

SIPTA SEMINAR

Robustness Quantification

using imprecise probabilities to assess the reliability
of probabilistic classifiers

Want more than
just these slides?

You can watch
the entire talk on
YouTube!

FLip

Foundations Lab for imprecise probabilities

GHENT
UNIVERSITY

Adrián
Detavernier

Rodrigo
Lassance

IMPRECISE
PROBABILITIES

MACHINE
LEARNING

Adrián
Detavernier

Rodrigo
Lassance

MACHINE
LEARNING

IMPRECISE
PROBABILITIES

ROBUSTNESS
QUANTIFICATION

Adrián
Detavernier

Rodrigo
Lassance

MACHINE
LEARNING

IMPRECISE
PROBABILITIES

PROBLEM 1:

MACHINE
LEARNING

... is unreliable

media saying AI will
take over the world

my neural network:

Dog

CLASSIFICATION

features x

FEATURES

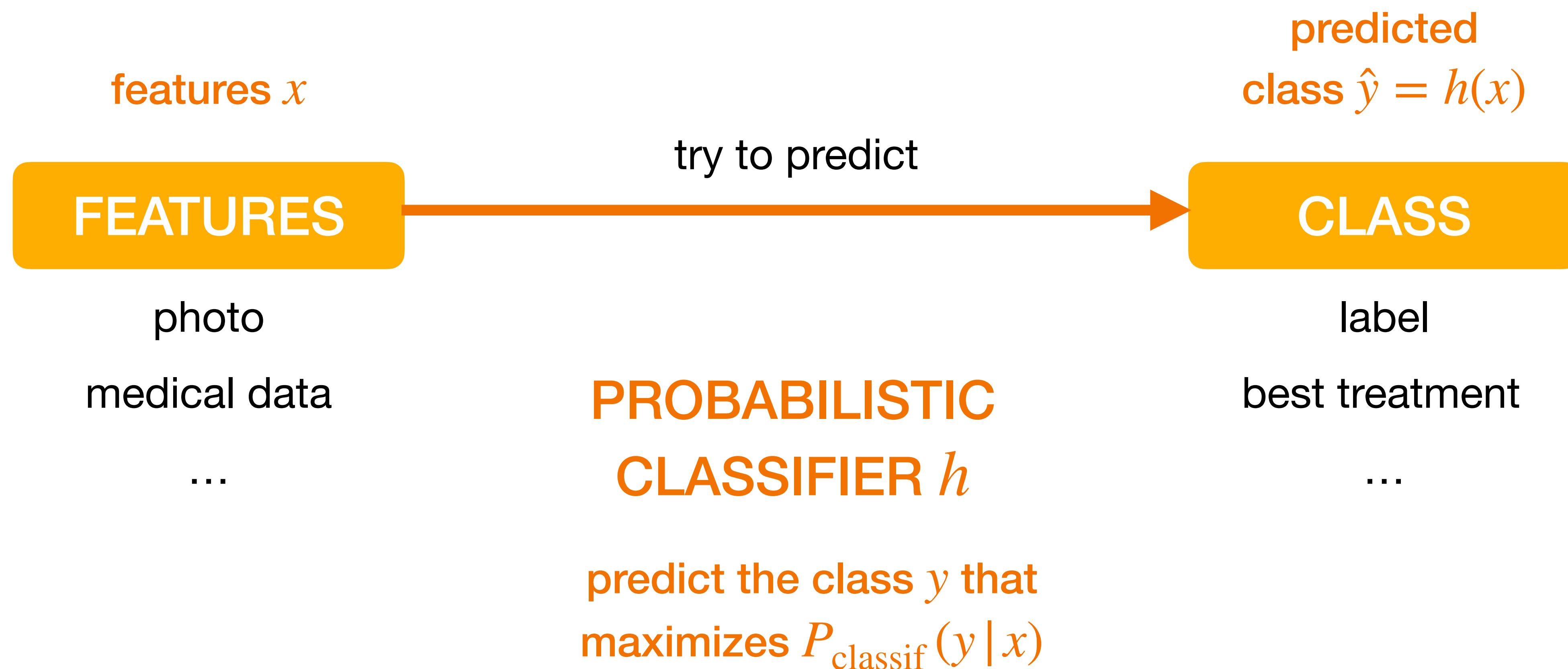
photo

medical data

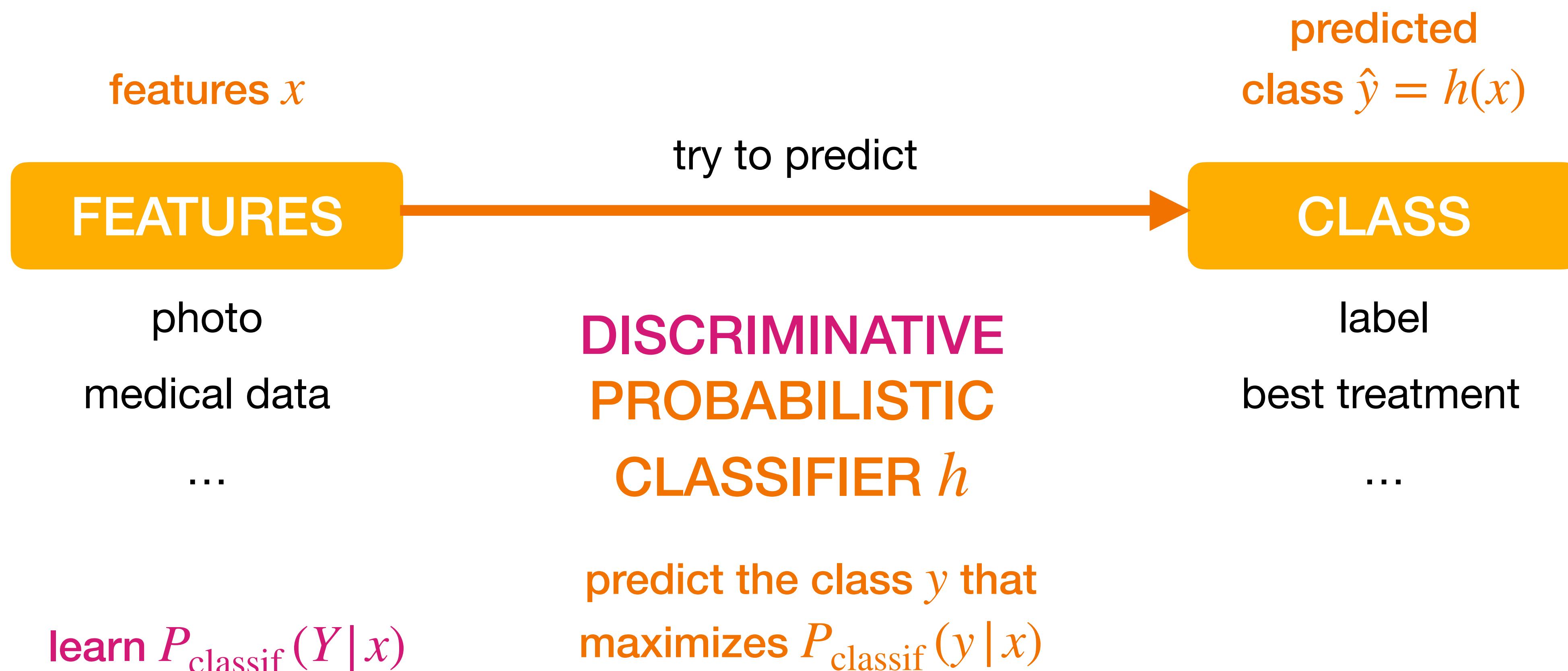
...

