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ENGINEERING ANALYSIS
Hybrid Uncertainties

» close to reality
» numerically efficient

Endeavor
numerical modeling − physical phenomena, structure, and environment•

prognosis − system behavior, hazards, safety, risk, robustness,
economic and social impact, ...

Challenge: Uncertainties

Aleatory and epistemic uncertainty

Pf

F(x)
set of
plausible
models

[Pf,l, Pf,r]

F(x)

crisp
model

f(Pf)

distribution 
of models?

F(x)
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CONCEPT OF MODELS AND PROCESSING

Beer, M.; Zhang, Y.; Quek, S.T.; Phoon, K.K. (2013):
Reliability analysis with scarce information: Comparing alternative approaches in a geotechnical engineering context, Structural Safety 41, 1–10.

Hybrid uncertainties, imprecise probabilities

Beer, M.; Ferson, S.; Kreinovich, V. (2013):
Imprecise Probabilities in Engineering Analyses, Mechanical Systems and Signal Processing 37, 4–29.

bounding probabilities of events of interest

probabilistic models with set-valued descriptors
set-valued system description
parametric or non-parametric descriptions

•
•

Probability boxes (p-boxes)
set of distribution functions
(i.e. set of random variables)

•

Fuzzy probabilities
• fuzzy set of p-boxes ( ) ( ) ( )( )( ) ( ) ( ) ( ){

( )( ) ( }
α α α α α

α

 = µ =  

µ = α ∀α ∈ 



l uF x F x , F x  F x F x F x , 
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,

,

( ) ( ) ( ) ( ) ( ){ } = ∈ ∀ 


j j l uF x F x  F x F x F x  x,

Numerical processing
• stochastic techniques combined with interval / fuzzy analysis techniques

(in association
with some
confidence level)

•

Hybrid Uncertainties
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SET-THEORETICAL DESCRIPTORS ─ IMPRECISION

x

Interval
{ }= = ∈ = ≤ ≤   l r l rx x  x   x x x  X , X•

xl xr

» possible value range
between crisp bounds

» no additional information

Hybrid Uncertainties

Fuzzy sets

» set of nested intervals of various size

Xαk

µ(x)

1.0

0.0

αk

xαk l xαk r
x

{ }α = ∈ µ ≥ α x   (x)  X Xα-level set
~ ( ){ }α α= µ  , ( )X X Xα-discretization

•
•

instrument to explore influence
of interval size (sensitivity wrt.
epistemic uncertainty)
in an intuitive and
structured manner

? » meaning ?
» effort ?
» does it reflect

the problem ?

engineering analysis

Möller, B.; Graf, W.; Beer, M. (2000):
Fuzzy structural analysis using α-level optimization, Computational Mechanics 26, 547–565.
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ANALYSIS WITH INTERVALS AND FUZZY SETS

Interval arithmetic
implementation of interval-valued
variables in numerical algorithm 
» intrusive
» requires intrinsic reformulation

of algorithm to minimize
dependability problem

» narrow actual result interval
from outside, tightest enclosure

» restricted to the very
specific problem classes

explicit search for result interval bounds
» intrusive:  reformulation of problem

structure
▪ to exploit problem topology
▪ to utilize linear algebra or

linear programming approaches
» non-intrusive:  model order reduction, 

surrogate problem representation,
sampling-based solution

» applicable to large variety of problems

Processing of Hybrid Uncertainties

• •
Optimization approaches

repeated deterministic systems or structural analysis
repeated stochastic analysis          interval bounds

repeated interval analysis          fuzzy set (results for varying interval size)

Goal: calculate fuzzy / interval result
from single efficient stochastic analysis 

Naive approach: nested analysis, double/triple loop
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RELIABILITY ANALYSIS IN HIGH DIMENSIONS
Multi-storey building – reliability for component failure

structure•
» 8,200 finite elements,

66,300 dof
» 488 fuzzy parameters for

244 fuzzy random variables

imprecise probabilistic input•

± 7.5 %
tolerance range

Intrusive optimization approaches
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Retrieving optimal points from problem topology
global optimization problem

exploit topological properties of Θ for line sampling

map intervals x to augmented probability space

•

p – distribution parameters
ξ – random variables
x – intervals

( )
( )f

f dx p x
p h p d

Ω
= ξ Ω∫

,
inf ,

( )
( )f

f d
x p x

p h p d
Ω

= ξ Ω∫
,

sup ,

Ωf depends on intervals x !

