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Motivation

Conformal Prediction (CP) quantifies uncertainty in an ordinal way

Research Question

Does is do so also cardinally?

The journey to answer this question led to other interesting discoveries
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(Full) Conformal Prediction

Consider an exchangeable process Y1,Y2, . . . with distribution P

Each Yi is a random element taking values in the m.s. (Y ,ΣY )

A sequence is exchangeable if, for any k ∈ N, (Y1, . . . ,Yk) and
(Yperm(1), . . . ,Yperm(k)) have the same joint distribution

We observe the first n terms of the process Yn = (Y1, . . . ,Yn)

With this data + exchangeability, goal: predict Yn+1 using a method
that is valid/reliable

yn = {y1, …, yn}

Y

yn+1

𝕐α
π(yn)

Conformal Prediction Method;


Choice of  and α π
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(Full) Conformal Prediction, cont’d

Let Yn+1 = (Yn,Yn+1)

Consider the transform

Yn+1 → T n+1 = (T1, . . . ,Tn+1)

defined by the rule

Ti := ψi

(
Yn+1

)
≡ ψ

(
yn+1
−i , yi

)
, i ∈ {1, . . . , n + 1}

yn+1
−i = yn+1 \ {yi},
ψ : Y n × Y → R is a fixed function, invariant to permutations in its
first vector argument. E.g. ψi (y

n+1) = |mean(yn+1
−i )− yi |

Function ψ: non-conformity measure; ψi (y
n+1) is small if and only if yi

agrees with – i.e. is “close to” – a prediction based on the data yn+1
−i
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(Full) Conformal Prediction, cont’d

The value Yn+1 has not yet been observed; it is the prediction target

Exchangeability-preserving properties of the transformations Ti give
us a procedure to rank candidate values ỹ of Yn+1

Based on the observed Yn = yn

Data-dependent function ỹ 7→ π(ỹ , yn) ∈ [0, 1] can be interpreted as a
measure of plausibility of the assertion that Yn+1 = ỹ , given data yn

Vovk et al. (2005) refer to the function π as conformal transducer
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(Full) Conformal Prediction, cont’d

For any α ∈ [0, 1], the α-level Conformal Prediction Region (CPR) is
defined as (Vovk, 2013, Equation (2))

Rψ
α (y

n) := {yn+1 ∈ Y : π(yn+1, y
n) > α}

It satisfies
P
[
Yn+1 ∈ Rψ

α (y
n)
]
≥ 1− α, (1)

uniformly in n and in P (Vovk et al., 2005). That is, (1) is satisfied
for all n ∈ N and all exchangeable distributions P
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(Full) Conformal Prediction as a Correspondence

Caprio et al. (2025, Section 5) point out how Full CP can be written
as a correspondence

κ : [0, 1]× Y n × F ⇒ Y , (α, yn, ψ) 7→ κ(α, yn, ψ),

where F is the set

{ψ : Y n × Y → R, ψ is invariant to permutations in its first argument},

and the image κ(α, yn, ψ) of κ is defined as{
yn+1 ∈ Y :

1

n + 1

n+1∑
i=1

1

[
ψ
(
yn+1
−i , yi

)
≥ ψ

(
yn+1
−(n+1), yn+1

)]
︸ ︷︷ ︸

=:π(yn+1,yn)

> α

}

It is easy to see, then, that κ(α, yn, ψ) ≡ Rψ
α (yn)
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Research Question, Explained

CP Regions depend only on the ranks of the non-conformity scores:
for any strictly increasing transform f , κα(y

n, ψ) = κα(y
n, f ◦ ψ)

diam(R) is numerically well-defined once a metric on Y is fixed, but:
no canonical cardinal scale of “amount of uncertainty” attached to R,

diam(R1) = 3diam(R2) ̸⇒ “R1 is three times more uncertain than R2”

CP natively supports ordinal comparisons (larger/smaller regions), not
cardinal arithmetic
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The Conformal Transducer Induces a Credal Set

Call ∆Y the space of finitely additive probabilities on Y , endowed
with the weak⋆ topology

A credal set M is a (nonempty) weak⋆-closed and convex subset of
∆Y (Levi, 1980)