CLASSIFICATION

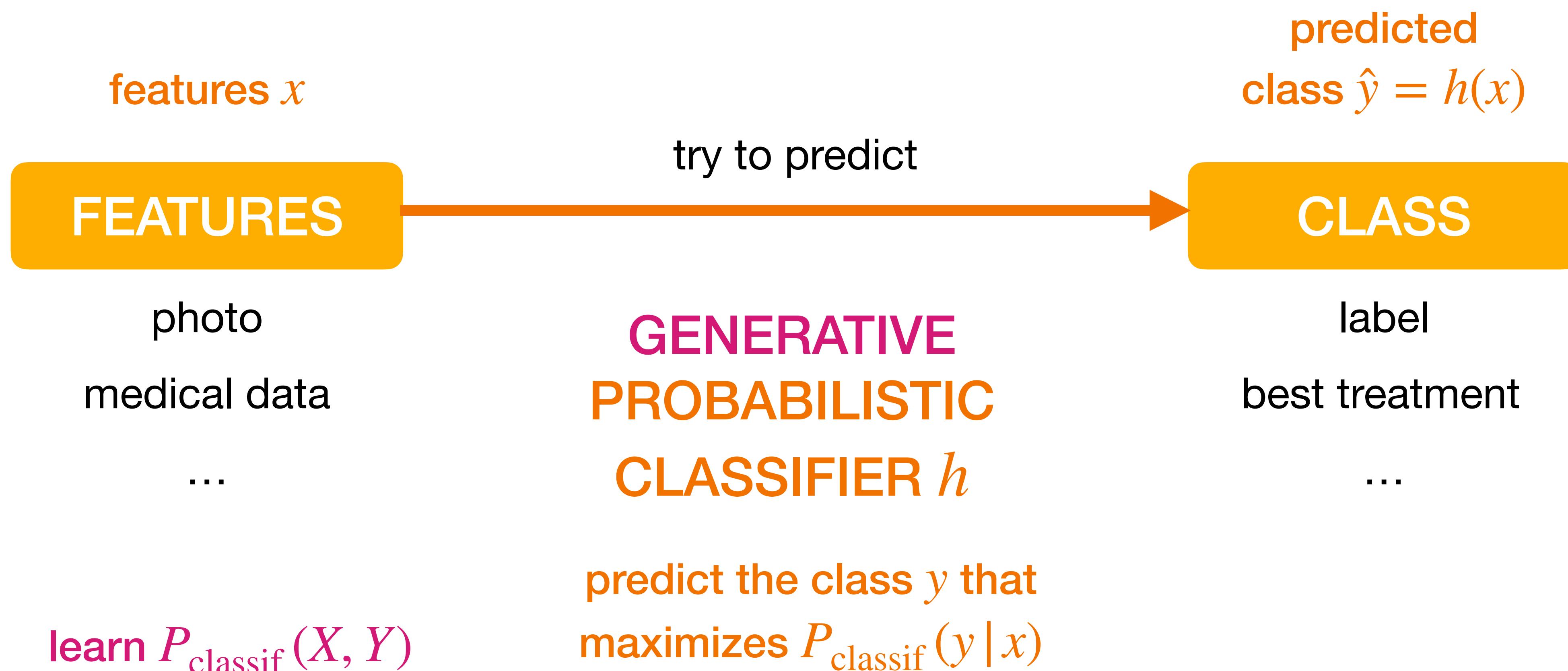
CLASSIFICATION



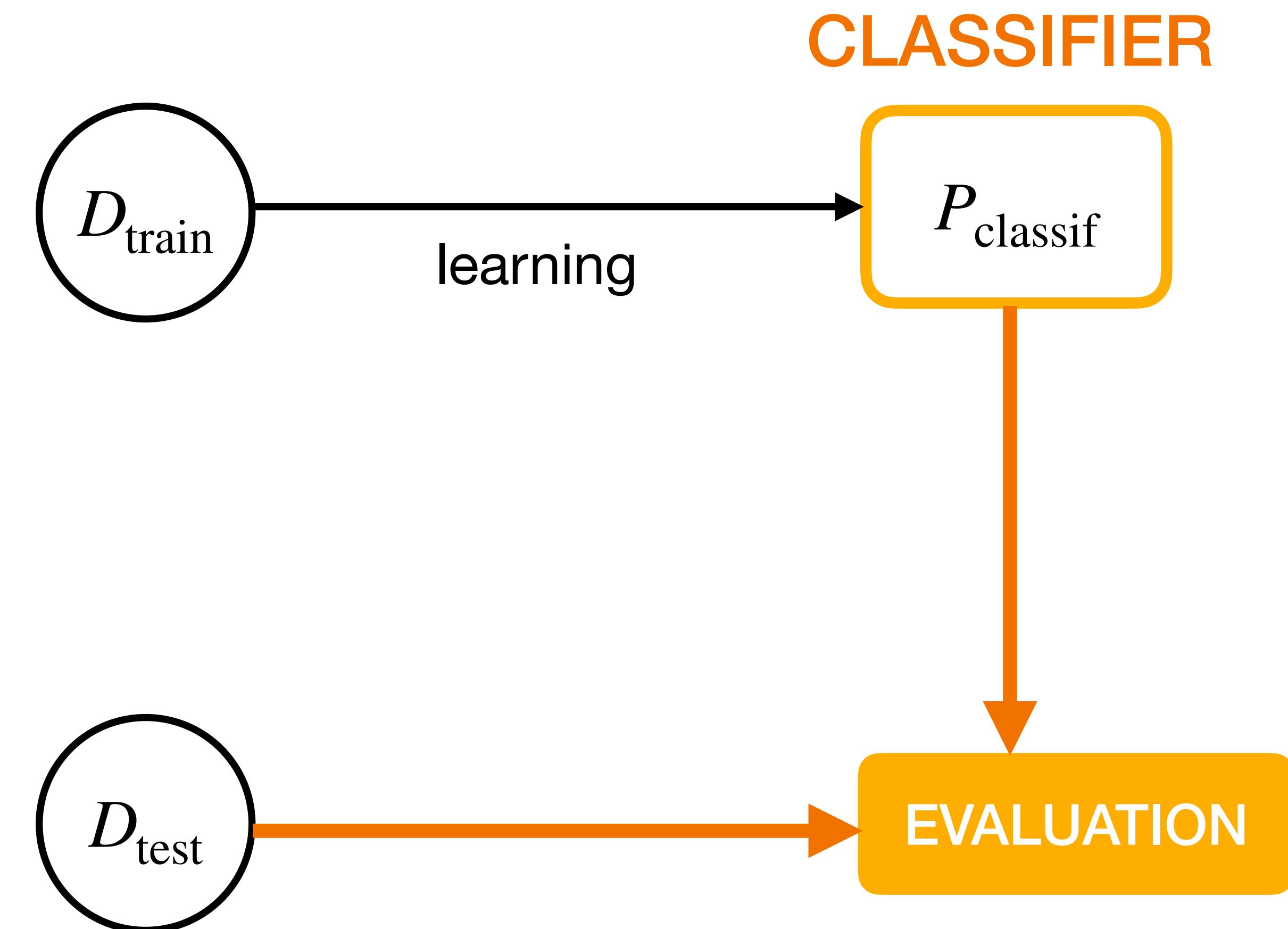
CLASSIFICATION