X  :Ω × → Θ

•

•

g−∇sampling direction

( ) ( )u u up x g= ψ −∇, ,optimal points

( )
( )u

f

u
f d

x

p h p d
Ω

= ξ Ω∫ , ,

( ) ( )l l lp x g= ψ −∇,

( )
( )lf

l
f d

x

p h p d
Ω

= ξ Ω∫ ,

( ){ }x n x x xx h x→ η∈ = η µ σ µ = ; ,ℂ

ADVANCED LINE SAMPLING, ROBUST RELIABILITY

( )( )
=

= φ −∑
LN

i
f

i 1
L

1P c
N

ˆ

De Angelis, M.; Patelli, E.; Beer, M. (2015):
Advanced Line Sampling for Efficient Robust Reliability Analysis, Structural Safety 52, 170–182.

Intrusive optimization approaches

distributed
computing
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Multi-storey building – results

sensitivity of
failure probability

advanced line sampling with pre-identified optimal points in Θ•

sample size
1,395

safety alerts

≈ 10‒1 !

Pf ≈ 10‒4

Intrusive optimization approaches

ADVANCED LINE SAMPLING, ROBUST RELIABILITY
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TIME DEPENDENT RELIABILITY ANALYSIS
First passage problem
•

Intrusive optimization approaches

Operator normwith

smallest |ci(θ)| provides
upper bound on „amplification“

» p(1) = ∞: focus on largest response
to retrieve first excursion

( ) ( )
∈

= θ∫


n
F Zf

z
P I z f z dz*,

( )
=θ∈θ

θ θ=
I y

i l 2i 1 n l
  A*

,,...,
max maxargmax

θ*pre-identification of    such that

via standard optimization
on the physical model (ie FEM)
without repeated reliability analysis

requirement:
find a continuous linear map A
that relates random input z
to random response y

•

• operator norm theory

( ) ( )θ θ=y A z

( ) ( ) ( ) ( )θ θ ⋅≤ 21i i pp
zA z c

( ) ( ) ( ) ( )θ θ ⋅≤ 21i i pp
y t z zc, ,

» p(2) = 2:  to relate to
energy content of load

( ) ( ) ( )= θ1 2 i lp p 2l
A A ,,

max

( ) ( )

( ) ( )

( )

 θ =  
  

1

1 2

2

i p

p p l
p

A z
A

z,
max

Faes, M.; Valdebenito, M.A.; Moens, D.; Beer, M. (2021):
Operator norm theory as an efficient tool to propagate hybrid uncertainties and calculate imprecise probabilities,
Mechanical Systems and Signal Processing 152, 107482.

Faes, M.; Valdebenito, M.A.; Moens, D.;  Beer, M. (2020):
Bounding the First Excursion Probability of Linear Structures Subjected to Imprecise Stochastic Loading, Computers and Structures 239, 106320.
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TIME DEPENDENT RELIABILITY ANALYSIS
First passage problem
•

Intrusive optimization approaches

Karhunen-Loeve expansion

( ) ( )
= =

 = ∆ ε − ψ λ∑ ∑ 
 

KL
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TIME DEPENDENT RELIABILITY ANALYSIS
Example: clamped steel plate
•

Intrusive optimization approaches

structural model

y
x

z

h

L

t

L

» 100 shell elements, linear
» 110 nodes
» Dirichlet boundary conditions

on clamp

• load model

( ) ( ) π
θ = ⋅ θ ⋅ + θ ⋅ θ ⋅ θ 

1 3 4
2

F r z 1 B r z, , sin ,

with
» KL-basis B
» exponential covariance kernel1)

» 10 standard normal rv’s z

• interval parameters

» θ1 and θ2 governing the 
expected value of random load field

» θ3: standard deviation of load field
» θ4: correlation length of load field
» E: Young’s modulus
» t: plate thickness

