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NP adherents (e.g. Lehmann, 1993) simply say p should be 

mentioned because it provides more information...



The Paradox of 

NP Hypothesis Testing

“[all of] mathematical statistics deals with problems 

relating to performance characteristics of rules of 

inductive behavior [ie decision rules] based on random 

experiments” - J. Neyman (1950)

• …when doing a level 𝛼-hypothesis test, it is common to 

mention p-value next to accept/reject decision…but then, 

what are the decision-theoretic consequences of this?

No simple, valid consequences can be given! 

Paradox: NP says: statistics is about decision rules. Yet a 

standard practice in NP statistics has no decision-theoretic 

interpretation…



Fiercest critics are from within… 

• p-values often “bashed” because they are interpreted 

as evidence against the null, whereas they have 

properties that any reasonable definition of evidence  

shouldn’t have (Cox ‘58, likelihoodists, Bayesians…)

• here we provide Criticism from Within: even if (like 

me!) one likes the decision-theoretic NP framework, 

p-values are better replaced by something else 

which does have decision-theoretic 

consequences…



E is the new P
• 1st claim: we should mention an E-value rather than 

a P-value next to our decision!

• Reason: E-values have valid frequentist post-hoc

decision-theoretic implications – decision problem 

may be formulated after data observed, and may be 

data-dependent

• 2nd contribution: the E-posterior – alternative to 

confidence interval/distribution that can deal with 

post-hoc loss functions as well

• link to ISIPTA concepts…



But first: …back to Wald (1939)

Reformulate NP testing in terms of 

losses/risks rather than errors/ 

error probabilities 

• 𝐿 : 0,1 × 0,1 → ℝ0
+

• 𝐿 𝜃, 𝑎 : loss incurred when 𝐻𝜃
is true, and action 𝑎 is taken 

• 𝐿 0,0 = 𝐿 1,1 = 0

• 𝐿(0,1): Type-I loss

• 𝐿(1,0): Type-II loss

accept 𝑯𝟎 reject 𝑯𝟎



NP with losses rather than errors

• 𝐿 : 0,1 × 0,1 → ℝ0
+ ; 𝐿 0,0 = 𝐿 1,1 = 0

• We fix ℓ > 0 and restrict ourselves to decision rules 

𝛿: 𝒴 → 0,1 with Type-I risk bound:

(usually ℓ = 𝐿(1,0), cost of “maintaining status quo”)

Here’s a 𝛿 that achieves this based on p-value p(𝑌) : 

𝛿 𝑦 = 1 iff p 𝑦 ⋅ 𝐿 0,1 ≤ ℓ

Example: ℓ:= 1 ; 𝐿 0,1 = 𝛼−1 (e.g. 20)

Then 𝛿 𝑦 = 1 iff p 𝑦 ⋅ 𝛼−1 ≤ 1 (e.g. reject if p 𝑌 ≤ 0.05)

sup𝑃∈𝐻0𝐄𝑌∼𝑃[𝐿 0, 𝛿 𝑌 ) ≤ ℓ



NP with losses rather than errors

• 𝐿 : 0,1 × 0,1 → ℝ0
+ ; 𝐿 0,0 = 𝐿 1,1 = 0

• We fix ℓ > 0 and restrict ourselves to decision rules 

𝛿: 𝒴 → 0,1 with Type-I risk bound:

Set 𝛿 𝑦 = 1 iff p 𝑦 ⋅ 𝐿 0,1 ≤ ℓ

Example: ℓ:= 1 ; 𝐿 0,1 = 𝛼−1 (e.g. 20)

Then 𝛿 𝑦 = 1 iff p 𝑦 ⋅ 𝛼−1 ≤ 1 (e.g. reject iff p 𝑌 ≤ 0.05)

Up till now we merely reformulated standard NP theory!

sup𝑃∈𝐻0𝐄𝑌∼𝑃[𝐿 0, 𝛿 𝑌 ) ≤ ℓ



Actions of varying intensity

• Suppose there are more than 2 actions. The more 

extreme an action, the larger Type-I loss and the 

higher Type-II gain: 

• 𝐿: 0,1 × 𝒜 → ℝ0
+ with 𝒜 ⊂ ℝ is loss function such that 

𝐿 0, 𝑎 increasing in 𝑎, and 𝐿 1, 𝑎 decreasing in 𝑎
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Actions of varying intensity

