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IP holds great promise for data science

Uncertainty quantification needs more than probabilities.
Data science needs uncertainty quantification.
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IP holds great promise for data science

Imprecise probabilities (IP) capture structural uncertainty intrinsic to probabilistic models.

From classic inference problems:

Robust Bayes: epistemic uncertainty about the prior and the likelihood (Berger, 1990);

Robust statistics (Huber & Strassen, 1973);

Fiducial, structural, and functional inference: Dempster-Shafer theory (Dempster, 2008);

inferential models (Martin & Liu, 2015);

Econometrics: partial identification (Manski, 2003);

...to recent examples:

Satellite conjunction (Balch et al., 2019) ;

Electoral forecasting (Kreiss et al., 2021);

Supervised learning, conformal prediction (Cella & Martin, 2021, 2022), E-values?

◦ Statistical disclosure limitation (SDL) and differential privacy (DP) - more on this later.
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Making IP more popular: challenges

IP offers a principled approach to data-driven decision making.

It should be even more popular than it already is!

challenge 1

IP models can defy the intuition derived from precise probability models.

challenge 2

IP models may be difficult to compute.
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A statistician’s intuition v. IP

As an answer to the question “where is θ?”, if the statistician reports an interval

[P, P],

what does the statistician mean by it?

If the interval represents...

a frequentist confidence interval,

a calibrated Bayesian posterior interval, or

an inferential model (IM) predictive random set,

then the interval

is meant to have a coverage probability ideally at, and not below, the reported

nominal level for every value of θ;

is usually implied to be short, and sensibly constructed (e.g. connected, bounded, etc)

to the best of the statistician’s ability.

These interpretations do not fare well when the interval is derived from a credal set.
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A statistician’s intuition v. IP

Upper and lower probabilities are bounds:

P (A) = inf
P∈Π

P (A) , P (A) = sup
P∈Π

P (A) .

Example. A survey with partial nonresponse:

Did you injure yourself on the snow last season (Y/N)?

Do you ski or snowboard (K/S)?

Q1 Y Y N N {Y ,N} {Y ,N} Y N {Y ,N}

Q2 K S K S K S {K, S} {K, S} {K, S}

m(R) 0.11 0.10 0.13 0.13 0.08 0.06 0.09 0.10 0.20

P(injury) = 0.11+ 0.10+ 0.09 = 0.3;

P(injury) = 0.11+ 0.10+ 0.09+ 0.08+ 0.06+ 0.20 = 0.64.

5 / 24



A statistician’s intuition v. IP

Upper and lower conditional∗ probabilities are also bounds:

PB (A | B) def
== inf

P∈Π

P (A, B)
P (B)

, PB (A | B) def
== sup

P∈Π

P (A, B)
P (B)

.

Example. Looking at injury rates for skiers and snowboarders, respectively:

Q1 Y Y N N {Y ,N} {Y ,N} Y N {Y ,N}

Q2 K S K S K S {K, S} {K, S} {K, S}

m(R) 0.11 0.10 0.13 0.13 0.08 0.06 0.09 0.10 0.20

P(injury | ski)

P(injury | snbrd)

P(injury)

0.00 0.25 0.50 0.75 1.00
probability

Generalized Bayes rule

Upper and lower probabilities for injury dilate, regardless of the conditioning event.
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A statistician’s intuition v. IP

Dilation (Seidenfeld & Wasserman, 1993)

Let A ∈ B (Ω), B a Borel-measurable partition of Ω, Π be a closed and convex set of

probability measures on Ω, P its lower probability function, and P• the conditional lower

probability function supplied by the updating rule “•”.

Say that B strictly dilates A under the •-rule if
sup
B∈B

P• (A | B) < P (A) ≤ P (A) < inf
B∈B

P• (A | B) .

The most widely used IP updating rule is the generalized Bayes rule as given before:

PB (A | B) def
== inf

P∈Π

P (A, B)
P (B)

,

e.g. as employed in robust Bayesian inference.
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A statistician’s intuition v. IP

How do you feel about dilation?

It’s great! It’s weird!

! Dilation is not a violation of Bayesian coherence.

However,

✗ Most statisticians find dilation troubling.

