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IP holds great promise for data science

Uncertainty quantification needs more than probabilities.

Data science needs uncertainty quantification.




IP holds great promise for data science

Imprecise probabilities (IP) capture structural uncertainty intrinsic to probabilistic models.

From classic inference problems:
@ Robust Bayes: epistemic uncertainty about the prior and the likelihood (Berger, 1990);
@ Robust statistics (Huber & Strassen, 1973);

@ Fiducial, structural, and functional inference: Dempster-Shafer theory (Dempster, 2008);
inferential models (Martin & Liu, 2015);

o Econometrics: partial identification (Manski, 2003);
...to recent examples:

o Satellite conjunction (Balch et al., 2019) ;

o Electoral forecasting (Kreiss et al., 2021);

@ Supervised learning, conformal prediction (Cella & Martin, 2021, 2022), E-values?

e}

Statistical disclosure limitation (SDL) and differential privacy (DP) - more on this later.



Making IP more popular: challenges

IP offers a principled approach to data-driven decision making.

It should be even more popular than it already is!

p challenge 1

IP models can defy the intuition derived from precise probability models.

challenge 2

IP models may be difficult to compute.




A statistician’s intuition v. IP

As an answer to the question “where is 6?, if the statistician reports an interval

(P, P,

what does the statistician mean by it?

If the interval represents...
o a frequentist confidence interval,
@ a calibrated Bayesian posterior interval, or
o an inferential model (IM) predictive random set,

then the interval

@ is meant to have a coverage probability ideally at, and not below, the reported

nominal level for every value of 6;

@ is usually implied to be short, and sensibly constructed (e.g. connected, bounded, etc)
to the best of the statistician’s ability.

These interpretations do not fare well when the interval is derived from a credal set.



A statistician’s intuition v. IP

Upper and lower probabilities are bounds:

P(A) = inf P(A), P(A) =supP(A).

- Pell Pell

Example. A survey with partial nonresponse:
@ Did you injure yourself on the snow last season (Y/N)?

@ Do you ski or snowboard (K/S)?

0 Y | Y N | N | {Y,N}|{v,N} Y N | {Y,N}
0, K S K S K S {K,s} | {K,S} | {K,S}
\ m(R) ‘ 0.11 ‘ 0.10 ‘ 0.13 ‘ 0.13 ‘ 0.08 ‘ 0.06 ‘ 0.09 ‘ 0.10 \ 0.20 ‘

P(injury) = 0.11 4 0.10 + 0.09 = 0.3;
P(injury) = 0.11 + 0.10 + 0.09 + 0.08 + 0.06 + 0.20 = 0.64.



A statistician’s intuition v. IP

Upper and lower conditional™ probabilities are also bounds:

def . . P(A,B
Py (A1 8) 2L ing 20,

def P(A,B)
sup
ren P (B)

Py (A B)

Example. Looking at injury rates for skiers and snowboarders, respectively:

0 Y Y N N | {Y,N} | {v,N} Y N {Y,N}
0, K S K S K S {k,s} | {k,S} | {K,S}
’ m(R) ‘ 0.11 ‘ 0.10 ‘ 0.13 ‘ 0.13 ‘ 0.08 ‘ 0.06 ‘ 0.09 ‘ 0.10 ‘ 0.20 ‘

Generalized Bayes rule

P(injury) I

P(injury | snbrd)

P(injury | ski)

0.00 0.25 0.50 0.75 1.0(
probability

Upper and lower probabilities for injury dilate, regardless of the conditioning event.



A statistician’s intuition v. IP

Dilation (Seidenfeld & Wasserman, 1993)

Let A € £ (), B a Borel-measurable partition of €, IT be a closed and convex set of
probability measures on €2, P its lower probability function, and P, the conditional lower

« %

probability function supplied by the updating rule “e”.