Cella and Martin (2022) show that, under the consonance assumption,
i.e. supyn+1∈Y π(yn+1, y

n) = 1, then conformal transducer π induces

Π(A) := sup
yn+1∈A

π(yn+1, y
n), ∀A ∈ ΣY ,

and in turn a credal set

M(Π) := {P : P(A) ≤ Π(A),∀A ∈ ΣY }
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Credal Set Derivation as a Correspondence

Credal set M(Π) can be seen as the image of the correspondence
CRED : Y n × F ⇒ ∆Y , (y

n, ψ) 7→ CRED(yn, ψ) :=

The elements of CRED(yn, ψ) are characterized in Martin (2025,
Theorem 1).
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Imprecise Highest Density Region (IHDR)

We define (a version of) a confidence interval for M(Π)

Conjugate Lower Probability: Π(A) = 1− Π(Ac), for all A ∈ ΣY

Fix a credibility level α ∈ [0, 1]. The α-level IHDR of credal set
M(Π) is the set BαM ⊂ Y such that Π(BαM) = 1− α, and its “size is
minimal” (Coolen, 1992; Caprio et al., 2025),

BαM =
⋂

{A ∈ ΣY : Π(A) ≥ 1− α}

The IHDR BαM can be written as the image of the following
correspondence IHDR : [0, 1]× C ⇒ Y ,

(α,M(Π)) 7→ IHDR(α,M(Π)) :=
⋂

{A ∈ ΣY : Π(A) ≥ 1− α}
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IHDR is Equivalent to CPR

yn = {y1, …, yn}

𝕐Y

Y

yn+1

ℛΔ𝒫∈(α, −)

−(ℳ)

Extracting a Credal Set;


Choice of π

Deriving an IHDR from ; 


Choice of 

−(ℳ)
α

Caprio et al. (2025, Propositions 5 and 6): the α-level IHDR
associated with M(Π) corresponds to the Conformal Prediction

Region Rψ
α (yn)

It enjoys the same probabilistic guarantee as the CPR

Michele Caprio (U of Manchester) Conformal Prediction: UQ Capabilities October 1, 2025 9 / 19



Addressing the Research Question

yn = {y1, …, yn}

𝕐Y

Y

yn+1

ℛΔ𝒫∈(α, −)

−(ℳ)

Extracting a Credal Set;


Choice of π

Deriving an IHDR from ; 


Choice of 

−(ℳ)
α

Is this “indirect route” to obtaining a prediction region the one that
gives us cardinal UQ capabilities for Conformal Prediction?

We use a Category-Theoretic approach to answer this question
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Conformal Prediction as a Morphism

Category Theory (CT) can be thought of as a general theory of
mathematical objects and their relations (Perrone, 2024)

Structure UHCont

Define a structure UHCont as follows,

Objects: Topological spaces (X , τX ).

Morphisms: Upper hemicontinuous correspondences Φ : X ⇒ Y .

UHCont is a well-defined category (Caprio, 2025, Theorem 2)

That is, a structure satisfying desirable properties

Under minimal assumptions, the CP correspondence κ is a morphism
of UHCont, and it is part of a commutative diagram involving the
IHDR and the credal set correspondences
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UHCont is a well-defined category (Caprio, 2025, Theorem 2)

That is, a structure satisfying desirable properties

Under minimal assumptions, the CP correspondence κ is a morphism
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Conformal Prediction as a Morphism

(i) Y is compact Hausdorff and ΣY = B(Y ) is its Borel σ-field

(ii) Each ψ ∈ F is jointly continuous on Y n × Y , i.e. F ⊂ C (Y n × Y ),
and is endowed with the uniform topology

(iii) No-tie parameter: The credibility level α satisfies
α/∈ Sn+1 := {0, 1

n+1 ,
2

n+1 , . . . ,
n

n+1 , 1}

(iv) ∆Y is endowed with the weak⋆ topology, and C ⊂ 2∆Y is endowed
with the Vietoris topology

The Conformal Prediction Diagram Commutes, UHCont

Assume that (i)-(iv) hold, and that the conformal transducer π is
consonant. Consider the restrictions κα and IHDRα to any α ∈ [0, 1] that
satisfies (iii). Then, IHDRα ◦ CRED = κα. That is, the Full CP Diagram
commutes in UHCont.

