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A Paradox of
NP Hypothesis Testing

“lall of] mathematical statistics deals with problems
relating to performance characteristics of rules of

inductive behavior [ie decision rules] based on random
experiments” - J. Neyman (1950)
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“lall of] mathematical statistics deals with problems
relating to performance characteristics of rules of

inductive behavior [ie decision rules] based on random
experiments” - J. Neyman (1950)

« ...when doing a level a-hypothesis test, it is common to
mention p-value next to accept/reject decision

* ...but then, what are the decision-theoretic
consequences of this? Can we use an observation p < «

to somehow get better decisions?
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The Paradox of
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“lall of] mathematical statistics deals with problems
relating to performance characteristics of rules of

inductive behavior [ie decision rules] based on random
experiments” - J. Neyman (1950)

« ...when doing a level a-hypothesis test, it is common to
mention p-value next to accept/reject decision...but then,
what are the decision-theoretic consequences of this?

No simple, valid consequences can be given!

NP adherents (e.g. Lenmann, 1993) simply say p should be
mentioned because it provides more information...



The Paradox of
NP Hypothesis Testing

“lall of] mathematical statistics deals with problems
relating to performance characteristics of rules of

inductive behavior [ie decision rules] based on random
experiments” - J. Neyman (1950)

« ...when doing a level a-hypothesis test, it is common to
mention p-value next to accept/reject decision...but then,
what are the decision-theoretic consequences of this?

No simple, valid consequences can be given!

Paradox: NP says: statistics is about decision rules. Yet a
standard practice in NP statistics has no decision-theoretic
interpretation...



Fiercest critics are from within...

« p-values often “bashed” because they are interpreted
as evidence against the null, whereas they have
properties that any reasonable definition of evidence
shouldn’t have (Cox ‘58, likelihoodists, Bayesians...)

* here we provide Criticism from Within: even if (like
me!) one likes the decision-theoretic NP framework,
p-values are better replaced by something else
which does have decision-theoretic
consequences...



E Is the new P

1st claim: we should mention an E-value rather than
a P-value next to our decision!

Reason: E-values have valid frequentist post-hoc
decision-theoretic implications — decision problem
may be formulated after data observed, and may be
data-dependent

2"d contribution: the E-posterior — alternative to
confidence interval/distribution that can deal with
post-hoc loss functions as well

* link to ISIPTA concepts...



But first: ...back to Wald (1939)

Reformulate NP testing in terms of
losses/risks rather than errors/
error probabillities

L:{0,1} x {0,1} » R}

* L(6,a) :loss incurred when Hy
IS true, and action a Is taken

.« L(0,0)=L(1,1) =0

t t

accept H reject Hy
L(0,1): Type-Il loss
L(1,0): Type-Il loss




NP with losses rather than errors

« L:{0,1}x{0,1} > R :L(0,0) = L(1,1) =0

« We fix £ > 0 and restrict ourselves to decision rules
5:Y — {0,1} with Type-I risk bound:

suppep, Ey~p[L(0,8(Y))] < ¢

(usually ¢ = L(1,0), cost of “maintaining status quo”)
Here's a § that achieves this based on p-value p(Y) :
6(y) =1 iff p(y)-L(0,1) < ¢

Example: :=1;L(0,1) =a~! (e.g. 20)
Then 6(y) = 1iffp(y) a1 <1 (e.g. reject if p(Y) < 0.05)



NP with losses rather than errors

« L:{0,1}x{0,1} > R :L(0,0) = L(1,1) =0

« We fix £ > 0 and restrict ourselves to decision rules
5:Y — {0,1} with Type-I risk bound:

suppeg,Ey~p[L(0,8(Y))] < ¢

Set S5(y) =1 iffp(y)-L(0,1) < ¢

Example: :=1;L(0,1) = a~! (e.g. 20)
Then 6(y) = 1iff p(y) - a1 <1 (e.qg. reject iff p(Y) < 0.05)

Up till now we merely reformulated standard NP theory!