Say that B strictly dilates A under the e-rule if
supP, (A| B) < P(A) < P(A) < inf Ps (A| B).
BeB BEB

The most widely used IP updating rule is the generalized Bayes rule as given before:

def . . P(A,B
Py (4] B) 2L inf 15(3))’

e.g. as employed in robust Bayesian inference.



A statistician’s intuition v. [P

How do you feel about dilation?

It’s great! It’s weird!

V' Dilation is not a violation of Bayesian coherence.
However,
X Most statisticians find dilation troubling.
- It creates a loss of precision for apparently no good reason;

- Although, a few find it appealing: perhaps a way for Bayesian models to “un-learn”?



Judicious judgment and unsettling updating (Gong & Meng, 2021)

Gen. Bayes rule J

Py (A | B) = suppep; 2220

Dilation

P(A) ]
P(A | BAc) Be—

P(A1B) Pe—

: . v
000 025 050 075 100
probability

X Generalized Bayes rule may induce dilation.



Judicious judgment and unsettling updating (Gong & Meng, 2021)

Gen. Bayes rule
5 P(ANB
Py (A | B) = suppep % J
Dilation
P(A) ]

P(A | BAc) Be—

P(A1B) P—

: : :
000 025 050 075 100
probability

X Generalized Bayes rule may induce dilation.

X Generalized Bayes rule cannot sharpen vacuous priors.



Judicious judgment and unsettling updating (Gong & Meng, 2021)

Gen. Bayes rule Dempster’s rule
D _ P(ANB) 5. __ sup P(ANB)
Py (A| B) = suppert ~575 J Po(A]B) = Db
Dilation
P(A)
P(A1BAc)
P(A1B)
0.00 0‘25 D.‘SD 0‘75 1'01
probability
v

X Generalized Bayes rule may induce dilation.
X Generalized Bayes rule cannot sharpen vacuous priors.

V" Dempster’s rule dilates less often than generalized Bayes rule.



Judicious judgment and unsettling updating (Gong & Meng, 2021)

Gen. Bayes rule Dempster’s rule
) _ P(ANB) - __ suppepy P(ANB)
Py (A | B) = suppep P(B) Po(A]B) = supperr P(B)
Dilation Contraction Sure Loss
P(A) P(A)+ Be—— | P(A)1 Bl
P(A1BAc) P(A1BAC): g | P(A1BAc): el
P(A1B) P(A1B)- Be— | P(A|B)- Bl
0.00 0. ‘25 0. .‘50 0‘75 1.00 060 OéS 0. ‘50 0‘75 1 b( 060 0.é5 Ov‘SO 0‘75 1 yO[
probability probability probability
y V. V.

X Generalized Bayes rule may induce dilation.
X Generalized Bayes rule cannot sharpen vacuous priors.
V" Dempster’s rule dilates less often than generalized Bayes rule.

X Unlike generalized Bayes rule, Dempster’s rule may contract and induce sure loss.
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Judicious judgment and unsettling updating (Gong & Meng, 2021)

Gen. Bayes rule

Dempster’s rule

) _ P(ANB) - __ suppepy P(ANB)
Py (A ‘ B) = SUPperr P(B) Py (A ‘ B) ~ suppeq P(B)

Dilation Contraction Sure Loss
P(A) B P(A)- Be—— P(A)
P(A | BAc) De— P(A | BAc)+ P— P(A | BAc)

P(A1B) Ie— P(AlB)- B P(A|B){ hemmil

0.00 0‘25 0‘50 D.‘75 I,bk 060 0‘25 01‘)0 0115 Tb( 0.00 0.25 0‘50
probability probability probability
v

075

From a statistical point of view:
X Generalized Bayes rule may induce dilation.

X Generalized Bayes rule cannot sharpen vacuous priors.

V' Dempster’s rule dilates less often than generalized Bayes rule.