• 𝐿: 0,1 × 𝒜 → ℝ0
+ with 𝐿 0, 𝑎 increasing in 𝑎,

𝐿 1, 𝑎 decreasing in 𝑎

• Intuitive extension of 𝑝-value based decision rule: 

set 𝛿 𝑦 to largest 𝑎 such that p 𝑦 ⋅ 𝐿 0, 𝑎 ≤ ℓ

Ex.: 𝐿 0,0 = 0, 𝐿 0,1 = 20, 𝐿 0,2 = 100, 𝐿 0,3 = 500

𝐿 1,0 > 𝐿 1,1 > 𝐿 1,2 > 𝐿 1,3 , ℓ = 𝟏

If p uniform under 𝐻0 then Type-I risk is: 𝐸𝑃0 𝐿 0, 𝛿 𝑌 =
1
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500
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Actions of varying intensity

• 𝐿: 0,1 × 𝒜 → ℝ0
+, 𝐿 0, 𝑎 increasing, 𝐿 1, 𝑎 decreasing 

• Intuitive extension of 𝑝-value based decision rule: 

set 𝛿 𝑦 to largest 𝑎 such that p 𝑦 ⋅ 𝐿 0, 𝑎 ≤ ℓ (*)

This does not give desired Type-I risk ≤ ℓ guarantee

…and it is not easy to ‘repair’ the rule (*)



Actions of varying intensity

• 𝐿: 0,1 × 𝒜 → ℝ0
+ is a loss function such that 𝐿 0, 𝑎

increasing in 𝑎, and 𝐿 1, 𝑎 decreasing in 𝑎

• Intuitive extension of 𝑝-value based decision rule: 

set 𝛿 𝑦 to largest 𝑎 such that p 𝑦 ⋅ 𝐿 0, 𝑎 ≤ ℓ (*)

This does not give desired Type-I risk ≤ ℓ guarantee

…and it is not easy to ‘repair’ the rule (*)

Clue #1 of this Talk: if we instead use decision rule

set 𝛿 𝑦 to largest 𝑎 such that 𝑆−1 𝑦 ⋅ 𝐿 0, 𝑎 ≤ ℓ

where 𝑆 𝑦 is any E-value, then we always have the Type-I 

risk guarantee. 



but it gets worse:

Post-Hoc Decision Tasks

• Now suppose loss function 𝐿𝑏 only determined after 𝑌 is 

observed. It may depend, in unknown ways, on 𝑌:

• i.e. there is a collection 𝐿𝑏: 0,1 × 𝒜𝑏 → ℝ0
+: 𝑏 ∈ ℬ

∀𝑏 ∈ ℬ,𝒜𝑏 ⊂ ℝ, 𝐿𝑏 0, 𝑎 increasing, 𝐿𝑏(1, 𝑎) decreasing

• We are presented with 𝐿𝐵 where 𝐵 is a RV, and are 

asked to play 𝑎 ∈ 𝒜𝐵. Intuitive 𝑝-value based 𝛿 is still

𝛿𝐵 𝑦 = largest 𝑎 ∈ 𝒜𝐵 such that  p 𝑦 ⋅ 𝐿𝐵 0, 𝑎 ≤ ℓ

doesn’t give desired Type-I risk bound, even if |𝓐𝑩| = 𝟐



Post-Hoc Decision Tasks

Type-I risk now defined as

…where supremum is over all conditional distributions 𝑄
that map each 𝑌 = 𝑦 to distribution on ℬ

Ex.: ℬ = 1,2,3 ,𝒜𝑏 = 0, 𝑏 ,
𝐿𝑏 0,0 = 0, 𝐿1 0,1 = 20, 𝐿2 0,2 = 100, 𝐿3 0,3 = 500

𝐵 𝑌 = largest 𝑏 such that p 𝑌 ⋅ 𝐿𝑏 0, 𝑏 ≤ 1

(Type-I risk of our p-value based 𝛿 with this 𝐵 is 3)



First it gets worse:

Post-Hoc Decision Tasks

• There is some collection 𝐿𝑏: 0,1 × 𝒜𝑏 → ℝ0
+: 𝑏 ∈ ℬ

with ∀𝑏 ∈ ℬ, 𝐿𝑏 0, 𝑎 increasing, 𝐿𝑏(1, 𝑎) decreasing

• We are presented with 𝐿𝐵;𝒜𝐵

𝛿𝐵 𝑦 = largest 𝑎 ∈ 𝒜𝐵 such that  p 𝑌 ⋅ 𝐿𝐵 0, 𝑎 ≤ ℓ

doesn’t give desired Type-I risk bound

…but again, replacing 𝒑 by an inverse e-value does 

give the Type-I guarantee



Why care about post-hoc 

data-dependent decision 

problems?