Actions of varying intensity

e Suppose there are more than 2 actions. The more
extreme an action, the larger Type-I loss and the
higher Type-Il gain:

e L:{0,1} x A - R{ with A c R is loss function such that
L(0,a) increasing in a, and L(1,a) decreasing in a




Actions of varying intensity

« The more extreme an action, the larger Type-I loss and
the higher Type-Il gain:

« L:{0,1} X A - R is a loss function such that L(0, a)
Increasing in a, and L(1, a) decreasing in a

 Intuitive extension of p-value based decision rule:
set 6(y) to largest a such that p(y) - L(0,a) < ¢



Actions of varying intensity

« L:{0,1} x A — R¢ with L(0,a) increasing in a,
L(1,a) decreasing in a

 Intuitive extension of p-value based decision rule:
set 6(y) to largest a such that p(y) - L(0,a) < ¢

Ex.: L(0,0) = 0,L(0,1) = 20, L(0,2) = 100, L(0,3) = 500
L(1,0) > L(1,1) > L(1,2) > L(1,3),¢ = 1

If p uniform under H, then Type-I risk is: Ep [L(0,86(Y))]=
1 1 1 1

1
———-2 — .100 + — - 500 = 2.
(20 100) ot (100 500) 004550 200 =206




Actions of varying intensity

e L:{0,1} x A - R{,L(0,a) increasing, L(1,a) decreasing

 Intuitive extension of p-value based decision rule:

set 6(y) to largest a such that p(y) - L(0,a) < € (*)
This does not give desired Type-l risk < £ guarantee
...and it is not easy to ‘repair’ the rule (*)



Actions of varying intensity

« L:{0,1} x A — R{ is a loss function such that L(0, a)
Increasing in a, and L(1, a) decreasing in a

 Intuitive extension of p-value based decision rule:
set 6(y) to largest a such that p(y) - L(0,a) < € (*)

This does not give desired Type-I risk < £ guarantee

...and it is not easy to ‘repair’ the rule (*)

Clue #1 of this Talk: if we instead use decision rule
set 6(y) to largest a such that S~1(y) - L(0,a) < ¢

where S(y) is any E-value, then we always have the Type-I
risk guarantee.



but It gets worse;:
Post-Hoc Decision Tasks

* Now suppose loss function L, only determined after Y is
observed. It may depend, in unknown ways, on Y

* i.e. thereis a collection {L,:{0,1} x A, » R{:b € B}
Vb € B, A, C R, L,(0,a) increasing, L,(1,a) decreasing

« We are presented with Lz where B is a RV, and are
asked to play a € Ag. Intuitive p-value based 6 is still

dz(y) = largest a € Az such that p(y) - Lg(0,a) < ¢

doesn’t give desired Type-I risk bound, even if |Ag| = 2



Post-Hoc Decision Tasks

Type-I risk now defined as

SuppoeHO,Q EYNPO’BNQD/ [LB (OJ 58 (Y))]

...where supremum is over all conditional distributions Q
that map each Y = y to distribution on B

Ex.. B=1{1,2,3}, A, =1{0, b},
L,(0,0) = 0,L,(0,1) = 20,L,(0,2) = 100, L5(0,3) = 500
B(Y) =largest b such that p(Y) - L,(0,b) <1

(Type-I risk of our p-value based 6 with this B is 3)



First it gets worse:
Post-Hoc Decision Tasks

« There is some collection {L,:{0,1} x A, —» R{:b € B}
with Vb € B, L, (0, a) increasing, L, (1,a) decreasing

« We are presented with Lg; Apg
dz(y) = largest a € Az such that p(Y) - Lg(0,a) < ¢

doesn’t give desired Type-I risk bound

...but again, replacing p by an inverse e-value does
give the Type-l guarantee
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Why care about post-hoc s —| "
data-dependent decision '
problems?

Gamah

Scientific results go on record, for later use. — =

... sometimes years later, when e.g. costs of

mass-producing a medication have decreased
dramatically...



e-variables/e-values:
General Definition

An e-variable is a nonnegative function S = S(Y) such
that for all P, € Hy , we have

P, <1
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Meet The E-Team:

- Aaditya Ramdas & co., CMU (2018-)

| E-variables have been proposed as alternative for p-values

i that can deal more easily with optional continuation,
stopping and combining of studies

« that have a clearer interpretation (in terms of betting) 1-)

(- that are mathematically easier to handle in multiple- B
testing problems. k
v

...cf. first SAV| meeting last June in the Netherlands. ..

Today | provide guite a different motivation. N

X 3 u G., Wouter Koolen and U. Waterloo

the CWI Team (2019-) (2020-)



1st Interpretation: p-value after all

« Proposition: Let S be an e-variable. Then S™1(Y) is a
conservative p-value, i.e. p-value with wiggle room:

« foralPeH,,all0<a<1,

* Proof: just Markov’s inequality!