X Unlike generalized Bayes rule, Dempster’s rule may contract and induce sure loss.
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Judicious judgment and unsettling updating (Gong & Meng, 2021)

Gen. Bayes rule Dempster’s rule
) _ P(ANB) - __ suppepy P(ANB)
Py (A ‘ B) = SUPperr P(B) Py (A ‘ B) ~ suppeq P(B)
Dilation Contraction Sure Loss
P(A) B P(A)- Be—— P(A)
P(A | BAc) Be—f P(AIBAc) ey P(A1BAc)
P(A1B) Ie— P(AlB)- B P(A|B){ hemmil
0.00 0‘25 0‘50 D.‘75 I.bl 060 0‘25 0‘50 0‘75 va 0.00 0‘25 0‘50 0‘75 |y04
probability probability probability
v v

From a statistieal coherence point of view:
v Generalized Bayes rule may induce dilation.
v Generalized Bayes rule cannot sharpen vacuous priors.
X Dempster’s rule dilates less often than generalized Bayes rule.
v Unlike generalized Bayes rule, Dempster’s rule may contract and induce sure loss.
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Making IP more popular: challenges

IP models can defy the intuition derived from precise probability models.

[ challenge 1

Trouble for imprecise probabilities rarely comes in the form of inherent contradictions,
but instead is more apt to arise from seeking to preserve consistency at all costs.
(Wheeler, 2021, p. 203)

challenge 2

IP models may be difficult to compute.

11/24



Computation v. IP (or narrowly, DS theory of belief functions)

Dempster-Shafer theory has found many successful implementations in computer vision,

signal processing, and artificial intelligence, where the problems have discrete state spaces.

In contrast, statistical applications of the DS theory are limited. Typical inference problems,

whether parametric or nonparametric, have continuous state spaces.

12/24



Computation v. IP

Example. Prior-free Multinomial inference.

For n € [N], xx X Categorical(f) with 0 = (0k)rex- i-e.,

P(x, = k) = 6, Vn,k.

We would like to make inference about 8 and about future observations.



Computation v. IP

Example. Prior-free Multinomial inference.
For n € [N], xx X Categorical(f) with 0 = (0k)rex- i-e.,

P(x, = k) = 6, Vn,k.

We would like to make inference about 8 and about future observations.

IP solutions:

o Dempster (1966, 1972)
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Example. Prior-free Multinomial inference.
For n € [N], xx X Categorical(f) with 0 = (0k)rex- i-e.,

P(x, = k) = 6, Vn,k.
We would like to make inference about 8 and about future observations.

IP solutions:

o Dempster (1966, 1972)

o Imprecise Dirichlet Model (IDM), Walley (1996): - analytical

n; = nj+s

E(xn-H:J'\x):my Pty =Jj| x) = nts’

for some s fixed representing the number of “hidden” observations.

@ Dirichlet-DSM (Lawrence et al., 2009) - analytical



Computation v. IP

Example. Prior-free Multinomial inference.
For n € [N], xx X Categorical(f) with 0 = (0k)rex- i-e.,

P(x, = k) = 6, Vn,k.
We would like to make inference about 8 and about future observations.

IP solutions:

o Dempster (1966, 1972) - a Gibbs sampler is devised 50 years later (Jacob et al., 2021)
o Imprecise Dirichlet Model (IDM), Walley (1996): - analytical

n; = nj+s

E(xn+1=ﬂx)=n—+sy P(xn+1:j|x)=n+s,

for some s fixed representing the number of “hidden” observations.

@ Dirichlet-DSM (Lawrence et al., 2009) - analytical
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SUMMARY 0

NOTATION h

THE GIBBS SAMPLER

We presenta Gibbs sampler for the Dempster-
Shafer (DS) statistical inference for categorical
distributions. The algorithm targets a class of
random convex polytopes [2] corresponding
to the structure of the second kind model of [1].
Central to the sampler is an equivalence be-
tween the iterative vertex configuration con-
straints and the non-negativity of cycles in
a fully connected directed graph. The sam-
pler demonstrates good convergence for rea-

| sonable category and sample sizes

The observations are x = (2,).e(y with
2, € |K] (categories), with which we infer
the parameters 0 = (6.....0) € A (the K-
simplex) of a categorical distribution:

A polytope is a set of points = ¢ R¥ satisfying.
linear inequalities of the form Az < c. Fora
€ [K]N, T, is the set of indices {n €
. The counts are Ny = ;| and
" K- A undfoses variable 7 over
(set Sis wiitten 7 ~

SAMPLING MECHANISM AND FEASIBLE SET

~

Let (Ai(0))ieqx) be the subsimplices that par-
tition A by 0, with Vol(A (4)) = 6. Define
= Y ki(u, € Ax(0)).

refk]
where u, ~ A. This sampling mechanism is
invariant to permutation of category labels. It
is also equivalent to the Gumbel-max trick.
Lemma 5.2 of [11. For k € [K],0 € Aand u, &
A, u, € Ap(0) if and only if ¢ /w i > 00/0)
forall £ € [K].

The set of all possible realizations of u which
could have produced the data x for some 0 is
R = {(ur,....uy) € AY

0 €A Ve N] uy €A, (0)),

and given a realization of u € Ry, by definition

the non-empty feasible set for 6 is
Flu)={0€A:¥n e [N] u, € A, (0))

so that Ry = {u: F(u) # 0}

fixed z, €
\__left & mid right) - or may not (right) -

B s
Figure 1. Left: partition of A into (A (6))xe(x) with K
[K], a'set of 6 € A such that u,, € A, (). Wi

3. Each point u,, € A defines, for a
ith (21, 23, 23) = (1.3,2), there may (mid

exista § € Asuch that u, € A, (6) forn = 1,2,3.

REFERENCES
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Our main contribution is the Markov chain
Monte Carlo (MCMC) algorithm targeting the
uniform distribution on Ry:

un) =
Vol (Ry)

v(u,
i ((n

‘The sets F(u) obtained when u ~ 14 constitute
the class of random convex polytopes studied
in[2], and the result of Dempster’s rule of combi-
nation on the N observations.
Define vk € K] and ¥ € [1\']

uy) € Ry)

Tk—e(u) = min
Tioe(w) = iy U

which depend on the observations through

(T). We have that 0 € F(u) is equivalent to
0¢ /05 < nie(u) for £k € [K]

Proposition 3.1.| There exists 6 € A satisfying
0:]05 < i forall k, £ € [ if and only if the
values (1_..) satisfy

VL [K] Vii.....i € K],

iy lia—ia

Mju—si 21

It suffices to restrict the above inequalities to
distinct indices ji..... . ji.

" [E==

Figure 2. Two views on the constraints.
Left: the values 7, define linear constraints
6;/6; = nj—¢. Right: the log values are weights
on the edges of a complete directed graph.

Proposi
\as before. TetF =

n 3.2 Letu € Ry, and define i .

[K). Define for ¢  [K],

exp(— min(¢ = k)
e exp(—min(@ = &)

where min(¢ — k) is the minimum value over
all paths from ¢ to k, in a fully connected
directed graph with weight logn,_; on edge
(4. £). Then the conditional distribution of uz,
under v,

0r =

vnlduz, Jugxz,).
is indeed the uniform distribution on A, (6)

s
Flgnm 3. Given u ¢ Ry (eft), the ~nmpler
drops components uz, for some k € [K] (red
dots) and draws new g, (red squares in right)
from the above conditional distribution, with
support being the shaded triangle.

Figure 4. Elapsed time (s) for 100 iterations, as
a function of N for different K (left) and as a
function of K for different V (right).

Figure 5. Upper bounds on total variation dis-
tance between u'*) and vy against £, varying K’
with 10 counts per category (left), and varying
N with N/(K = 5) counts per category (right).
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Making IP more popular: challenges and opportunities

challenge 1

IP models can defy the intuition derived from precise probability models.

e challenge 2

IP models may be difficult to compute.

opportunity

Statistical disclosure limitation (SDL) and differential privacy (DP).