Conditions (i)-(iv) + consonance are truly minimal: without any of
them, the result does not hold
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Answering the Research Question

Commuting factorization κα = IHDRα ◦ CRED reveals hidden layer

Computing a CP Region is equivalent to (i) forming the credal set
M(Π) and (ii) extracting its IHDR

The result in Caprio et al. (2025) that CPR = IHDR was not enough
to conclude the intrinsic equality between the two methods of
obtaining the prediction region

Because M(Π) is a credal set, existing metrics (Abellán et al., 2006;
Hüllermeier and Waegeman, 2021; Chau et al., 2025) endow it with a
cardinal scale that is able to quantify (different types of) uncertainty,
in particular, reducible (epistemic) and irreducible (aleatoric)
(Javanmardi et al., 2025; Cabezas et al., 2025; Stutts et al., 2024)
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Answering the Research Question

The uncertainty will be “marginal”,1 thus reflecting the marginal
guarantee of the Conformal Prediction Region

Conjecture: The analyst-controlled choices – α and ψ ∈ F – are
primarily associated with epistemic uncertainty

Conjecture (cont’d): aleatoric uncertainty stems from the intrinsic
variability of the exchangeable process that we study, encoded in P

1That is, averaged over the possible realization yn.
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An ML-Inspired Example

Let Y = [0, 1]d with its Euclidean topology (compact and Hausdorff),
and let φθ : Y → Rm be a feed-forward neural network whose
activation functions are continuous (e.g. ReLU)

Hence, φθ is continuous in both its parameters θ and input y

For a training set yn = (y1, . . . , yn) ∈ Y n and a candidate point
ỹ ∈ Y , define

ψθ(y
n, ỹ) = −

∥∥∥∥φθ(ỹ)− 1

n

n∑
i=1

φθ(yi )

∥∥∥∥2
2

Permutation invariance: The sample mean is symmetric in y1, . . . , yn

Joint continuity: Composition, finite sums, Euclidean norm, and
squaring preserve continuity; Thus (yn, ỹ) 7→ ψθ(y

n, ỹ) is jointly
continuous on Y n × Y . Hence, ψθ ∈ F
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An ML-Inspired Example (cont’d)

Consonance does not automatically hold in this example. To enforce
it, it is enough to consider the normalized conformal transducer
π′(ỹ , yn) := π(ỹ ,yn)

supy∈Y π(y ,y
n) (Cella and Martin, 2021, Section 7)

This example is interesting because of the following implications for
Machine Learning

Few shot/prototype learning: ψθ(y
n, y) is the squared Euclidean

distance to the class prototype mean φθ(yi )
Out-Of-Distribution (OOD) detection: The same distance acts as a
learned Mahalanobis-style OOD score
Heteroscedastic conformal regression: If φθ is the penultimate layer of
a regression network, ψθ(y

n, y) yields locally adaptive, yet still valid,
prediction sets
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Full CP Diagram commuting in a Different Category

The following is a category (Caprio, 2025, Theorem 23)

Structure WMeasuc
Define a structure WMeasuc as follows,

Objects: Compact Polish spaces (X ,ΣX ), with ΣX = B(X ), the Borel
σ-algebra.

Morphisms: Weakly measurable, uniformly compact-valued
correspondences Φ : X ⇒ Y .

The Full CP Diagram commutes in WMeasuc as well, under
essentially the same conditions (i)-(iv) + consonance (Caprio, 2025,
Theorem 24)

Under our assumptions, cardinal uncertainty quantification is an
intrinsic feature of Conformal Prediction methods

The Full CP diagram commutes when we focus on both measurability
and continuity aspects of the CP correspondence κ
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An Unexpected Byproduct

Define

BCP : Y n×∆dens
Θ → Y n×C (Y n×Y ), BCP

(
yn,P

)
:=

(
yn, ψ(yn,P)

)
,

where
ψ(yn,P)(yn+1) := −pP(yn+1 | yn)

We write BCP: an acronym for Bayesian Conformal Prediction (Fong
and Holmes, 2021)
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An Unexpected Byproduct