“Safe” Tests (G. et al, ‘21)

The test against H, at level a based on e-variable
S is defined as the test which rejects H, if S(Y) > %

Since S~ is a conservative p-value...

....the test which rejects H, iff S(Y) = 20, I.e.
S~1(Y) < 0.05, has Type-l Error Bound of 0.05




E-variables and LRs/Bayes factors

- Bayes factor hypothesis testing (Jeffreys ‘39)
with simple Hy = {Py} vs H; = { pgl|O € 0.} :
Evidence in favour of H; measured by Bayes factor:

pw, (Y)

7= )

where py,(Y) = /96 elz*ng(Y)alVVl(@)



E-variables and LRs/Bayes factors

Bayes factor hypothesis testing (Jeffreys ‘39)
with simple Hy = {Py} vs H; = { pg|0 € 0.} :
Evidence in favour of H; measured by Bayes factor:
pw, (Y)

7= )

where py,(Y) = /96 elz*ng(Y)alVVl(@)

pw; (y)
po(y)

Ey.p, [S(Y)] = fpo(y) : dy = /pwl(y)dy =1



E-variables and LRs/Bayes factors

- Bayes factor hypothesis testing (Jeffreys ‘39)
with simple Hy = {Py} vs H; = { pg|0 € 0.} :
Evidence in favour of H; measured by Bayes factor:

pw, (Y)

7= )

where py,(Y) = /96 elz*ng(Y)alVVl(@)

Ey . p, [S(Y)] = fpo(y) s

No matter what prior W; we choose,
Bayes Factor for simple H, is an E-variable




E-variables and LRs/Bayes factors

. Side-Remark: even if H, Is composite or
nonparametric, nontrivial E-variables invariably
exist but relation to likelihood/ Bayes factors is
much trickier.

The paper ‘Safe Testing’ (G. et al. ‘'21) is entirely
devoted to composite nulls

Ey.p, [S(Y)] = /Po(y) -Hpvgl(;‘;/dy = / pw, (y)dy =. 1

No matter what prior W; we choose,
Bayes Factor for simple Hy is an E-variable




Back to the post-hoc losses

GNP Lemma (G. ‘22), Part |. for every Generalized NP
problem, and every E-variable S, the Type-I risk of the
maximal S-based decision rule

5,(y) = largest a € A, suchthat S™1(y) - L,(0,a) < ¢
IS bounded by ¢ .

Generalized NP means: Type | risk defined as

Supp()EHo,Q EYNPO’BNQD/ [LB (07 5B (Y))]
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GNP Lemma (G. ‘22), Part |. for every Generalized NP
problem, and every E-variable S, the Type-I risk of the
maximal S-based decision rule

5,(y) = largest a € A, suchthat S™1(y) - L,(0,a) < ¢
IS bounded by ¢ .



Back to the post-hoc losses

GNP Lemma (G. ‘22), Part |. for every generalized NP
problem, and every E-variable S, the Type-I risk of the
maximal S-based decision rule

5,(y) = largest a € A, suchthat S™1(y) - L,(0,a) < ¢
IS bounded by ¢ .

Proof: for all P € H, arbitrary conditional distributions
Q for random variable B , we have:

Ey.p, gy [LB(0,05(Y))]
< Ey.p, [SuprB Lb(O,db(Y))] < EYNPO [S(Y)g] <1-/.



A Complete Class-Like Theorem

GNP Lemma, Part | : for every generalized NP problem,
and every E-variable S for which it exists, the Type-I
risk of the maximal S-based decision rule

5,(y) = largest a € A, suchthat S™1(y) - L,(0,a) < ¢
IS bounded by ¢ .

Part Il, about Type-Il risk: under reasonable regularity
conditions, every § that has Type-I risk bound < ¢ and
that is “Type-Il risk admissible” is a maximal S-based
decision rule relative to some E-variable S



The B I N D Assumption

 |f for each b € B the Type-I loss functions L, (0,-) can

take on only two values {0,c,} and B is
probabilistically independent of Y then we get valid

Type-I risk bounds with p- rather than E-vals. after all

« Thus, we might say that classical NP testing works
under a BIND (Binary+Independence) assumption...




Second Contribution:
The E-Posterior

* BIND assumption also underlies the valid use of
confidence intervals, confidence distributions and
‘matching’ Objective Bayes posteriors.

* |t often cannot be justified...and then we should
replace the confidence distribution by something
more conservative...: the E-Posterior



E-posteriors...