Privacy in modern data curation

Modern data curators seek to meet two goals at once:
1. To disclose key statistics/use cases of the database, in accordance with its legal, policy,
and/or ethical mandates.

2. To protect the privacy of individuals with trust-worthy guarantees.

ARTICLET §9. Information as confidential; exception

(@) Neither the Secretary. nor any other offi-

The Constitution of the
. . TITLE 13—CENSUS
United States of America  sui'wayorimetanon e
several States which may be included This title was enacted by act Aug. 31, 1954, ch. 1158, 68 Stat. 1012
within this Union, according to their
et Sec.

) , determined by adlin to the whole cnap.
- ):umb;a/n‘[m(;tn?ml,lml;dmg{ 1. ini: i
O . thos bound loSevicefor a Tem of ; feati -
l\\( \\\1 \\'0 ‘\( o o 8. Collection and Publication of Sta-
WAL S 2 * Persons. The actual Enumeration 5. Censuse: 131
s ; shal o made witin v Yers 7. Offenses and Penalti 211
\\m\\\ e, 9. Collection and Publication of For-
- : - " and within every subscquent eign Trade Statistics ... 01
Term of en Years in such 10 Exchange of census? informati 401 L o gency thereot to examine tho individ-

4 s " e Manner as they shall by Law oaa or age
v it et Ry direct. The Number of wal repor

For example, the U.S. Census Bureau bears the constitutional mandate to enumerate the
population every 10 years for apportionment. It is also bound by Title 13 of U.S. Code to

protect respondent confidentiality.

16
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The U.S. Census Bureau adopts differential privacy

HDSR Somch Duthod < LoghorSop

HOME 1SSUES, SECTONS,  COLUMNS,  COLLECTIONS,  EDIAFS SUBMIT.  ASOUT.  NASTHEAD. ©vm

Differential Privacy for the 2020 U.S. Census:

Can We Make Data Both Private and Useful?

FROMTHEEDITORS

Harnessing the Known Unknowns:
Differential Privacy and the 2020 Census

by Ruobin Gong, Eica L. Groshen, andl Sl Vachan

The 2020 Census Disclosure Avoidance
System TopDown Algorithm

by John Abond, Robert Ashmeal, Ryan Cumigs-Monon,
ock, Chistine Hois, Robert

Harvard Data Science Review (https://hdsr.mitpress.mit.edu)
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The U.S. Census Bureau adopts differential privacy

HDSR Somch Duthod < LoghorSop
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Privacy

s Underpin Our Context of Statistical Agency Acceptable Privacy-Accuracy
mmncmy (and Republic) Operations: Data Quality and Combinations? bymuctinoong
oy Teresa . sulvan Related Constraints oottt pubtsh n 24,2022

THE EOI
Implementing Differential
Privacy: Seven Lessons From the
_ 7020 United States Coneun . BROADER PERSPECTIVES
= § b ape 30 2020
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1
Epistemic Disconnects ] nce: An Urgent
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S 1sd0censs o) S ————
Z4 e W b n2s 2022 Pubtsted sin 20, 2022
i e
st in 24 2072 S i e
! Ay L
Private Numbers in Public Policy: 020 Census Disclosure Avoidance
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Sarfnke, Micah Hoineck, Chistine Hoss, Robert
\arvel Kifer, a0 6 more

United States

Census

Harvard Data Science Review (https://hdsr.mitpress.mit.edu)
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The mechanism of differential privacy

We wish to learn about aggregate features of a database, while protecting the privacy of the
individual respondents.