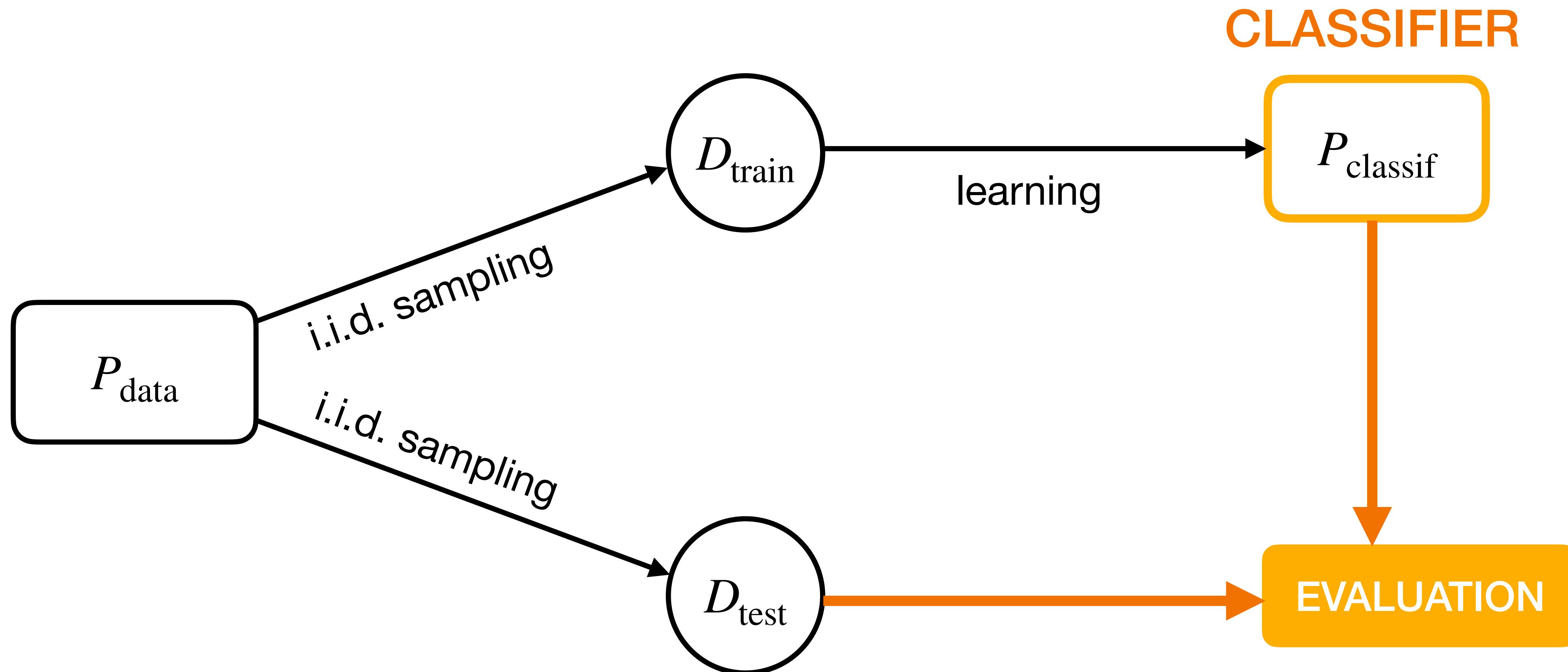
CLASSIFICATION



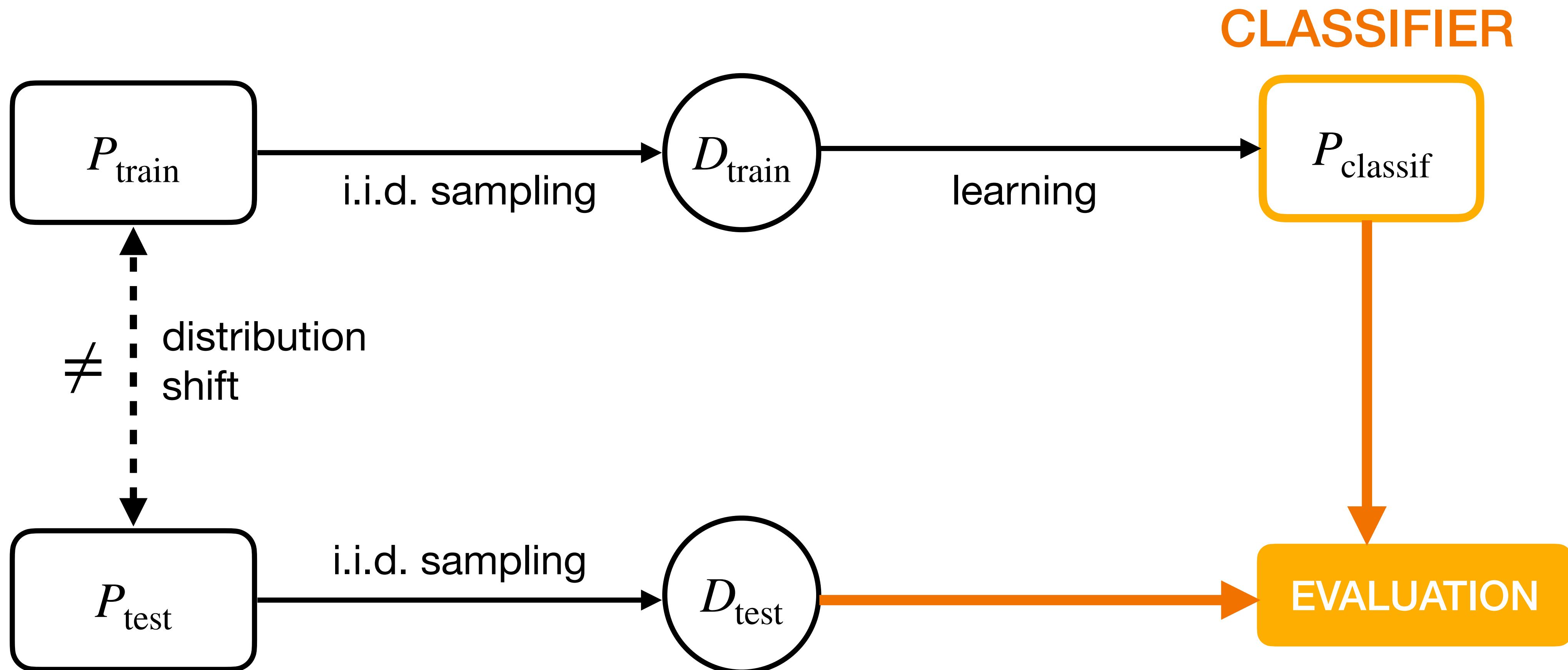
CLASSIFICATION



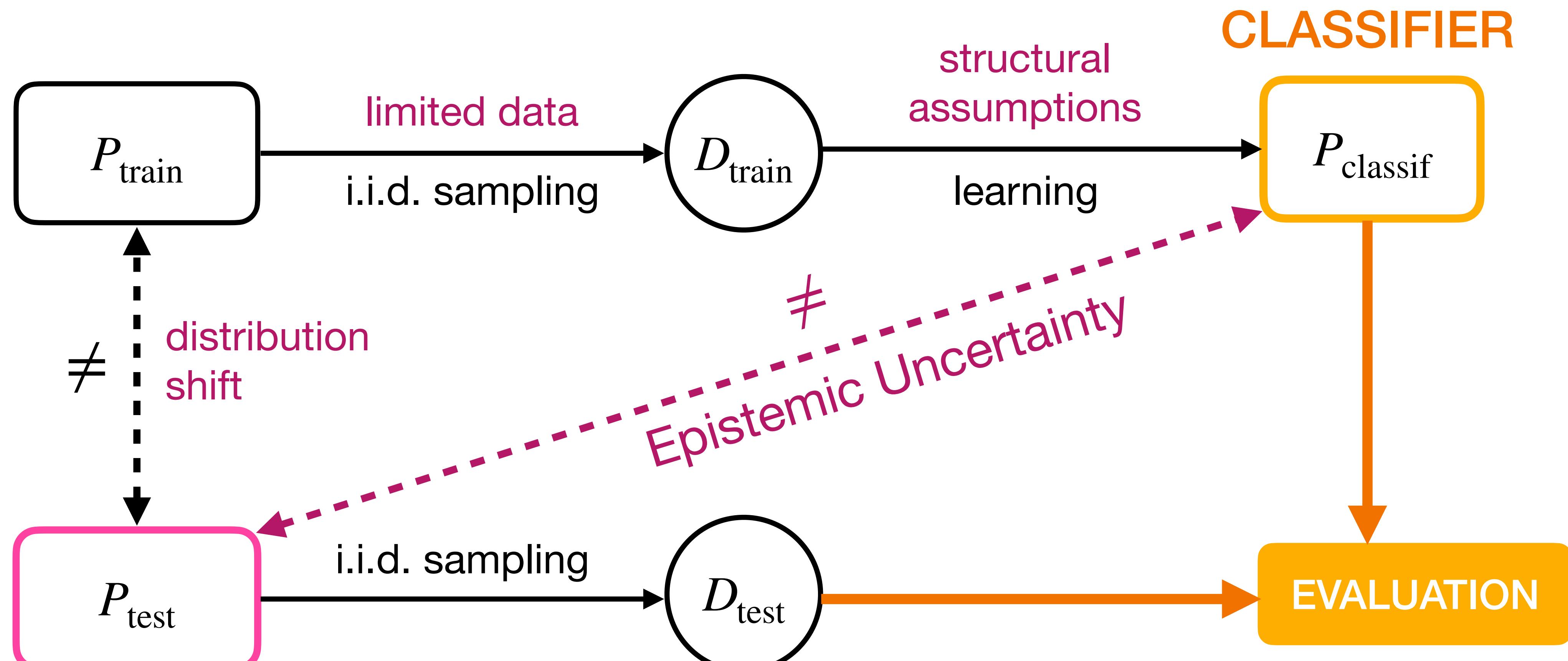