• Pf for exceedance of displacement
at corner point of 15 cm

1) Note:   Faes, M.G.R.; Broggi, M.; Spanos, P.D.; Beer, M. (2022):
Elucidating appealing features of differentiable auto-correlation functions:  a study on the modified exponential kernel, Probabilistic Engineering Mechanics, 69, 103269.
Spanos, P.D.; Beer, M.; Red-Horse, J. (2007):
Karhunen-Loéve Expansion of Stochastic Processes with a Modified Exponential Covariance Kernel, ASCE Journal of Engineering Mechanics, 133(7), 773–779.
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TIME DEPENDENT RELIABILITY ANALYSIS
Example: clamped steel plate
•

Intrusive optimization approaches

dependencies between interval parameters, operator norm and Pf
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TIME DEPENDENT RELIABILITY ANALYSIS
Example: clamped steel plate
•

Intrusive optimization approaches

results and numerical efficiency
» particle swarm optimization to evaluate operator norm
» FORM to compute Pf (problem linear in z and low dimensionality)
» comparison with vertex method and double loop solution

» numerical effort significantly reduced
» correct identification of internal optimal points

operator norm
Pf

FE analyses

vertex method operator norm double loop
θ*θ* θ*θ* θ*θ*

0.0208      0.0859 0.0208      0.1112 0.0208      0.1112
8.67·10-6 0.2907 8.67·10-6 0.4889 8.67·10-6 0.4889
1794 640+47     880+33 18156       26539
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TIME DEPENDENT RELIABILITY ANALYSIS
Example: six-story building under earthquake excitation
•

Intrusive optimization approaches

structural model
» 9500 shell and beam elements,

linear
» reinforced concrete

• load model
» Gaussian stochastic process
» Autocorrelation governed by

modulated Clough-Penzien spectrum

• interval parameters

» 7 parameters of the load model
» Young’s modulus of concrete

for each story

• Pf for exceedance of interstory drift 
of 2·10-3 times the story height

13 interval parameters
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Pf

10-2

10-4

10-6

10-8

1.2·10-3 1.6·10-3 2.0·10-3 operator norm

operator norm: 3500 FE calls
vertex method: 4.1 M FE calls
QMCS:             5 M FE calls

TIME DEPENDENT RELIABILITY ANALYSIS

•

Intrusive optimization approaches

results and numerical efficiency
» particle swarm optimization to evaluate operator norm
» directional importance sampling to compute Pf

» comparison with vertex method and quasi MCS to explore intervals

numerical effort significantly reduced

Example: six-story building under earthquake excitation
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RELIABILITY ANALYSIS OF LARGE STRUCTURES
Parametric surrogate with intervening variables
•

Non-intrusive optimization approaches

( ) ( ) ( )
∈

θ θ= ∫


n
F Xf

x
xP I x f dx

failure probability and sensitivities • estimation through sampling

( ) ( ) ( )
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∂
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∂
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f xP
f

/

( )θfP

( )θ0
fP

θ0
θ

( )θ

∂θ

∂ 0
fP1

( )( )θf qP

( )θ0
fP

( )θ0q
( )θq

1
( )θ

∂

∂ 0
f

q
P

• linear approximation w.r.t. θ • linear approximation w.r.t. q(θ)

intervening
variable q(θ)
to capture
nonlinearities

Valdebenito, M.A.; Beer, M.; Jensen, H.A.; Chen, J.B.; Wei, P.F. (2020):
Fuzzy Failure Probability Estimation Applying Intervening Variables, Structural Safety 83, 101909.

