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- Two sources of uncertainties:
1. Data uncertainty: The learner only observes a finite data
2. Distribution uncertainty: The learner is uncertain about the data distribution

« Qut-of-distribution (OOD) generalisation

Quionero-Candela, Sugiyama, Schwaighofer, and Lawrence. Dataset Shift in Machine Learning. The MIT Press, 20080.
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Credal Set

Domain Generalisation (DG) NNy

[}
. A collection of training distributions: P;(X,Y), P,(X,Y),...,Py(X,Y) & 2

=

Test domains

Meta-distribution

. The goal is to learn Training domains

h: Py XX =Y

where & o is the set of distributions on X

Blanchard et al. NeurlPS (2011); Muandet et al. ICML (2013)
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Learning-Theoretic Bound

 After learning representation, we minimise average accuracy across domains

. With probability at least 1 — 9,

- - 2
sup |EmEpl(f(Xij), Yi) — Esl(f(Xi), Yi)
£ <1
N-(logd—1 +2log N log 61
SCl-VH(Pl,Pz,...,PN)—I—CQ (Og i ) - C3 i | -

. = . A #
distributional variance

vanish as N,n— oo

Muandet, Balduzzi, and Schoélkopf. Domain Generalisation via Invariant Feature Representation, ICML (2013)



Well-Known Methods for DG

« Domain-Adversarial Training of Neural Networks [Ganin et al. 2016]

« Causal Invariant Prediction (CIP) [Peters et al., 2016: Heinze-Deml et al., 2018]
 |Invariant Risk Minimisation (IRM) [Arjovsky et al., 2019]

 Distributional Robust Optimisation (DRO) [Sagawa et al., 2020]

e Probable Domain Generalisation [Eastwood et al., 2022]

% — i - h* = minmax [E £(Y, h(X
h =min— 1 x.v)~plC (Y, h(X))] min max x.y)~plC (¥, h(X))]
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(Im)precise Generalisation

« Precise learner deals with two sources of uncertainties simultaneously.
1. The learner chooses the notion of generalisation (pick a specific distribution)

2. The learner then conducts statistical learning to choose the best hypothesis
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Domain Generalisation via Imprecise Learning

Anurag Singh Siu Lun Chau
CISPA CISPA

Shahine Bouabid Krikamol Muandet
MIT CISPA
Spotlight

- -

Domain Generalisation via Imprecise Learning

Abstract

Out-of-distribution (OOD) generalisation is chal-
lenging because it involves not only learning from
empirical data, but also deciding among various
notions of generalisation, e.g., optimising the
average-case risk, worst-case risk, or interpola-
tions thereof. While this choice should in prin-

Anurag Singh! Siu Lun Chau'! Shahine Bouabid? Krikamol Muandet '

(LLM) that surpass human-level generalisation capabilities
in specific domains.

Despite notable achievements, these systems may catas-
trophically fail when operated on out-of-domain (OOD)
data because theoretical guarantees for their generalisation
hinge on the assumption of independent and identically dis-
tributed (IID) training and deployment data, with empirical

16
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Conditional Value at Risk (CVaR)

" VaR,(R) = min{r| Fe(r) > 1}

) CVaR,(R) = E [R|R > VaR,(R)]

2 > 4

> P

e A A A

L YA

’ Jtin TN ey I

A A A
Risk ‘ q

* Interpretation: A is the level of risk aversion ‘ ‘ _—

(Robey et al., 2022; Eastwood et al., 2022a; Li et al., 2023) Worst Case Average Case
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* Similar to the multiple-gradient descent algorithm (MGDA) (Desideri, 2012).
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Abstract

Statistical learning theory is the foundation of machine learning, providing the-
oretical bounds for the risk of models learned from a (single) training set, as-
sumed to issue from an unknown probability distribution. In actual deployment,
however, the data distribution may (and often does) vary, causing domain adapta-
tion/generalization issues. In this paper we lay the foundations for a ‘credal’ theory
of learning, using convex sets of probabilities (credal sets) to model the variability
in the data-generating distribution. Such credal sets, we argue, may be inferred
from a finite sample of training sets. Bounds are derived for the case of finite
hypotheses spaces (both assuming realizability or not), as well as infinite model
spaces, which directly generalize classical results.

NeurlPS 2024
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Recent Work and Future Directions
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Conclusion

» Classical generalisation can be achieved via precise learning (ERM)

» Previous work in DA, CS, and DG addressed the distribution shifts by precise learning

» OOD generalisation involves both decision-making and statistical learning problems.

- An institutional separation hinders a precise learning

» Imprecise learning enables the learner to be
less committal to specific notion of generalisation,
allowing the operator to make informed decisions.
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