Scientific results go on record, for later use.

… sometimes years later, when e.g. costs of 

mass-producing a medication have decreased 

dramatically…



e-variables/e-values: 

General Definition

An e-variable is a nonnegative function 𝑆 = 𝑆(𝑌) such 

that for all 𝑃0 ∈ 𝐻0 , we have 
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E-variables have been proposed as alternative for p-values 

• that can deal more easily with optional continuation, 

stopping and combining of studies

• that have a clearer interpretation (in terms of betting)

• that are mathematically easier to handle in multiple-

testing problems.

…cf. first SAVI meeting last June in the Netherlands…

Today I provide quite a different motivation.



1st Interpretation: p-value after all

• Proposition: Let 𝑆 be an e-variable. Then 𝑆−1 𝑌 is a 

conservative p-value, i.e.  p-value with wiggle room: 

• for all 𝑃 ∈ 𝐻0, all 0 ≤ 𝛼 ≤ 1 , 

• Proof: just Markov’s inequality! 



“Safe” Tests (G. et al, ‘21)

• The test against 𝐻0 at level 𝛼 based on e-variable 

𝑆 is defined as the test which rejects 𝐻0 if 𝑆 𝑌 ≥
1

𝛼

• Since 𝑆−1 is a conservative 𝑝-value...

• ....the test which rejects 𝐻0 iff  𝑆(𝑌) ≥ 20 , i.e.  

𝑆−1 𝑌 ≤ 0.05 , has Type-I Error Bound of 0.05



E-variables and LRs/Bayes factors

• Bayes factor hypothesis testing

with simple 𝐻0 = {𝑃0} vs 𝐻1 = 𝑝𝜃 𝜃 ∈ Θ1} :

Evidence in favour of 𝐻1 measured by Bayes factor: 

(Jeffreys ‘39)

where
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E-variables and LRs/Bayes factors

• Bayes factor hypothesis testing

with simple 𝐻0 = 𝑃0 𝜃} vs 𝐻1 = 𝑝𝜃 𝜃 ∈ Θ1} :

Evidence in favour of 𝐻1 measured by Bayes factor: 

(Jeffreys ‘39)

No matter what prior 𝑾𝟏 we choose,

Bayes Factor for simple 𝑯𝟎 is an E-variable

where

Side-Remark: even if 𝐻0 is composite or 

nonparametric, nontrivial E-variables invariably 

exist but relation to likelihood/ Bayes factors is 

much trickier.

The paper ‘Safe Testing’ (G. et al. ‘21) is entirely 

devoted to composite nulls



Back to the post-hoc losses

GNP Lemma (G. ‘22), Part I: for every Generalized NP 

problem, and every E-variable 𝑆,  the Type-I risk of the 

maximal 𝑆-based decision rule

𝛿𝑏 𝑦 = largest 𝑎 ∈ 𝒜𝑏 such that  𝑆−1 𝑦 ⋅ 𝐿𝑏 0, 𝑎 ≤ ℓ

is bounded by ℓ .

Generalized NP means: Type I risk defined as
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Back to the post-hoc losses

GNP Lemma (G. ‘22), Part I: for every generalized NP 

problem, and every E-variable 𝑆,  the Type-I risk of the 

maximal 𝑆-based decision rule

𝛿𝑏 𝑦 = largest 𝑎 ∈ 𝒜𝑏 such that  𝑆−1 𝑦 ⋅ 𝐿𝑏 0, 𝑎 ≤ ℓ

is bounded by ℓ .

Proof: for all 𝑃 ∈ 𝐻0, arbitrary conditional distributions 

𝑄 for random variable 𝐵 , we have: 



A Complete Class-Like Theorem

GNP Lemma, Part I : for every generalized NP problem, 

and every E-variable 𝑆 for which it exists, the Type-I 

risk of the maximal 𝑆-based decision rule

𝛿𝑏 𝑦 = largest 𝑎 ∈ 𝒜𝑏 such that  𝑆−1 𝑦 ⋅ 𝐿𝑏 0, 𝑎 ≤ ℓ

is bounded by ℓ .