CLASSIFICATION



CLASSIFICATION



CLASSIFICATION ... is unreliable



Aleatoric Uncertainty

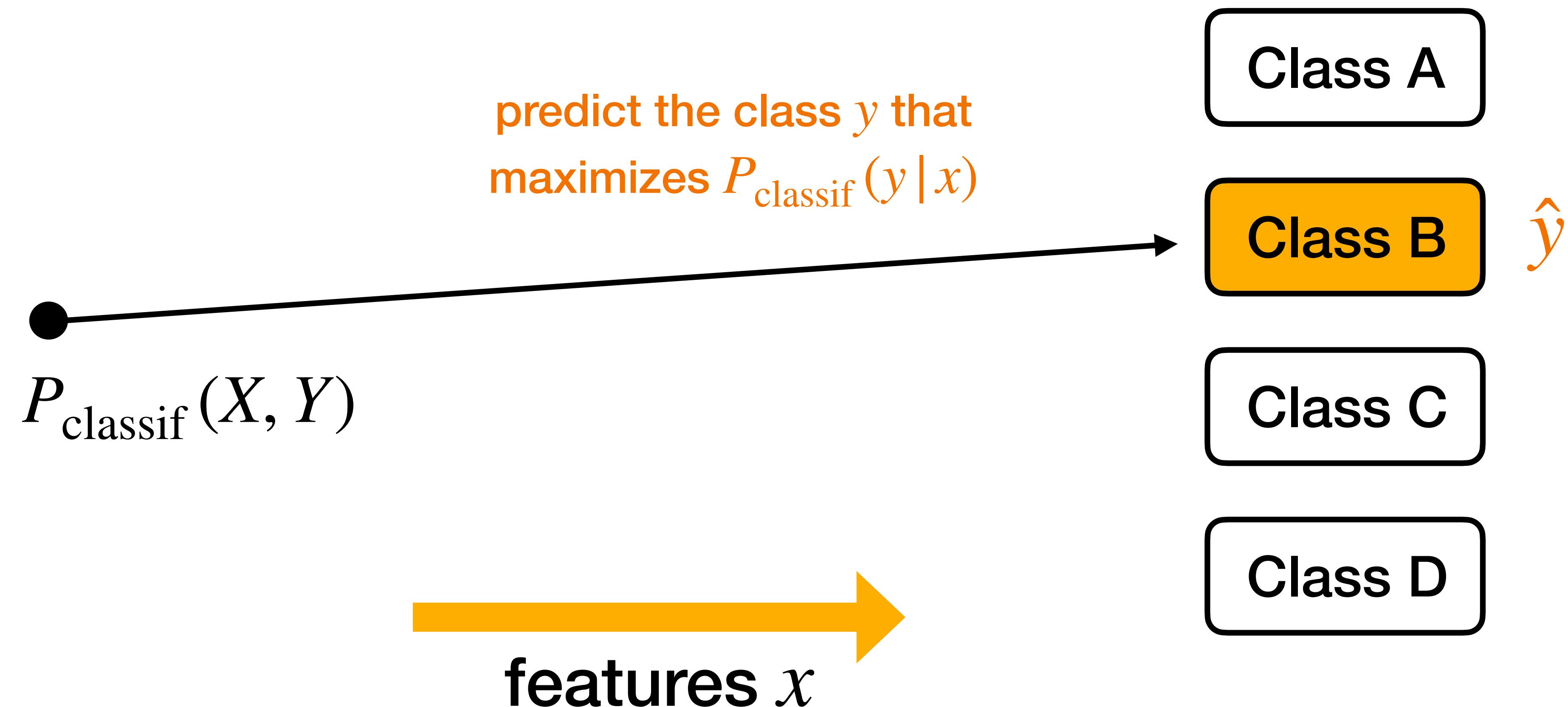
PROBLEM 2:

IMPRECISE
PROBABILITIES

... are arbitrary

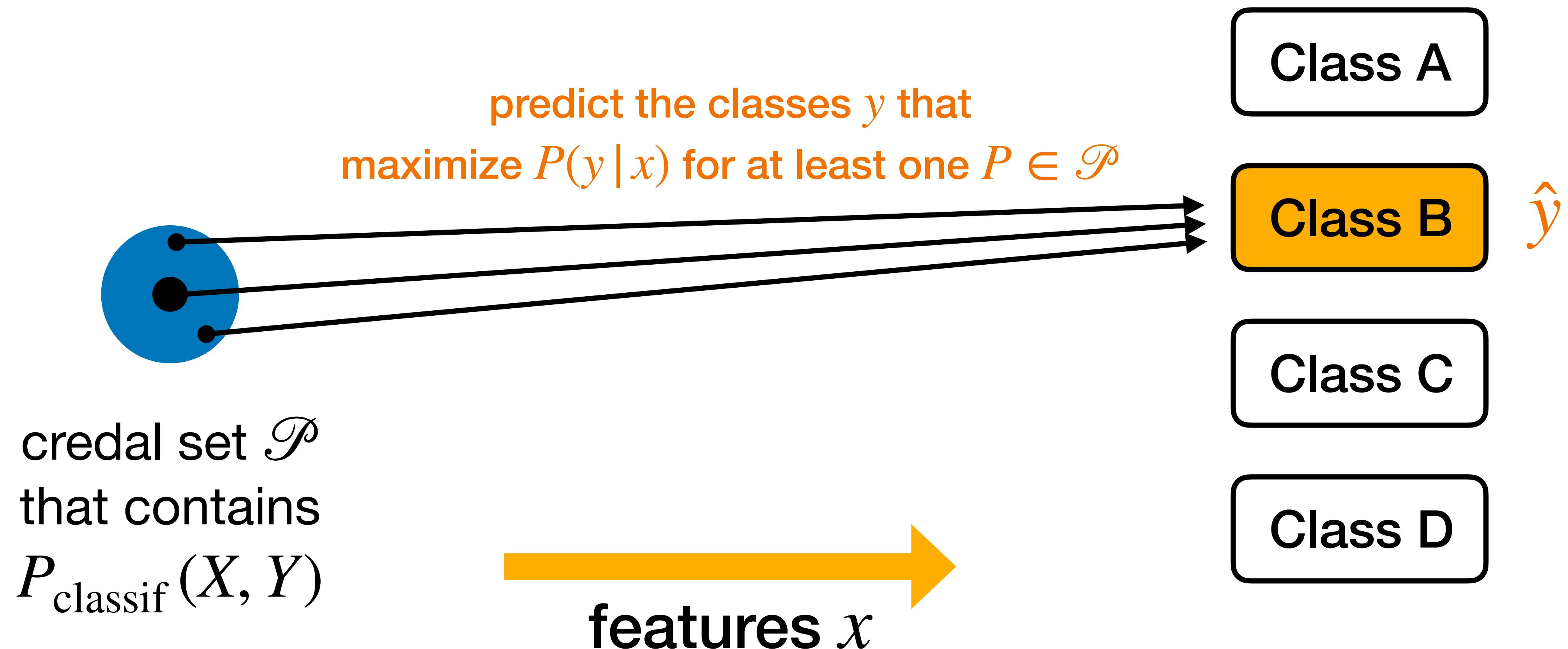
IMPRECISE PROBABILITIES

PROBABILISTIC CLASSIFIER



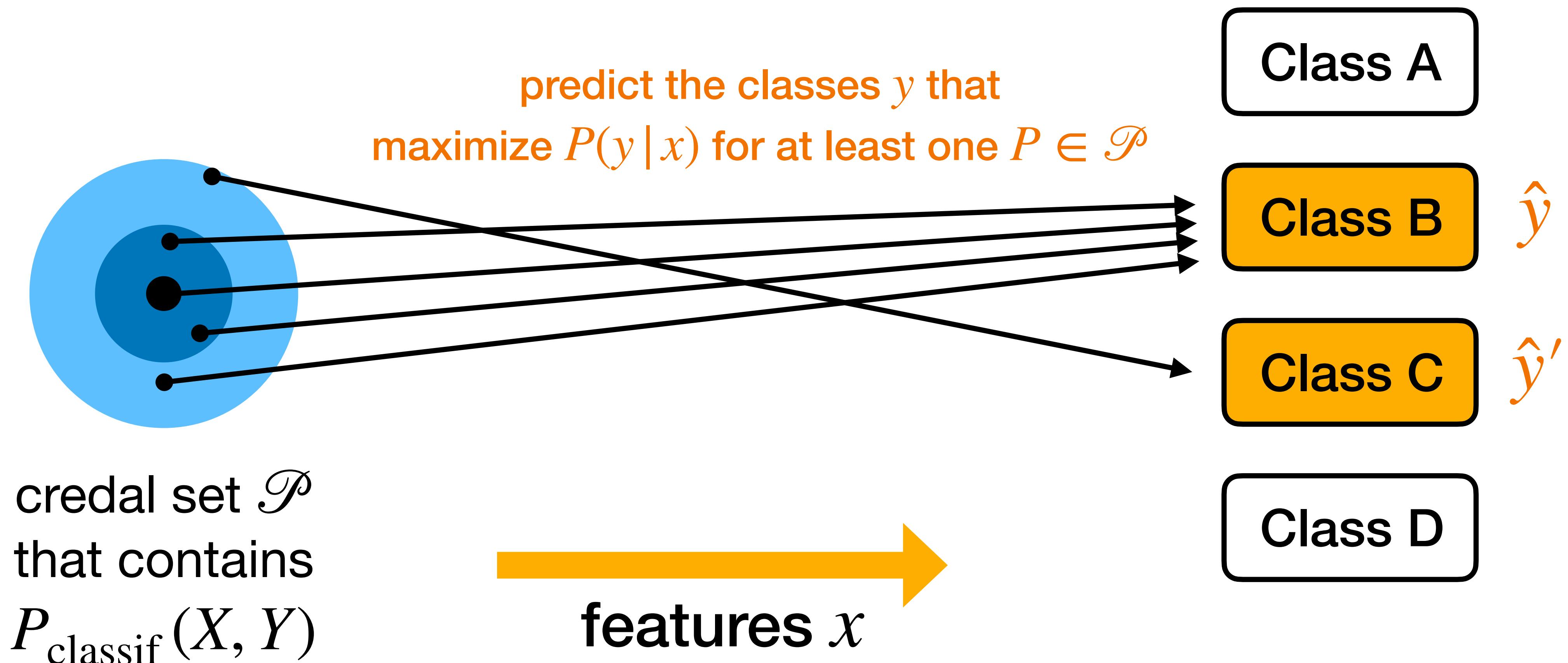
IMPRECISE PROBABILITIES

CREDAL CLASSIFIER



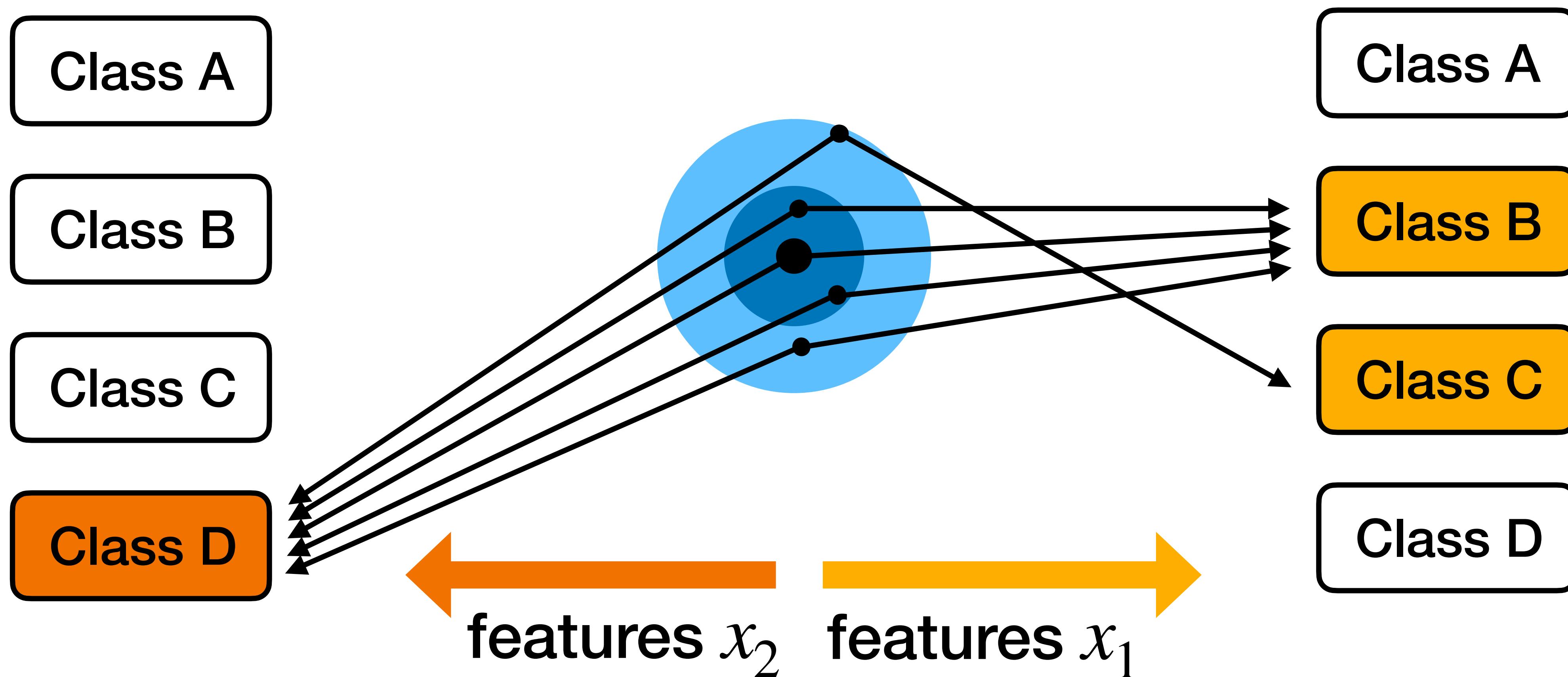
IMPRECISE PROBABILITIES

CREDAL CLASSIFIER



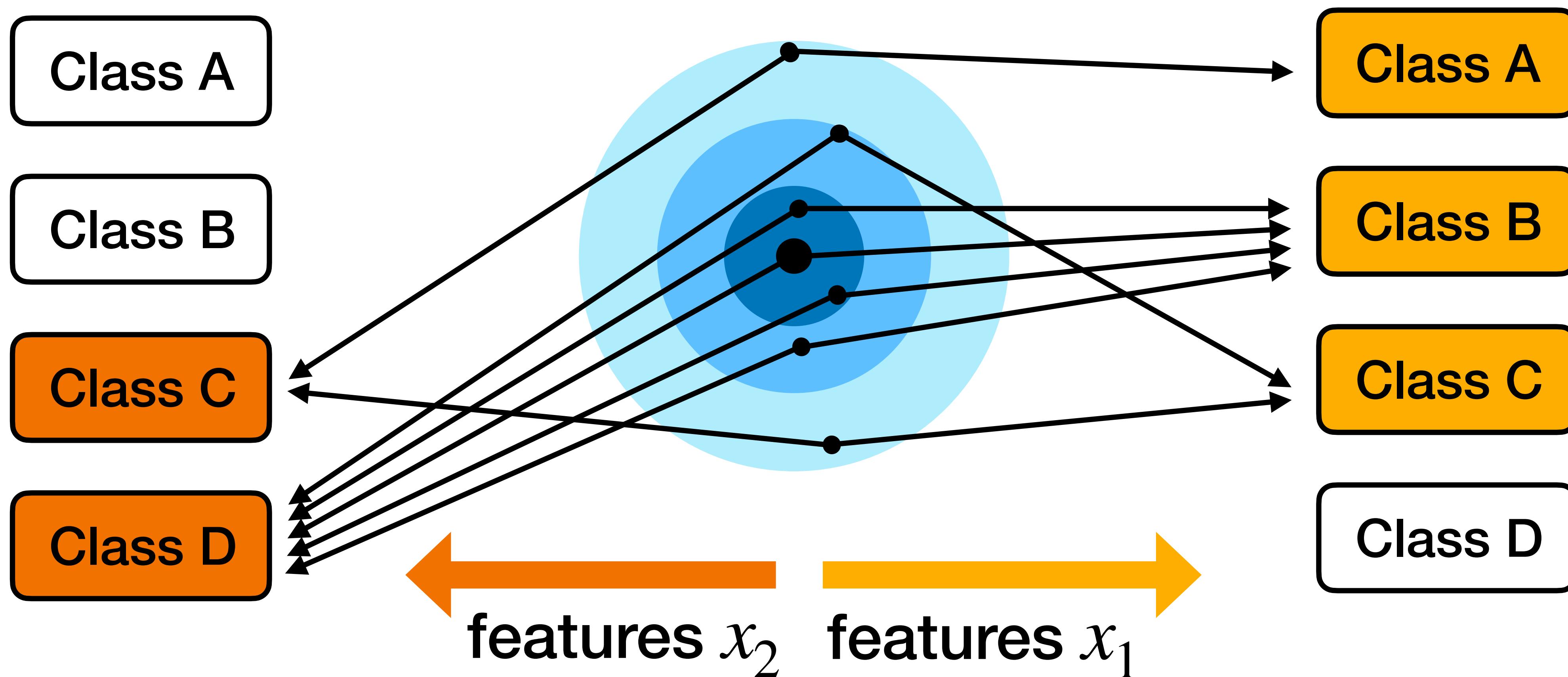
IMPRECISE PROBABILITIES

CREDAL CLASSIFIER



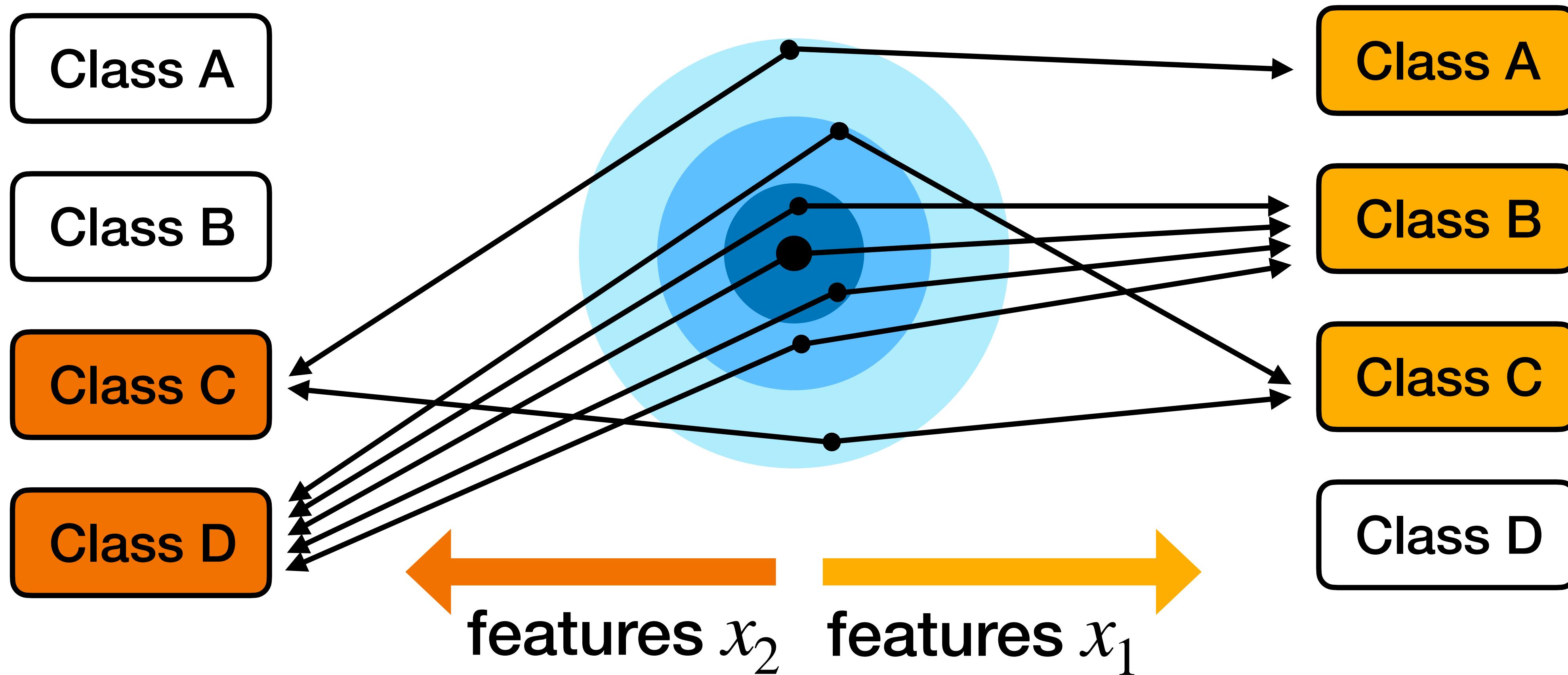
IMPRECISE PROBABILITIES

CREDAL CLASSIFIER



IMPRECISE PROBABILITIES ... are arbitrary

CREDAL CLASSIFIER