A randomized function T (x; r) is said to be

e-differentially private (Dwork et al., 2006) if for all
neighboring databases (x, x") and all measurable S,

Pr(T(x;r) € S| x)
Pr(T(x';r) € S| x') < exp (€).

https://www.ons.gov.uk/peoplepopulationandcommunity
That is, differentially private mechanisms conceal the confidential database x, by infusing
crafted noise r into the data product T for release:
x — T(x;r)

The privacy-utility tradeoff

less utility < larger noise < smaller privacy loss budget ¢ < more privacy J

18/24



Differential privacy: how can IP help

@ Supply a rigorous vocabulary for data and inferential imprecision under privacy
constraints;

e.g. Imprecise Dirichlet Model (IDM) again: lower and upper probabilities

nj
n+1’

nj+1
n+1’

accord to posterior expectations based on two hypothetical databases that differ by s = 1;

P(xnp1=Jj|x) = P(xnp1=Jjlx) =

e.g. Interval of Measures

19/24



Differential privacy: how can IP help

Definition (Interval of Measures; DeRobertis & Hartigan, 1981)

Let €2 be the set of all o-finite measures on (7,.%), and L, U € Q be a pair satisfying L < U,
that is, L (S) < U (S) for all S € .Z. Then, the convex set of measures

IZ(LU)={PcQ:L<P<U}

is called an interval of measures. L and U are called the lower and upper measures, respectively.

Note.

@ loM can be used to describe robust neighborhoods of sampling distributions. Lavine

(1991)’s recursive algorithm computes various upper and lower posterior quantities;

@ When L and U have densities with respect to some o-finite dominating measure v, the
loM defines a density ratio class probability neighborhood, which is invariant with

respect to Bayesian updating (Wasserman, 1992) and is immune to dilation.

20/24




Differential privacy: how can IP help

Definition ( e-Differential Privacy; Dwork et al., 2006)

An % -measurable randomized function T is e-differentially private if for all pairs of datasets
x, x’ such that dy (x,x’) = 1and all S € .7,

Proposition (e-DP as Interval of Measures)

Let T be a random variable defined on (7,.%), and P, Q be probability measures associated
with T (x) and T (x') respectively. T is e-differentially private iff for all x,x € X such that
dy (x,x") =1,

PeZ(L,U), where L = e °Q, U. = e°Q.

Moreover, if P and Q have densities p and g with respect to a suitable measure (such as

Lebesgue or counting), then for all t € T,

e “q(t) <p() <eq(r).

21/24



Differential privacy: how can IP help

less utility < larger noise < smaller privacy loss budget ¢ < more privacy

Estimated ¢ and §: posterior predictive upper and lower probabilties (Tss = 2)

prer) oz o8
I ~
075 ANy Y I
050 N ] o
= RS 2
0zs — 5 2
. % om
Eoomo £
§ £
075 5
g
050 £
i
s\ 2

Figure: Left: (Gong, 2019) a privatized query (¢ < o0) is statistically less informative than a
non-privatized one (¢ = co); Right: Smaller € induces narrower posterior predictive loM over neighboring
datasets, delivering more privacy.



Differential privacy: how can IP help

@ Supply a rigorous vocabulary for data and inferential imprecision under privacy

constraints;
e.g. Imprecise Dirichlet Model (IDM) again: lower and upper probabilities

. n; — . nj+1
P (x, =j|lx)= s P (x =jlx)=———,
P(xnt1 =] x) nt1 (xn1 =171 x) n+ 1

accord to posterior expectations based on two hypothetical databases that differ by s = 1;

e.g. Interval of Measures
o Help draw principled inferential conclusions from privatized data, particularly when the

privacy mechanism is not transparent (cf. Gong, 2022);
e.g. This may happen if the privatization scheme is complex and/or algorithmically defined;

@ Characterize non- and partial-identification incurred by special cases of the privacy
mechanism and privacy loss budgeting policy.

e.g. Komarova & Nekipelov (2020)



Summary

IP holds great promise in data science. It should be more popular than it already is.
@ Reconcile with existing intuition derived from precise probability models;
@ Develop accessible computation for moderately sized applications;

@ Explore (and exploit!) the role of IP in statistical privacy and differential privacy.

Thank you

ruobin. gongerutgers.edu - Research supported by the National Science Foundation J
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