- It creates a loss of precision for apparently no good reason;

- Although, a few find it appealing: perhaps a way for Bayesian models to “un-learn”?
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Judicious judgment and unsettling updating (Gong & Meng, 2021)

Gen. Bayes rule

PB (A | B) = supP∈Π
P(A∩B)
P(B)

Dilation

P(A | B)

P(A | B^c)

P(A)

0.00 0.25 0.50 0.75 1.00
probability

✗ Generalized Bayes rule may induce dilation.
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Judicious judgment and unsettling updating (Gong & Meng, 2021)

Gen. Bayes rule

PB (A | B) = supP∈Π
P(A∩B)
P(B)

Dempster’s rule

PD (A | B) = supP∈Π P(A∩B)
supP∈Π P(B)

Dilation

P(A | B)

P(A | B^c)

P(A)

0.00 0.25 0.50 0.75 1.00
probability

✗ Generalized Bayes rule may induce dilation.

✗ Generalized Bayes rule cannot sharpen vacuous priors.

! Dempster’s rule dilates less often than generalized Bayes rule.
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From a statistical coherence point of view:

! Generalized Bayes rule may induce dilation.

! Generalized Bayes rule cannot sharpen vacuous priors.

✗ Dempster’s rule dilates less often than generalized Bayes rule.
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Making IP more popular: challenges

challenge 1

IP models can defy the intuition derived from precise probability models.

Trouble for imprecise probabilities rarely comes in the form of inherent contradictions,

but instead is more apt to arise from seeking to preserve consistency at all costs.

(Wheeler, 2021, p. 203)

challenge 2

IP models may be difficult to compute.
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Computation v. IP (or narrowly, DS theory of belief functions)

Dempster-Shafer theory has found many successful implementations in computer vision,

signal processing, and artificial intelligence, where the problems have discrete state spaces.

In contrast, statistical applications of the DS theory are limited. Typical inference problems,

whether parametric or nonparametric, have continuous state spaces.
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Computation v. IP

Example. Prior-free Multinomial inference.

For n ∈ [N ], xn
iid∼ Categorical(θ) with θ = (θk)k∈[K]. i.e.,

P(xn = k) = θk, ∀n, k.

We would like to make inference about θ and about future observations.

IP solutions:

Dempster (1966, 1972)

Imprecise Dirichlet Model (IDM), Walley (1996):

P (xn+1 = j | x) = nj
n+ s

, P (xn+1 = j | x) = nj + s
n+ s

,

for some s fixed representing the number of “hidden” observations.

Dirichlet-DSM (Lawrence et al., 2009)
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For n ∈ [N ], xn
iid∼ Categorical(θ) with θ = (θk)k∈[K]. i.e.,

P(xn = k) = θk, ∀n, k.

We would like to make inference about θ and about future observations.

IP solutions:

Dempster (1966, 1972) - a Gibbs sampler is devised 50 years later (Jacob et al., 2021)

Imprecise Dirichlet Model (IDM), Walley (1996): - analytical

P (xn+1 = j | x) = nj
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A GIBBS SAMPLER FOR A CLASS OF RANDOM CONVEX POLYTOPES

Pierre E. Jacob1, Ruobin Gong2, Paul T. Edlefsen3, Arthur P. Dempster1
1Harvard University, USA 2Rutgers University, USA 2Fred Hutchinson Cancer Research Center, USA

SUMMARY

We present a Gibbs sampler for the Dempster-
Shafer (DS) statistical inference for categorical
distributions. The algorithm targets a class of
random convex polytopes [2] corresponding
to the structure of the second kind model of [1].
Central to the sampler is an equivalence be-
tween the iterative vertex configuration con-
straints and the non-negativity of cycles in
a fully connected directed graph. The sam-
pler demonstrates good convergence for rea-
sonable category and sample sizes.

NOTATION

The observations are x = (xn)n2[N ] with
xn 2 [K] (categories), with which we infer
the parameters ✓ = (✓1, . . . , ✓K) 2 � (the K-
simplex) of a categorical distribution:

P(xn = k) = ✓k.

A polytope is a set of points z 2 RK satisfying
linear inequalities of the form Mz  c. For a
given x 2 [K]N , Ik is the set of indices {n 2
[N ] : xn = k}. The counts are Nk = |Ik| andP

k2[K] Nk = N . A uniform variable Z over
set S is written Z ⇠ S .

