? rgmarti3@ncsu.edu

Thanks for your attention!
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