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        ĥ = arg min
h∈H

1
n

n

∑
i=1

ℓ(Yi, h(Xi)), h* = arg min
h∈H

𝔼(X,Y)∼P(X,Y)[ℓ(Y, h(X))]

R(h)

•   with probability at least R(ĥ) − R(h*) < B
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• The goal is to learn 
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Learning-Theoretic Bound

• After learning representation, we minimise average accuracy across domains 

• With probability at least ,1 − δ
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Well-Known Methods for DG
• Domain-Adversarial Training of Neural Networks [Ganin et al. 2016] 

• Causal Invariant Prediction (CIP) [Peters et al., 2016; Heinze-Deml et al., 2018] 

• Invariant Risk Minimisation (IRM) [Arjovsky et al., 2019] 

• Distributional Robust Optimisation (DRO) [Sagawa et al., 2020] 

• Probable Domain Generalisation [Eastwood et al., 2022]
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(Im)precise Generalisation 
• Precise learner deals with two sources of uncertainties simultaneously. 

1. The learner chooses the notion of generalisation (pick a specific distribution) 

2. The learner then conducts statistical learning to choose the best hypothesis

Learner

Distribution Uncertainty Data Uncertainty

(Statistical Learning)(Decision Making)
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Domain Generalisation via Imprecise Learning
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λ ∈ Λ H

f*λ = arg min
f∈H

ρλ[R]( f ), λ ∈ Λ

•  Learn an augmented hypothesis  such thathθ : H × Λ → 𝒴

                                  h*θ ( ⋅ , λ) = f*λ = arg min
f∈H

ρλ[R]( f ), λ ∈ Λ

Imprecise Learner

Traverse 
credal set



Conditional Value at Risk (CVaR)

18

Mean
1 − λ

VaRλ

CVaRλ

Fr
eq

ue
nc

y

Risk



Conditional Value at Risk (CVaR)

18

Mean
1 − λ

VaRλ

CVaRλ

Fr
eq

ue
nc

y

Risk

VaRλ(R) = min{r | FR(r) ≥ λ}



Conditional Value at Risk (CVaR)

18

Mean
1 − λ

VaRλ

CVaRλ

Fr
eq

ue
nc

y

Risk

VaRλ(R) = min{r | FR(r) ≥ λ}

CVaRλ(R) = 𝔼 [R | R > VaRλ(R)]



Conditional Value at Risk (CVaR)

18

• Interpretation:  is the level of risk aversion  
(Robey et al., 2022; Eastwood et al., 2022a; Li et al., 2023)

λ

Mean
1 − λ

VaRλ

CVaRλ

Fr
eq

ue
nc

y

Risk

VaRλ(R) = min{r | FR(r) ≥ λ}

CVaRλ(R) = 𝔼 [R | R > VaRλ(R)]



Conditional Value at Risk (CVaR)

18

• Interpretation:  is the level of risk aversion  
(Robey et al., 2022; Eastwood et al., 2022a; Li et al., 2023)

λ

Mean
1 − λ

VaRλ

CVaRλ

Fr
eq

ue
nc

y

Risk

VaRλ(R) = min{r | FR(r) ≥ λ}

CVaRλ(R) = 𝔼 [R | R > VaRλ(R)]

Worst Case Average Case

λ → 1 λ = 0



C-Pareto Optimality

19

ρλ[R](hθ( ⋅ , λ)) ≤ ρλ[R](h′￼θ( ⋅ , λ))

C-Pareto Optimality

 dominates  if for all ,hθ h′￼θ λ ∈ Λ



C-Pareto Optimality

19

ρλ[R](hθ( ⋅ , λ)) ≤ ρλ[R](h′￼θ( ⋅ , λ))

C-Pareto Optimality

 dominates  if for all ,hθ h′￼θ λ ∈ Λ

JQ(hθ) := 𝔼λ∼Q [ρλ[R](hθ( ⋅ , λ))]

Scalarised Objective

For  with full support,Q ∈ Δ(Λ)



C-Pareto Optimality

19

• We pick  such that a parameter update makes C-Pareto improvement:  : 
 

                             

Q θt ← θt−1 − η∇θ
̂JQt
(hθ)

Qt ∈ arg min
Q∈Δ(Λ)

∇θt−1
̂JQ (hθt−1)

2
, ̂JQ(hθ) :=

1
N

N

∑
i=1

ρλi
[R](hθ( ⋅ , λi))

ρλ[R](hθ( ⋅ , λ)) ≤ ρλ[R](h′￼θ( ⋅ , λ))

C-Pareto Optimality

 dominates  if for all ,hθ h′￼θ λ ∈ Λ

JQ(hθ) := 𝔼λ∼Q [ρλ[R](hθ( ⋅ , λ))]

Scalarised Objective

For  with full support,Q ∈ Δ(Λ)



C-Pareto Optimality

19

• We pick  such that a parameter update makes C-Pareto improvement:  : 
 

                             

Q θt ← θt−1 − η∇θ
̂JQt
(hθ)

Qt ∈ arg min
Q∈Δ(Λ)

∇θt−1
̂JQ (hθt−1)

2
, ̂JQ(hθ) :=

1
N

N

∑
i=1

ρλi
[R](hθ( ⋅ , λi))

• Similar to the multiple-gradient descent algorithm (MGDA) (Desideri, 2012).
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Recent Work and Future Directions

Multi-calibration, Decision Making,  Elicitation of Causal and Counterfactual Distributions

25

Credal Two-Sample Tests of Epistemic Uncertainty (AISTATS 2025) Truthful Elicitation of Imprecise Forecast (Under Review)

Inspired by “Scoring Rules and Calibration for Imprecise Probabilities”  
from Christian Fröhlich and Robert C. Williamson



Conclusion

IP

Generalisa
tion

• Classical generalisation can be achieved via precise learning (ERM) 

• Previous work in DA, CS, and DG addressed the distribution shifts by precise learning  

• OOD generalisation involves both decision-making and statistical learning problems.  

• An institutional separation hinders a precise learning 

• Imprecise learning enables the learner to be  
less committal to specific notion of generalisation,  
allowing the operator to make informed decisions.
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