Valdebenito, M.A.; Pérez, C.A.; Jensen, H.A.; Beer, M. (2016):
Approximate fuzzy analysis of linear structural systems applying intervening variables, Computers & Structures 162, 116–129.
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RELIABILITY ANALYSIS OF LARGE STRUCTURES
Parametric surrogate with intervening variables
•

Non-intrusive optimization approaches

choice of intervening variables − two level approximation
(I) approximate representation of performance function

( ) ( ) ( ) ( )( )
=

≈ + η − η∑ ⋅=
zn

s 0
0 i i i i i

i 1
x x g x xg g g ( )η = im

i i ix xwith (power type)

» find the 2nx + 1 coefficients gi and mi such that

( ) ( ) ( ) ( ) ( ) ( )∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂

0 0 0 0

0 s 0

s 2 2 s

2 2
i i i i

x x x
x x   

x
x x x x

g g g g
g g , ,

nonlinear approximation of g(x)

x
x0

g(x0)

g g(x)
gs(x) gs(η)

g(x0)

g

η(x0)
η

corresponding linear function gs(η)
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RELIABILITY ANALYSIS OF LARGE STRUCTURES
Parametric surrogate with intervening variables
•

Non-intrusive optimization approaches

choice of intervening variables − two level approximation
(II) approximate representation of failure probability

( ) ( ) ( ) ( )( )ξ

=
θ ≈ θ + θ − θ∑ ξ ξ 

 
= Φ

n

j j j
j 1

s 0
f f 0P h hP ( )( )− θ= Φ 1 0

0 fh P̂

( )
( )( )
( )( )

=

θ
η = θ

ξ = =
  ∂η θ
   =∑
 ∂ 

  

x

j

j j j

x2

n i i i i

i i
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i
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  j 1 n
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g z 0

z
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( )
( )( )

=

θξ = = +
  ∂η θ
   =∑
 ∂ 

  

x
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i i
i 1

i

1   j n 1
t z

g z 0
z

,

t − transformation
from standard normal
to physical space

» inspired by FORM applied to gs(x) 
hj from

( ) θ
  ∂θ 

∂

j

fP

nx + 1 intervening
variables ξ(θ) to
capture nonlinear
relation between
θ and β

µ jm
j

−⋅ ⋅ µ ⋅ σim 1
i i i ig m

if X are normal

if X are normal
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RELIABILITY ANALYSIS OF LARGE STRUCTURES
Parametric surrogate with intervening variables
•

Non-intrusive optimization approaches

summary of approach

Step 2: 
• calculate parameters gi and mi for ηi(xi)
• calculate hj and specify ξj(θ)
• construct parametric surrogate

( ) ( ) ( ) ( )( )ξ

=
θ ≈ θ + θ − θ∑ ξ ξ 

 
= Φ

n

j j j
j 1

s 0
f f 0P h hP

Step 3: 
• estimate interval 

bounds or fuzzy 
sets for Pf using 
the surrogate

θ0

Step 1: 
• apply any suitable 

reliability method
• estimate failure 

probability and 
sensitivity with θ=θ0

x

x
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RELIABILITY ANALYSIS OF LARGE STRUCTURES
Non-intrusive optimization approaches

• structural model
» 160 quadrilateral FE in

plain strain, 320 dof, linear

fuzzy parameters
» expected values and

standard deviations
of q, Esand and Egravel

• Pf for exceedance of
displacement of 7 cm

sand

gravel rock bed

q

55 m     10 m      55 m

9 m

21 m

displacement of interest

•

• random parameters
» load q: log-normal
» Esand: log-normal
» Egravel: log-normal

» importance sampling, N = 300
» θ0 at fuzzy "peaks"

Example: shallow foundation
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RELIABILITY ANALYSIS OF LARGE STRUCTURES
Non-intrusive optimization approaches

Example: shallow foundation
• results and numerical efficiency

» complete solution
with only
one reliability analysis,
N=300

• application range
» large structures

(demanding 
deterministic analysis)

» moderate nonlinearities
10

-20
10

-15
10

-10
10

-5
10

0

0

0.2

0.4

0.6

0.8

1

» moderate dimensionality
» single failure mode

( )θ0
fP̂

» nonlinearity of
g(.) w.r.t. Esand and Egravel)
and of
Pf w.r.t. θ
captured well

( )θfP̂

About 16 orders of magnitude!