Part II, about Type-II risk: under reasonable regularity 

conditions, every 𝛿 that has Type-I risk bound ≤ ℓ and 

that is “Type-II risk admissible” is a maximal 𝑆-based 

decision rule relative to some E-variable 𝑆



The BIND Assumption

• If for each 𝑏 ∈ ℬ the Type-I loss functions 𝐿𝑏 0,⋅ can 

take on only two values 0, 𝑐𝑏 and 𝐵 is 

probabilistically independent of 𝑌 then we get valid 

Type-I risk bounds with p- rather than E-vals. after all 

• Thus, we might say that classical NP testing works 

under a BIND (Binary+Independence) assumption…



Second Contribution: 

The E-Posterior

• BIND assumption also underlies the valid use of 

confidence intervals, confidence distributions and 

‘matching’ Objective Bayes posteriors. 

• It often cannot be justified…and then we should 

replace the confidence distribution by something 

more conservative...: the E-Posterior



E-posteriors…

• …have been implicitly used for several years, to 

provide anytime-valid confidence intervals

• i.e. to define confidence sequences that are valid 

under optional stopping, but still for fixed 𝜶! 

• p-values ⇒ standard Cis

• e-values ⇒ e-CIs



E-posteriors…

• …have been implicitly used for several years, to 

provide anytime-valid confidence intervals

• i.e. to define confidence sequences that are valid 

under optional stopping, but still for fixed 𝜶! 

Instead we use them

• to make risk-based confidence statements (a bit 

like data-dependent 𝛼) …

• (make predictions and uncertainty assessments for 

general loss functions (like the Bayes posterior) )



The E-Posterior

• Let 𝑃𝜃: 𝜃 ∈ Θ represent a statistical model, and let  

{𝑆𝜃: 𝜃 ∈ Θ} be an e-collection

• i.e. each 𝑆𝜃 is E-variable for null hypothesis 𝑃𝜃
• E-Posterior relative to 𝒮 defined simply  as 

ത𝑃 𝜃 𝑦 ≔ 𝑆𝜃
−1 𝑌

Prime example: each 𝑆𝜃 is Bayes factor, 

𝑆𝜃 =
𝑝𝑊 𝑌

𝑝𝜃 (𝑌)
=

∫ 𝑝𝜃 𝑌 𝑤 𝜃 𝑑𝜃

𝑝𝜃 𝑌
so that ത𝑃 𝜃 𝑦) =

𝑤 (𝜃|𝑦)

𝑤 (𝜃)

In this special case a.k.a. Savage-Dickey ratio



The E-Posterior

Prime example: each 𝑆𝜃 is Bayes factor, 

𝑆𝜃 =
𝑝𝑊 𝑌

𝑝𝜃 (𝑌)
=

∫ 𝑝𝜃 𝑌 𝑤 𝜃 𝑑𝜃

𝑝𝜃 𝑌
so that ത𝑃 𝜃 𝑦) =

𝑤 (𝜃|𝑦)

𝑤 (𝜃)

Example: normal location family Y ∼ 𝑁(𝜃, 1), 𝑤(𝜃)
normal with mean 0, variance 1

ത𝑃 𝜃 𝑦 = 𝑛 + 1 ⋅ 𝑒−
𝑛
2 𝜃−෡𝜃

2
+
1
2⋅

𝑛
𝑛+1

෡𝜃2

• luckiness term depending on how well data aligns 

with prior



risk confidence intervals

• Actions are intervals. 

• Loss: 𝐿𝐵 𝜃, 𝜃𝐿, 𝜃𝑅 = 𝐵 ⋅ 1𝜃∉[𝜃𝐿,𝜃𝑅]

(linear importance weighting ; could also do non-linear, 

but not in this talk!)
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• Decision rule CI𝐵 𝑌 = ෠𝜃𝐿,𝐵 𝑌 , ෠𝜃𝑅,𝐵 𝑌 is called a  

risk-confidence interval if for all 𝜃 ∈ Θ: 

𝐄𝑃𝜃 𝐿𝐵 𝜃, CI𝐵 𝑌 ≤ ℓ
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• Decision rule CI𝐵 𝑌 = ෠𝜃𝐿,𝐵 𝑌 , ෠𝜃𝑅,𝐵 𝑌 is called a  
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𝐄𝑃𝜃 𝐿𝐵 𝜃, CI𝐵 𝑌 ≤ ℓ

• If ℓ = 1 and 𝐵 would be constant > 1 then this would 

simply be a 1 − 1/𝐵 standard confidence interval

• 𝐵 = 20 ⇒ 95% CI



risk confidence intervals

• Actions are intervals. 