Call QUANT : (0, 1)× Y n ×∆dens
Θ ⇒ Y the set-valued map that

extracts the α-level set of the posterior predictive distribution,

(α, yn,P) 7→ QUANT(α, yn,P) := H
(
c(α, yn,P), yn,P

)
,

where

H : R×Y n×∆dens
Θ ⇒ Y , H

(
c , yn,P

)
:= {y ∈ Y : pP(y | yn) ≥ c}
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An Unexpected Byproduct

Assume that (i)-(iv),

consonance, and the usual minimal technical
machinery to ensure the posterior predictive is well defined and
depends continuously on both the data yn and the prior P, hold
(Caprio, 2025, Conditions (v)-(x))

Unifying Bayes, Conformal, and Imprecise Prediction in UHCont

Fix any α ∈ (0, 1) and define βn(α) := min{k/(n + 1) : k/(n + 1) > α}.
Then,

dH
(
κα(y

n, ψ(yn,P)),QUANTα(y
n,P)

) P−→ 0.

Consequently, since IHDRα ◦ CRED = κα under consonance,

dH
(
IHDRα

(
CRED(yn, ψ(yn,P))

)
,QUANTα(y

n,P)
) P−→ 0.
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An Unexpected Byproduct

Equivalently, the diagram above commutes asymptotically in
probability in UHCont (in the Hausdorff distance dH)

If Y is not compact metric, a similar result can be proved with
convergence taken in the Vietoris topology on closed subsets of Y
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Discussing the Result

Theorem above is the central payoff of our categorical treatment

It confirms intuition in Martin (2022) and Caprio et al. (2025, Section
5.2): CP is a bridge between the Bayesian, frequentist, and imprecise
approaches to predictive statistical reasoning

When seen as u.h.c. correspondences, the model-based Bayesian and
imprecise methods, and the model-free conformal construction, yield
(asymptotically) the same α-level prediction region

A very profound connections between these three only apparently far
apart prediction mechanisms
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Further Results from the Paper

Under a minimal condition, an upper bound to the Generalized Bayes’
Upper Posterior is an e-posterior in the sense of Grünwald (2023)

We can write the IHDR, and in turn the CPR, as a fuctor between
two well-defined categories, C and ΣY with inclusion morphisms “⊆”

This has interesting AI privacy implications (Caprio, 2025, Section 5)

We sudy the properties (monads, functors) of UHCont and
WMeasuc (Caprio, 2025, Section 6)
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Conclusion

In this paper, we took a Category Theory route to show that Full
Conformal Prediction exhibits intrinsic cardinal UQ capabilities

As byproduct, we were able to prove that CP methods bridge
Bayesian, frequentist, and imprecise approaches to statistical
prediction

We open up the study of Categorical Conformal Prediction; many
unsolved problems

How to leverage the structure of UHCont and WMeasuc to learn
further aspects of the CP methodology?
The morphisms of these categories are correspondences: what can the
Kleisli categories (Kleisli, 1962, 1965), (Perrone, 2024, Section 5.1)
arising from the subcategories of UHCont and WMeasuc admitting a
monad, tell us about Conformal Prediction?

CP as a morphism of different categories so to remove the need for
assumptions altogether, in particular compact state space Y
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AI Privacy Implications of IHDR Functoriality

Suppose that we have many sources producing credal sets Mj

Differentially-private transformations applied to each Mj propagates
through the functor without violating the coverage guarantee

Statistical validity is preserved “for free”

Collaboration can proceed in a strictly federated manner

Agents needs to transmit only (possibly privatized) summary object
Mj , never the underlying data
Minimizing exposure while still enabling the consortium to construct
globally valid prediction region
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AI Privacy Implications of IHDR Functoriality: Caveat

The functorial guarantee is monotone in the credal set

To preserve coverage after privatization, each site should output a
superset M̃j ⊇ Mj

For federation, aggregation should be performed via the closed convex
hull co(·),

Magg = co
(⋃

j

M̃j

)
,

which ensures Bα
M̃j

⊆ BαMagg
, and thus global validity whenever the

true law lies in some M̃j
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