« ...have been implicitly used for several years, to
provide anytime-valid confidence intervals

 |.e. to define confidence sequences that are valid
under optional stopping, but still for fixed a!

« p-values = standard Cis
« e-values = e-Cls



E-posteriors...

« ...have been implicitly used for several years, to
provide anytime-valid confidence intervals

 |.e. to define confidence sequences that are valid
under optional stopping, but still for fixed a!

Instead we use them

« to make risk-based confidence statements (a bit
like data-dependent «a) ...

« (make predictions and uncertainty assessments for
general loss functions (like the Bayes posterior) )



The E-Posterior

* Let {Py:0 € 0} represent a statistical model, and let
{S9: 0 € 0} be an e-collection

* i.e. each Sy is E-variable for null hypothesis {Py}
« E-Posterior relative to § defined simply as

P(O1y):=Sg"(Y)

Prime example: each Sy is Bayes factor,

¢ _Pw ) _ Jpe(")w(B)de
97 po () po(Y)
In this special case a.k.a. Savage-Dickey ratio

so that P(0]y) = Wmffg)



The E-Posterior

Prime example: each S, is Bayes factor,

Cpw @) [pe¥) w(B)ae _ _ w(@l)
0 = 20— ey SO that P(8ly) =TT

Example: normal location family Y ~ N(6, 1), w(8)
normal with mean 0O, variance 1

POly) = Va1 e 200 +27iz "

 |uckiness term depending on how well data aligns
with prior



risk confidence intervals

* Actions are intervals.
* Loss: Lg(0,0,,0r]) = B - 1gg[a, 0]

(linear importance weighting ; could also do non-linear,
but not in this talk!)



risk confidence intervals

Actions are intervals.
Loss: LB(H, [HL' QR]) =B 19&[9L:9R]
Decision rule Clz(Y) = [0, 5(Y), 0z 5(Y)] is called a

risk-confidence interval if for all 8 € ©:
Ep,[Lg(0,Clg(Y))] < ¢



risk confidence intervals

Actions are intervals.
Loss: LB(H, [QL' QR]) =B - 19&[9L:9R]
Decision rule Clz(Y) = [0, 5(Y), 0z 5(Y)] is called a

risk-confidence interval if for all 8 € ©:
Ep,[Lg(0,Clg(Y))] < ¢

If £ = 1 and B would be constant > 1 then this would
simply be a 1 — 1/B standard confidence interval

B =20= 95%CI



risk confidence intervals

Actions are intervals.
Loss: LB(H, [QL' QR]) =B - 19&[9L:9R]
Decision rule Clz(Y) = [0, 5(Y), 0z 5(Y)] is called a

risk-confidence interval if for all 8 € O:
Ep,[Lp(0,Clg(Y))] < ¢

If # =1 and B would be constant > 1 then this would
simply be a 1 — 1/B standard confidence interval

B indicates ‘how bad it is to be wrong'.

Again we allow it to depend on data!

CI' is better than CI if it is “always” narrower



Post-Hoc Trouble

Goal: design best (narrowest) confidence interval st for all
0 € 0: risk(8) = Ep, [LB(H, [HAL,B,éR’BD] <1

- If B were constant we’d simply pick 1 — B~! standard CI
» In normal location family, this is [§ — A/y/n, 8 + A/vn]
with e.g. if B = 20then A = 1.96 (95% CI)

 If we treat confidence distributions or O’'Bayes
posteriors as subjective posteriors, then we condition
on B and would output the same thing

...may again fail dramatically if B is determined post-hoc



Post-Hoc Trouble

We expect risk(6) of this procedure bounded by ¢

But if in reality B can depend on data in unknown ways,
actual risk(6) may be much larger, even oo

(see paper)



Post-Hoc Fun

* Loss: Lg(0,[6.,0r]) = B - 1gg[o, 0,1

e-posterior approach: for any Y, pick Clz(Y) such that

(and then of course, the smallest such Clz(Y) )

risk(0) of this procedure is indeed bounded by #, for all 6,
as long as P(0 | Y) is a valid e-posterior



The Capped E-Posterior

« We call the importance B nontrivial, if B > ¢
(if presented with trivial B, simply output empty interval!)