• Loss: 𝐿𝐵 𝜃, 𝜃𝐿, 𝜃𝑅 = 𝐵 ⋅ 1𝜃∉[𝜃𝐿,𝜃𝑅]

• Decision rule CI𝐵 𝑌 = ෠𝜃𝐿,𝐵 𝑌 , ෠𝜃𝑅,𝐵 𝑌 is called a  

risk-confidence interval if for all 𝜃 ∈ Θ: 

𝐄𝑃𝜃 𝐿𝐵 𝜃, CI𝐵 𝑌 ≤ ℓ

• If ℓ = 1 and 𝐵 would be constant > 1 then this would 

simply be a 1 − 1/𝐵 standard confidence interval

• 𝐵 indicates ‘how bad it is to be wrong’. 

• Again we allow it to depend on data!

• CI′ is better than CI if it is “always” narrower



Post-Hoc Trouble

Goal: design best (narrowest) confidence interval st for all

𝜃 ∈ Θ: risk 𝜃 ≔ 𝐄𝑃𝜃 𝐿𝐵 𝜃, ෠𝜃𝐿,𝐵, ෠𝜃𝑅,𝐵 ≤ 1

• If 𝐵 were constant we’d simply pick 1 − 𝐵−1 standard CI

• In normal location family, this is ෠𝜃 − 𝐴/ 𝑛, ෠𝜃 + 𝐴/ 𝑛

with e.g. if 𝐵 = 20 then 𝐴 = 1.96 (95% CI)

• If we treat confidence distributions or O’Bayes

posteriors as subjective posteriors, then we condition 

on 𝑩 and would output the same thing

…may again fail dramatically if 𝐵 is determined post-hoc 



Post-Hoc Trouble

We expect risk 𝜃 of this procedure bounded by ℓ

But if in reality 𝐵 can depend on data in unknown ways, 

actual risk(𝜃) may be much larger, even ∞

(see paper)



Post-Hoc Fun 

• Loss: 𝐿𝐵 𝜃, 𝜃𝐿, 𝜃𝑅 = 𝐵 ⋅ 1𝜃∉[𝜃𝐿,𝜃𝑅]

e-posterior approach: for any 𝑌, pick CI𝐵(𝑌) such that

max
𝜃

ത𝑃 𝜃 𝑌 ⋅ 𝐿𝐵(𝜃, CI𝐵 𝑌 ) ≤ ℓ

(and then of course, the smallest such CI𝐵(𝑌) )

risk 𝜃 of this procedure is indeed bounded by ℓ, for all 𝜃, 

as long as ത𝑃 𝜃 𝑌 is a valid e-posterior



The Capped E-Posterior

• We call the importance 𝐵 nontrivial, if 𝐵 > ℓ

(if presented with trivial 𝐵, simply output empty interval!)

• For any nontrivial 𝐵, CI𝐵 𝑌 = [ ෠𝜃𝐿,𝐵, ෠𝜃𝑅,𝐵] satisfies 

constraint

max
𝜃

ത𝑃 𝜃 𝑌 ⋅ 𝐵 ⋅ 1𝜃∉CI𝐵 𝑌 ≤ ℓ

only if ത𝑃 𝜃 𝑌 ≤ 1 for all 𝜃 ∉ [ ෠𝜃𝐿,𝐵, ෠𝜃𝑅,𝐵]

...but this means that we may replace the E-posterior by 

its capped version: ത𝑃CAP 𝜃 𝑦 = min {1, ത𝑃(𝜃|𝑌)}



Post-Hoc Fun 

• Loss: 𝐿𝐵 𝜃, 𝜃𝐿, 𝜃𝑅 = 𝐵 ⋅ 1𝜃∉[𝜃𝐿,𝜃𝑅]

capped e-posterior approach: for any 𝑌, pick CI𝐵(𝑌) s.t.

max
𝜃

ഥ𝑷𝐂𝐀𝐏 𝜃 𝑌 ⋅ 𝐿𝐵(𝜃, CI𝐵 𝑌 ) ≤ ℓ

(and then of course, the smallest such CI𝐵(𝑌) )

risk 𝜃 of this procedure is indeed bounded by ℓ, for all 𝜃, 

as long as ത𝑃 𝜃 𝑌 is a valid e-posterior



normal location, ෡𝜽 = 𝟏, 𝒏 = 𝟏𝟎𝟎

with cleverly chosen e-vars, the E-posterior 95% confidence 

is ෠𝜃 ± 2.72/ 𝑛 , i.e. a factor 1.4wider than the standard NP 

CI/Bayesian credible interval. This is the best we can do. 