SAMPLING MECHANISM AND FEASIBLE SET

Let (�k(✓))k2[K] be the subsimplices that par-
tition � by ✓, with Vol(�k(✓)) = ✓k. Define

xn =
X

k2[K]

k1(un 2 �k(✓)),

where un ⇠ �. This sampling mechanism is
invariant to permutation of category labels. It
is also equivalent to the Gumbel-max trick.
Lemma 5.2 of [1]. For k 2 [K], ✓ 2 � and un 2
�, un 2 �k(✓) if and only if un,`/un,k � ✓`/✓k
for all ` 2 [K].

The set of all possible realizations of u which
could have produced the data x for some ✓ is
Rx =

�
(u1, . . . , uN ) 2 �N :

9✓ 2 � 8n 2 [N ] un 2 �xn(✓)
 
,

and given a realization of u 2 Rx, by definition
the non-empty feasible set for ✓ is

F(u) = {✓ 2 � : 8n 2 [N ] un 2 �xn(✓)} ,
so that Rx = {u : F(u) 6= ;}.
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Figure 1. Left: partition of � into (�k(✓))k2[K] with K = 3. Each point un 2 � defines, for a
fixed xn 2 [K], a set of ✓ 2 � such that un 2 �xn(✓). With (x1, x2, x3) = (1, 3, 2), there may (mid

left & mid right) – or may not (right) – exist a ✓ 2 � such that un 2 �xn(✓) for n = 1, 2, 3.

THE GIBBS SAMPLER

Our main contribution is the Markov chain
Monte Carlo (MCMC) algorithm targeting the
uniform distribution on Rx:
⌫x(u1, . . . , uN ) =

Vol (Rx)
�1

1 ((u1, . . . , uN ) 2 Rx) .

The sets F(u) obtained when u ⇠ ⌫x constitute
the class of random convex polytopes studied
in [2], and the result of Dempster’s rule of combi-
nation on the N observations.
Define 8k 2 [K] and 8` 2 [K],

⌘k!`(u) = min
n2Ik

un,`

un,k
,

which depend on the observations through
(Ik). We have that ✓ 2 F(u) is equivalent to
✓`/✓k  ⌘k!`(u) for `, k 2 [K].

Proposition 3.1. There exists ✓ 2 � satisfying
✓`/✓k  ⌘k!` for all k, ` 2 [K] if and only if the
values (⌘k!`) satisfy

8L 2 [K] 8j1, . . . , jL 2 [K],

⌘j1!j2⌘j2!j3 . . . ⌘jL!j1 � 1.

It suffices to restrict the above inequalities to
distinct indices j1, . . . , jL.
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Figure 2. Two views on the constraints.
Left: the values ⌘k!` define linear constraints
✓`/✓k = ⌘k!`. Right: the log values are weights
on the edges of a complete directed graph.

Proposition 3.2. Let u 2 Rx, and define ⌘k!`

as before. Let k 2 [K]. Define for ` 2 [K],

✓` =
exp(�min(` ! k))P

`02[K] exp(�min(`0 ! k))

where min(` ! k) is the minimum value over
all paths from ` to k, in a fully connected
directed graph with weight log ⌘j!` on edge
(j, `). Then the conditional distribution of uIk

under ⌫x,
⌫x(duIk |u[N ]\Ik

),

is indeed the uniform distribution on �k(✓)Nk .
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Figure 3. Given u 2 Rx (left), the sampler
drops components uIk for some k 2 [K] (red
dots) and draws new uIk (red squares in right)
from the above conditional distribution, with
support being the shaded triangle.
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Figure 5. Upper bounds on total variation dis-
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N with N/(K = 5) counts per category (right).
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Making IP more popular: challenges and opportunities

challenge 1

IP models can defy the intuition derived from precise probability models.

challenge 2

IP models may be difficult to compute.

opportunity

Statistical disclosure limitation (SDL) and differential privacy (DP).
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Privacy in modern data curation

Modern data curators seek to meet two goals at once:

1. To disclose key statistics/use cases of the database, in accordance with its legal, policy,

and/or ethical mandates.

2. To protect the privacy of individuals with trust-worthy guarantees.

For example, the U.S. Census Bureau bears the constitutional mandate to enumerate the

population every 10 years for apportionment. It is also bound by Title 13 of U.S. Code to

protect respondent confidentiality.
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The U.S. Census Bureau adopts differential privacy

Harvard Data Science Review ( https://hdsr.mitpress.mit.edu )
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The mechanism of differential privacy

We wish to learn about aggregate features of a database, while protecting the privacy of the

individual respondents.