Adrián
Detavernier

Rodrigo
Lassance

MACHINE
LEARNING

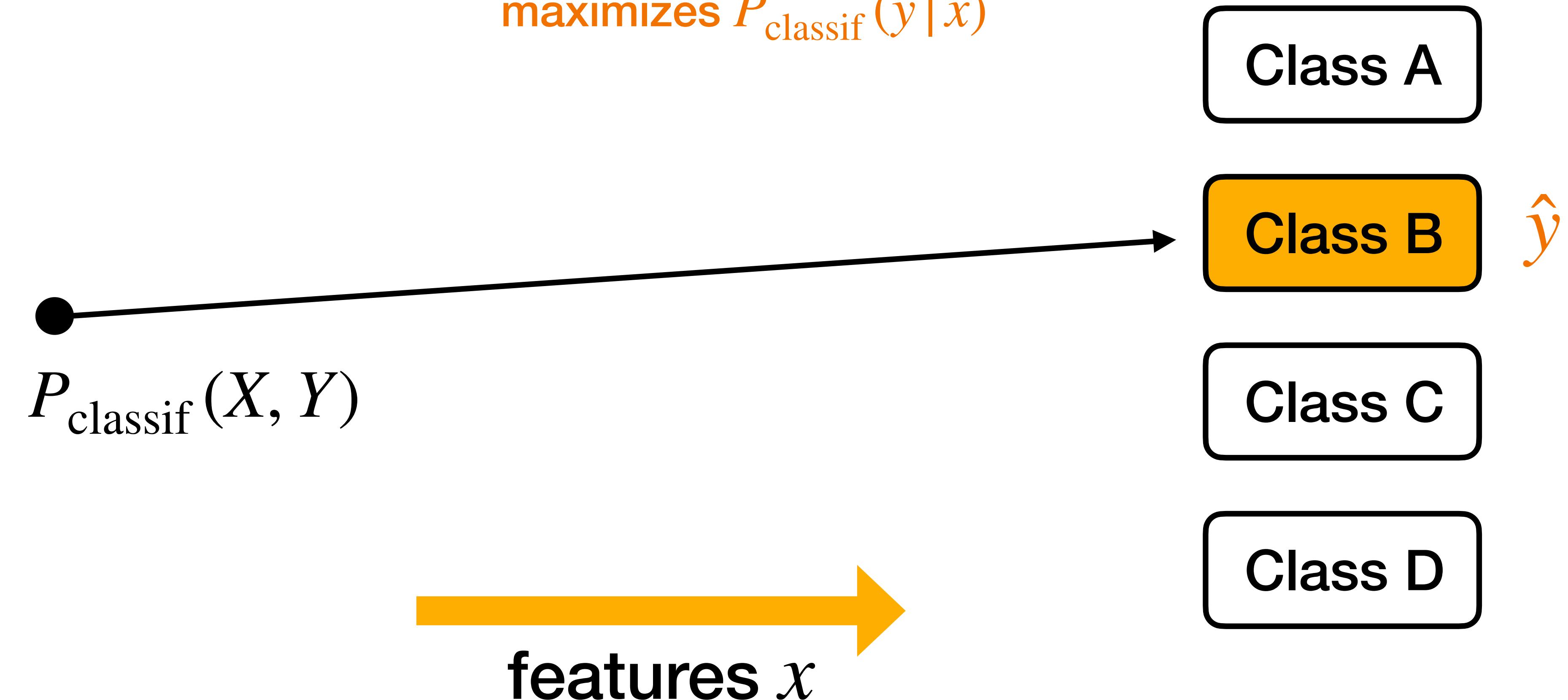
IMPRECISE
PROBABILITIES

ROBUSTNESS
QUANTIFICATION

ROBUSTNESS QUANTIFICATION

PROBABILISTIC CLASSIFIER

predict the class y that
maximizes $P_{\text{classif}}(y | x)$

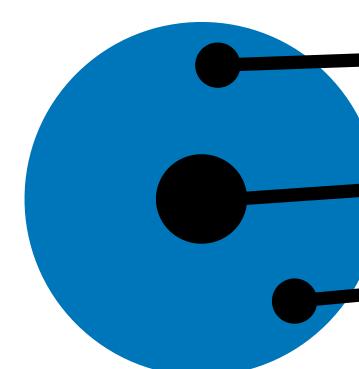


ROBUSTNESS QUANTIFICATION

ROBUST
prediction

PROBABILISTIC CLASSIFIER

predict the class y that
maximizes $P_{\text{classif}}(y | x)$



credal set \mathcal{P}
that contains
 $P_{\text{classif}}(X, Y)$

features x

Class A

Class B

\hat{y}