( )( )θµ fP̂

proposed
reference
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RELIABILITY ANALYSIS OF LARGE STRUCTURES
Non-intrusive imprecise stochastic simulation (NISS)
•

Non-intrusive optimization approaches

estimation of failure probability depending on parameters θ

• parametric surrogate for non-linear approximation w.r.t. θ

Wei, P.F.; Song, J.W.; Bi, S.F.; Broggi, M.; Beer, M.; Lu, Z.Z.; Yue, Z.F. (2019):
Non-intrusive stochastic analysis with parameterized imprecise probability models: I. Performance estimation, Mechanical Systems and Signal Processing 124, 349–368.

( ) ( )( )
( )( )
( )( )=

θ
θ ⋅ ∑

θ
=

i
N i

F ii 1

X
f

X

1 I
N x

f x
P x

f *
ˆ

Wei, P.F.; Song, J.W.; Bi, S.F.; Broggi, M.; Beer, M.; Lu, Z.Z.; Yue, Z.F. (2019):
Non-intrusive stochastic analysis with parameterized imprecise probability models: II. Reliability and rare events analysis, Mechanical Systems and Signal Processing 126, 227–247.

( ) ( )( )
( )( )

( ) ( )( )=

θ
θ ⋅ ∑=

θ

i
N i

F
i 1 i

X
f i

X

1 I
N x

f x
P x

f ,
ˆ

» local extended MCS » global extended MCS

▪ average estimate of Pf(θ) over
parameter range in discretized form

▪ estimate Pf in dependence on θ
„extrapolating" from result at θ(*)

▪ sample x(i) for pre-defined θ(*) ▪ sample x(i) for θ(i) from auxiliary fΘ(θ)

» high dimensional model representation (HDMR)

( ) ( ) ( ) ( )
= ≠

θ + θ + θ + + θ∑ ∑=
d

s
f f0 fi i fij ij f123 d 123 d

i 1 i j
P P P P P ... ......ˆ ˆ ˆ ˆ

components reflect influence of individual parameters and 
parameter combinations with increasing order of interaction
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RELIABILITY ANALYSIS OF LARGE STRUCTURES

•

Non-intrusive optimization approaches

parametric surrogate for non-linear approximation w.r.t. θ

» cut-HDMR: determination of components via local extended MCS

( ) ( ) ( ) ( )
= ≠

θ + θ + θ + + θ∑ ∑=
d

s
f f0 fi i fij ij f123 d 123 d

i 1 i j
P P P P P ... ......ˆ ˆ ˆ ˆ

( )= θf cut 0 fP P *
, ,

ˆ ˆ ( ) ( )−θ = θ θ −f cut i f i i f cut 0P P P*
, , ,,ˆ ˆ ˆ▪ ▪

( ) ( ) ( ) ( )−θ = θ θ − θ − θ −f cut ij f ij ij f cut i f cut j f cut 0P P P P P*
, , , , ,,ˆ ˆ ˆ ˆ ˆ▪ etc …

» random sampling HDMR: components via global extended MCS

( )Θ
 = θ  f 0 fEP P,RS,

ˆ ˆ ( ) ( )
−Θ
 θ = θ −  if i f f 0EP P P,RS ,RS,

ˆ ˆ ˆ▪ ▪

( ) ( ) ( ) ( )
−Θ
 θ = θ − θ − θ −  ijf ij f f i f j f 0EP P P P P,RS ,RS ,RS ,RS,

ˆ ˆ ˆ ˆ ˆ▪ etc …

facilitates consideration of set-valued structural parameters

» all components from a single sampling-based reliability analysis
» estimates of confidence bounds considering sampling uncertainty

Non-intrusive imprecise stochastic simulation (NISS)

Song, J.W.; Wei, P.F.; Valdebenito, M.; Bi, S.F.; Broggi, M.; Beer, M.; Lei, Z.X. (2019):
Generalization of non-intrusive imprecise stochastic simulation for mixed uncertain variables, Mechanical Systems and Signal Processing, 134, 06316.
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RELIABILITY ANALYSIS OF LARGE STRUCTURES

•

Non-intrusive optimization approaches

further advancements in association with line sampling
» hyperplane-approximation based

imprecise line sampling (local)