A randomized function T (x; r) is said to be

ε-differentially private (Dwork et al., 2006) if for all

neighboring databases (x, x′) and all measurable S,

Pr (T (x; r) ∈ S | x)
Pr (T (x′; r) ∈ S | x′)

≤ exp (ε) .

https://www.ons.gov.uk/peoplepopulationandcommunity

That is, differentially private mechanisms conceal the confidential database x, by infusing

crafted noise r into the data product T for release:

x −→ T (x; r)

The privacy-utility tradeoff

less utility ⇔ larger noise ⇔ smaller privacy loss budget ε ⇔ more privacy
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Differential privacy: how can IP help

Supply a rigorous vocabulary for data and inferential imprecision under privacy
constraints;
e.g. Imprecise Dirichlet Model (IDM) again: lower and upper probabilities

P (xn+1 = j | x) =
nj

n+ 1
, P (xn+1 = j | x) =

nj + 1
n+ 1

,

accord to posterior expectations based on two hypothetical databases that differ by s = 1;
e.g. Interval of Measures
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Differential privacy: how can IP help

Definition (Interval of Measures; DeRobertis & Hartigan, 1981)

Let Ω be the set of all σ-finite measures on (T ,F ), and L,U ∈ Ω be a pair satisfying L ≤ U ,

that is, L (S) ≤ U (S) for all S ∈ F . Then, the convex set of measures

I (L,U ) = {P ∈ Ω : L ≤ P ≤ U}

is called an interval of measures. L and U are called the lower and upper measures, respectively.

Note.

IoM can be used to describe robust neighborhoods of sampling distributions. Lavine

(1991)’s recursive algorithm computes various upper and lower posterior quantities;

When L and U have densities with respect to some σ-finite dominating measure ν, the

IoM defines a density ratio class probability neighborhood, which is invariant with

respect to Bayesian updating (Wasserman, 1992) and is immune to dilation.
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Differential privacy: how can IP help

Definition ( ε-Differential Privacy; Dwork et al., 2006)

An F -measurable randomized function T is ε-differentially private if for all pairs of datasets

x, x′ such that dH (x, x′) = 1 and all S ∈ F ,

Pr (T (x) ∈ S)
Pr (T (x′) ∈ S)

≤ exp(ε).

Proposition (ε-DP as Interval of Measures)

Let T be a random variable defined on (T ,F ), and P , Q be probability measures associated

with T (x) and T (x′) respectively. T is ε-differentially private iff for all x, x′ ∈ X such that

dH (x, x′) = 1,
P ∈ I (L!,U!) , where L! = e−!Q, U! = e!Q.

Moreover, if P and Q have densities p and q with respect to a suitable measure (such as

Lebesgue or counting), then for all t ∈ T ,

e−!q (t) ≤ p (t) ≤ e!q (t) .
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Differential privacy: how can IP help

less utility ⇔ larger noise ⇔ smaller privacy loss budget ε ⇔ more privacy
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Figure: Left: (Gong, 2019) a privatized query (! < ∞) is statistically less informative than a
non-privatized one (! = ∞); Right: Smaller ! induces narrower posterior predictive IoM over neighboring
datasets, delivering more privacy.
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Differential privacy: how can IP help

Supply a rigorous vocabulary for data and inferential imprecision under privacy
constraints;
e.g. Imprecise Dirichlet Model (IDM) again: lower and upper probabilities

P (xn+1 = j | x) =
nj

n+ 1
, P (xn+1 = j | x) =

nj + 1
n+ 1

,

accord to posterior expectations based on two hypothetical databases that differ by s = 1;
e.g. Interval of Measures

Help draw principled inferential conclusions from privatized data, particularly when the
privacy mechanism is not transparent (cf. Gong, 2022);
e.g. This may happen if the privatization scheme is complex and/or algorithmically defined;

Characterize non- and partial-identification incurred by special cases of the privacy
mechanism and privacy loss budgeting policy.
e.g. Komarova & Nekipelov (2020)
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Summary

IP holds great promise in data science. It should be more popular than it already is.

Reconcile with existing intuition derived from precise probability models;

Develop accessible computation for moderately sized applications;

Explore (and exploit!) the role of IP in statistical privacy and differential privacy.

Thank you

ruobin.gong@rutgers.edu · Research supported by the National Science Foundation
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