Class C

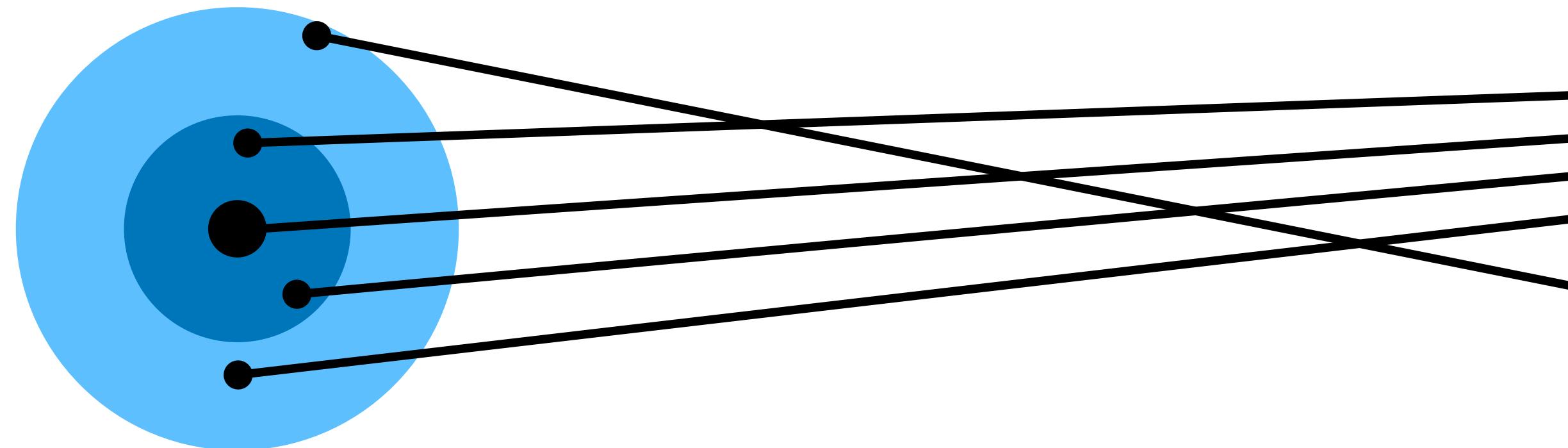
Class D

ROBUSTNESS QUANTIFICATION

ROBUST
prediction

PROBABILISTIC CLASSIFIER

predict the class y that
maximizes $P_{\text{classif}}(y | x)$



credal set \mathcal{P}
that contains
 $P_{\text{classif}}(X, Y)$

features x

Class A

Class B

Class C

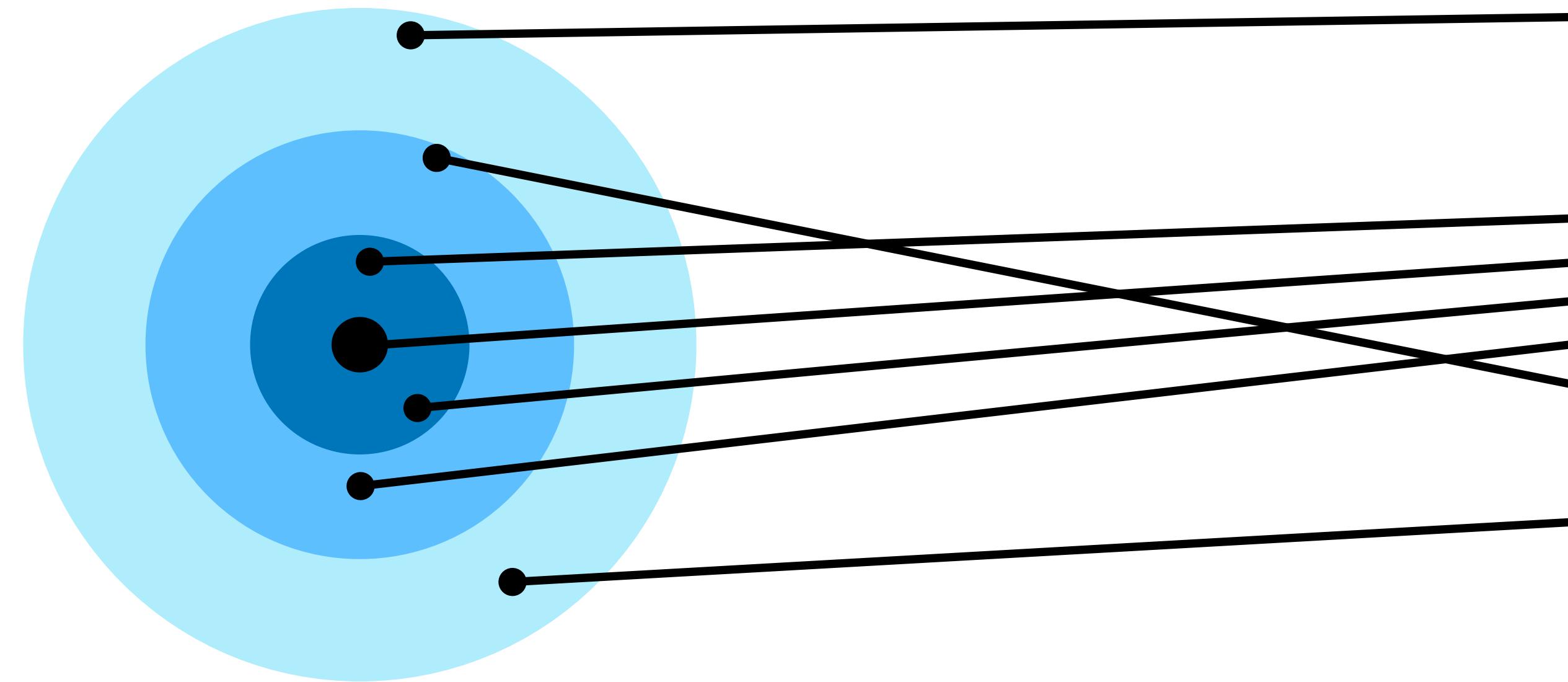
Class D

\hat{y}

ROBUSTNESS QUANTIFICATION

PROBABILISTIC CLASSIFIER

predict the class y that
maximizes $P_{\text{classif}}(y | x)$



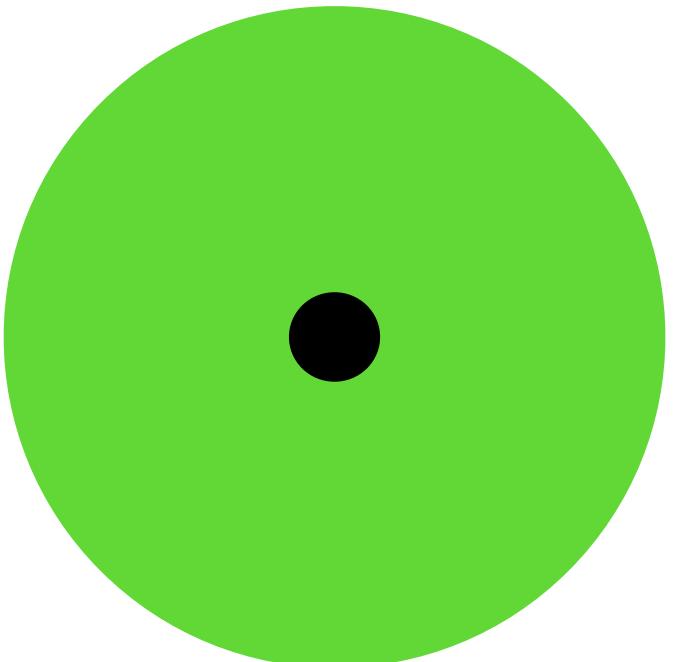
credal set \mathcal{P}
that contains