- For any nontrivial B, Clg(Y) = [0, 5, 0r 5] satisfies
constraint

max POIY) - B -lggcipyy <?
onlyif P(6 1Y) <1forall§ ¢ [0, 5, 0rg]

...but this means that we may replace the E-posterior by
its capped version: P“AY(6 | y) = min {1, P(8|Y)}



Post-Hoc Fun

* Loss: Lg(0,[6.,0r]) = B - 1gg[o, 0,1

capped e-posterior approach: for any Y, pick Clz(Y) s.t.
max PCAP(Q|Y) - Lg(6,Clg(Y) < ¢

(and then of course, the smallest such CIz(Y) )

risk(0) of this procedure is indeed bounded by #, for all 6,
as long as P(0 | Y) is a valid e-posterior



normal location, 8 = 1,n = 100

Savage- “best” e-posterior

Dickey e-

posterior tail area
standard

Bayes
posterior

06 GI.S 1 jO 1 I_? 14

with cleverly chosen e-vars, the E-posterior 95% confidence
is 6 + 2.72/+/n , i.e. a factor 1.4 wider than the standard NP
Cl/Bayesian credible interval. This is the best we can do.



normal location, 8 = 1,n = 100

Savage- “best” e-posterior
Dickey e-
: 1.96
posterior tail area 1 + m = 1.19
standard \

Bayes
posterior

06 GI.S 1 jO 1 I_? 14

with cleverly chosen e-vars, the E-posterior 95% confidence

is 6 + 2.72/+/n , i.e. a factor 1.4 wider than the standard NP
Cl/Bayesian credible interval. This is the best we can do.



The ‘Best’ E-Posterior

— Po(y)
PSavage—Dickey(Ql:V) — fpg(ye; d w(e)
_ (y)
Pelever(0 | y) = o

I pe(y) AW .4(0)

Po(¥)
“Po- (M) +3pg+ ()

normal location: Py (6 | y) =

logi

a*
n

with 6=,0% such that D(8||87) = D(8]||07) =




Questions for ISIPTA

« What is relation between capped e-posterior and
e Martin-Liu inferential models?

(I think the capped posterior is one — with a
substantially stronger notion of validity)

« Possibility distributions/contour functions?

* |fthere is a relation, can it be used to derive an e-
posterior calculus!?



Another Isipta Issue

- Let P(0 | y) be Savage-Dickey e-posterior for prior W
« Bayes posterior risk assessment for general losses:

Eo-wy [Lp(8,05(Y))] = Eg i [P(0 1Y) - Lp(0,65(Y)) ]

* E-posterior risk assessment for general losses:
max P(0]Y)Lg(0,85(Y)) = max Egy, [P(O]Y) - Lp(6, 65(Y))]



The Quasi-Conditional Paradigm

With E-posteriors, decision task can depend on data in
arbitrary & unknown ways

« can be chosen ‘conditional on data’, just like in Bayes

...but one evaluates procedures unconditionally, in
expectation under the unknown true distribution

* Fully frequentist

« If prior chosen badly, e-posterior becomes wide
rather than wrong

We call this a quasi-conditional approach. Inspired by,
but quite different from, conditionalist frequentist
Inference as developed by (mainly) Kiefer and Berger



Role of Prior in E-Posterior




Read more about this
Quasi-Conditional Paradigm?

G. Beyond Neyman-Pearson http://arxiv.org/abs/2205.00901

G., De Heide, Koolen. Safe Testing, Arxiv “19/21


http://arxiv.org/abs/2205.00901

E-Variables and the NP Lemma

Suppose Hy, = {P,}, H; = {P,} are simple.

The test based on LR E-variable SI* = p,(Y)/p,(Y)
looks a bit like, but is not the maximum power NP test.
Safe Test: reject if S(Y) = 1/a| more conservative
NP: rejectif S(Y) = Bwith Bs.t. P,(S(Y) >B) =«




E-Variables and the NP Lemma

The test based on LR E-variable S = p,(Y)/p,(Y)
looks a bit like, but is not the maximum power NP test.

Yet:
Snp(a)(Y) p— 0 it D(Y) > o
. » |
o otherwise
...is also an E-variable: Ep [S"P¥] < a-a7! =1andits

corresponding test coincides with the NP test



E-Variables and the NP Lemma

The test based on LR E-variable S = p,(Y)/p,(Y)
looks a bit like, but is not the maximum power NP test.

Yet:

Sl’lp(a)(Y) — {O if p(Y) > «

a~1 otherwise

...is also an E-variable: Ep [S"P¥] < a-a7! =1andits
corresponding test coincides with the NP test

...coincidentally this shows that nothing lost by using E
iInstead of p: we can mimick all of NP testing theory