Savage-

Dickey e-

posterior

“best” e-posterior

tail area 

standard 

Bayes 

posterior



normal location, ෡𝜽 = 𝟏, 𝒏 = 𝟏𝟎𝟎
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1 +
1.96

100
= 1.19



The ‘Best’ E-Posterior

ത𝑃Savage−Dickey 𝜃 𝑦 =
𝑝𝜃(𝑦)

∫ 𝑝𝜃 𝑦 𝑑 𝑊 𝜃

ത𝑃clever 𝜃 𝑦 ≔
𝑝𝜃 𝑦

∫ 𝑝𝜃 𝑦 𝑑𝑾↜𝜽 𝜃

normal location: ത𝑃best 𝜃 𝑦 ≔
𝑝𝜃 𝑦

1

2
𝑝𝜃− 𝑦 +

1

2
𝑝𝜃+(𝑦)

with 𝜃−, 𝜃+ such that 𝐷 𝜃| 𝜃−) = 𝐷(𝜃||𝜃+) = 
log

2

𝜶∗

𝑛



Questions for ISIPTA

• What is relation between capped e-posterior and

• Martin-Liu inferential models?

(I think the capped posterior is one – with a 

substantially stronger notion of validity)

• Possibility distributions/contour functions? 

• If there is a relation, can it be used to derive an e-

posterior calculus!?



Another Isipta Issue 

• Let ത𝑃 𝜃 𝑦 be Savage-Dickey e-posterior for prior 𝑊

• Bayes posterior risk assessment for general losses:

𝐄𝜃∼𝑊|𝑌 [𝐿𝐵(𝜃, 𝛿𝐵 𝑌 )] = 𝐄𝜃∼𝑊[ ത𝑃 𝜃 𝑌 ⋅ 𝐿𝐵(𝜃, 𝛿𝐵 𝑌 ) ] 

• E-posterior risk assessment for general losses:

max
𝜃

ത𝑃 𝜃 𝑌 𝐿𝐵 𝜃, 𝛿𝐵 𝑌 = max
𝑊′

𝐄𝜃∼𝑊′ [ ത𝑃 𝜃 𝑌 ⋅ 𝐿𝐵 𝜃, 𝛿𝐵 𝑌 ]

• Do something inbetween, with sets of priors!?!?!?



The Quasi-Conditional Paradigm

With E-posteriors, decision task can depend on data in 

arbitrary & unknown ways

• can be chosen ‘conditional on data’, just like in Bayes 

…but one evaluates procedures unconditionally, in 

expectation under the unknown true distribution

• Fully frequentist

• If prior chosen badly, e-posterior becomes wide 

rather than wrong 

We call this a quasi-conditional approach. Inspired by, 

but quite different from, conditionalist frequentist 

inference as developed by (mainly) Kiefer and Berger



Role of Prior in E-Posterior

Role of Prior in Bayes Posterior



Read more about this 

Quasi-Conditional Paradigm?

• G. Beyond Neyman-Pearson http://arxiv.org/abs/2205.00901

• G., De Heide, Koolen. Safe Testing, Arxiv ‘19/’21

http://arxiv.org/abs/2205.00901


E-Variables and the NP Lemma 

Suppose 𝐻0 = 𝑃0 , 𝐻1 = 𝑃1 are simple.

The test based on LR E-variable 𝑆lr = 𝑝1 𝑌 /𝑝0 𝑌
looks a bit like, but is not the maximum power NP test.

Safe Test: reject if 𝑆 𝑌 ≥ 1/𝛼

NP: reject if 𝑆 𝑌 ≥ 𝐵 with 𝐵 s.t. 𝑃0 𝑆 𝑌 ≥ 𝐵 = 𝛼

more conservative



E-Variables and the NP Lemma 

The test based on LR E-variable 𝑆lr = 𝑝1 𝑌 /𝑝0 𝑌
looks a bit like, but is not the maximum power NP test.

Yet: 

...is also an E-variable: 𝐸𝑃0 𝑆
np 𝛼 ≤ 𝛼 ⋅ 𝛼−1 = 1 and its 

corresponding test coincides with the NP test 



E-Variables and the NP Lemma 

The test based on LR E-variable 𝑆lr = 𝑝1 𝑌 /𝑝0 𝑌
looks a bit like, but is not the maximum power NP test.

Yet: 

...is also an E-variable: 𝐸𝑃0 𝑆
np 𝛼 ≤ 𝛼 ⋅ 𝛼−1 = 1 and its 

corresponding test coincides with the NP test 

...coincidentally this shows that nothing lost by using E 

instead of p: we can mimick all of NP testing theory