Non-intrusive imprecise stochastic simulation (NISS)

αe

( )s⊥z

( )=0
h z

( )( )
1

=0
h

Z

( )( )
3

=0
h

Z

( )( )
3

=0
h

Z

2z

1z

( )2z

( )3z

( )1z

approximate dependency on θ
based on geometrical problem

» weighted-integral based
imprecise line sampling (local)
approximate dependency on θ with a 
weighting function based on the 
distributions along the lines

» adaptive global imprecise line sampling
Gaussian process regression model with 
update, distribution-based weighting 
function to approximate dependency on θ

Song, J.W.; Wei, P.F.; Valdebenito, M.; Beer, M. (2020):
Adaptive reliability analysis for rare events evaluation with global imprecise line sampling, Computer Methods in Applied Mechanics and Engineering 372, 113344.
Song, J.W.; Valdebenito, M.; Wei, P.F.; Beer, M.; Lu, Z.Z. (2020):
Non-intrusive imprecise stochastic simulation by line sampling, Structural Safety 84, 101936.
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RELIABILITY ANALYSIS OF LARGE STRUCTURES
Non-intrusive optimization approaches

Example: transmission tower
• structural model

» 80 bar elements, linear

interval parameters
» expected values of A and Ebar

for corner bars: 40 intervals

• Pf for exceedance of
displacement at A of 6 cm

•

• 160 random parameters
» cross-sectional area A

of bars: log-normal
» Ebar: log-normal

» 4 static loads

» cov fixed at 10%; 
ie interval variance with
deterministic dependency

2.14 m

2.51 m

2.93 m

3.42 m

4.00 m

xy
z

4.00 m
4.00 m

1.83 m 1.83 m
FF
F F

A
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RELIABILITY ANALYSIS OF LARGE STRUCTURES
Non-intrusive optimization approaches

Example: transmission tower
•

» local HDMR with N=1036 model calls
(i) hyperplane approximation and
(ii) weighted integral line sampling

results and numerical efficiency

» suitable for high dimensionality
and moderate nonlinearities (due to LS)

• sensitivity indeces for hybrid rv‘s

HA-LS
WI-LS

0.0
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• first order HDMR terms and error estimates

( ) −θ = ⋅ 3
f 1 6 10P * .ˆ
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Example: NASA Langley multidisciplinary UQ challenge problem

RELIABILITY ANALYSIS OF LARGE STRUCTURES
Non-intrusive optimization approaches

• problem description
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Example: NASA Langley multidisciplinary UQ challenge problem

RELIABILITY ANALYSIS OF LARGE STRUCTURES
Non-intrusive optimization approaches

• input parameters and uncertainties
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generalized non-intrusive imprecise stochastic simulation•

Example: NASA Langley multidisciplinary UQ challenge problem

RELIABILITY ANALYSIS OF LARGE STRUCTURES
Non-intrusive optimization approaches

first order sensitivities•
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first order global HDMR terms and 95% confidence intervals•

Example: NASA Langley multidisciplinary UQ challenge problem

RELIABILITY ANALYSIS OF LARGE STRUCTURES
Non-intrusive optimization approaches
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Failure Probability Bounds:
NISS: [0.1221, 0.3121], N=5·104

IMCS: [0.0550, 0.3370], N=107

second order global HDMR terms and 95% confidence intervals•

Example: NASA Langley multidisciplinary UQ challenge problem

RELIABILITY ANALYSIS OF LARGE STRUCTURES
Non-intrusive optimization approaches

moderate to high dimensionality, strong nonlinearities•
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RESUMÉ
Efficient Analysis of Structures with Hybrid Uncertainties

UQ for industry-sized structures and systems

realistic models
efficient numerical analysis

improved design, performance and reliability

• compatible with stochastic approaches and techniques
Efficient numerical methods for imprecise probabilities

identification of sensitivities wrt. imprecision of
structural and stochastic models

•

comprehensive reflection of imprecision in the
computational results; bounds on probabilities

•

applicable to nonlinear and high-dimensional problems•

quantitative set-theoretical consideration
of epistemic uncertainty

•
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