 $P_{\text{classif}}(X, Y)$

~~ROBUST~~
prediction

\hat{y}

ROBUSTNESS QUANTIFICATION

PROBABILISTIC CLASSIFIER



credal set \mathcal{P}
that contains
 $P_{\text{classif}}(X, Y)$

ROBUSTNESS:
“size” of largest \mathcal{P} for
which the precise
prediction is robust

Adrián
Detavernier

Rodrigo
Lassance

MACHINE
LEARNING

IMPRECISE
PROBABILITIES

ROBUSTNESS
QUANTIFICATION

PROBLEM 2:

IMPRECISE
PROBABILITIES

... are arbitrary

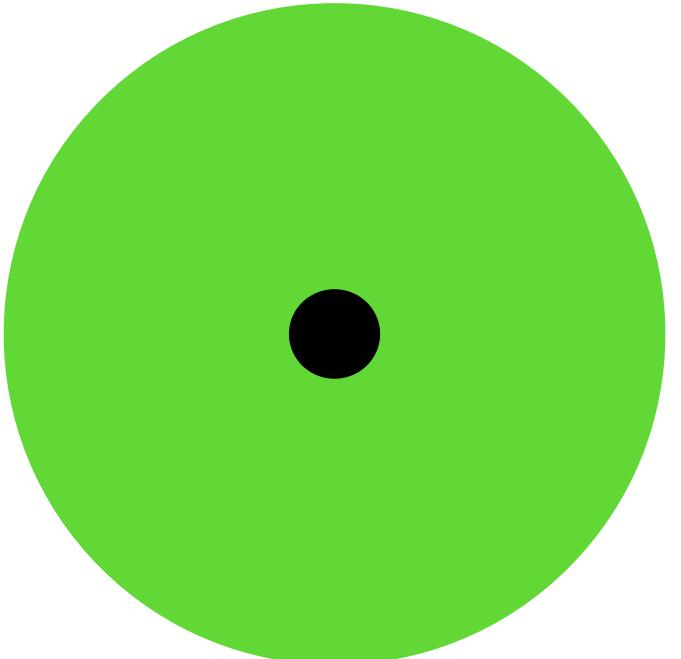
PROBLEM 1:

MACHINE
LEARNING

... is unreliable

ROBUSTNESS QUANTIFICATION

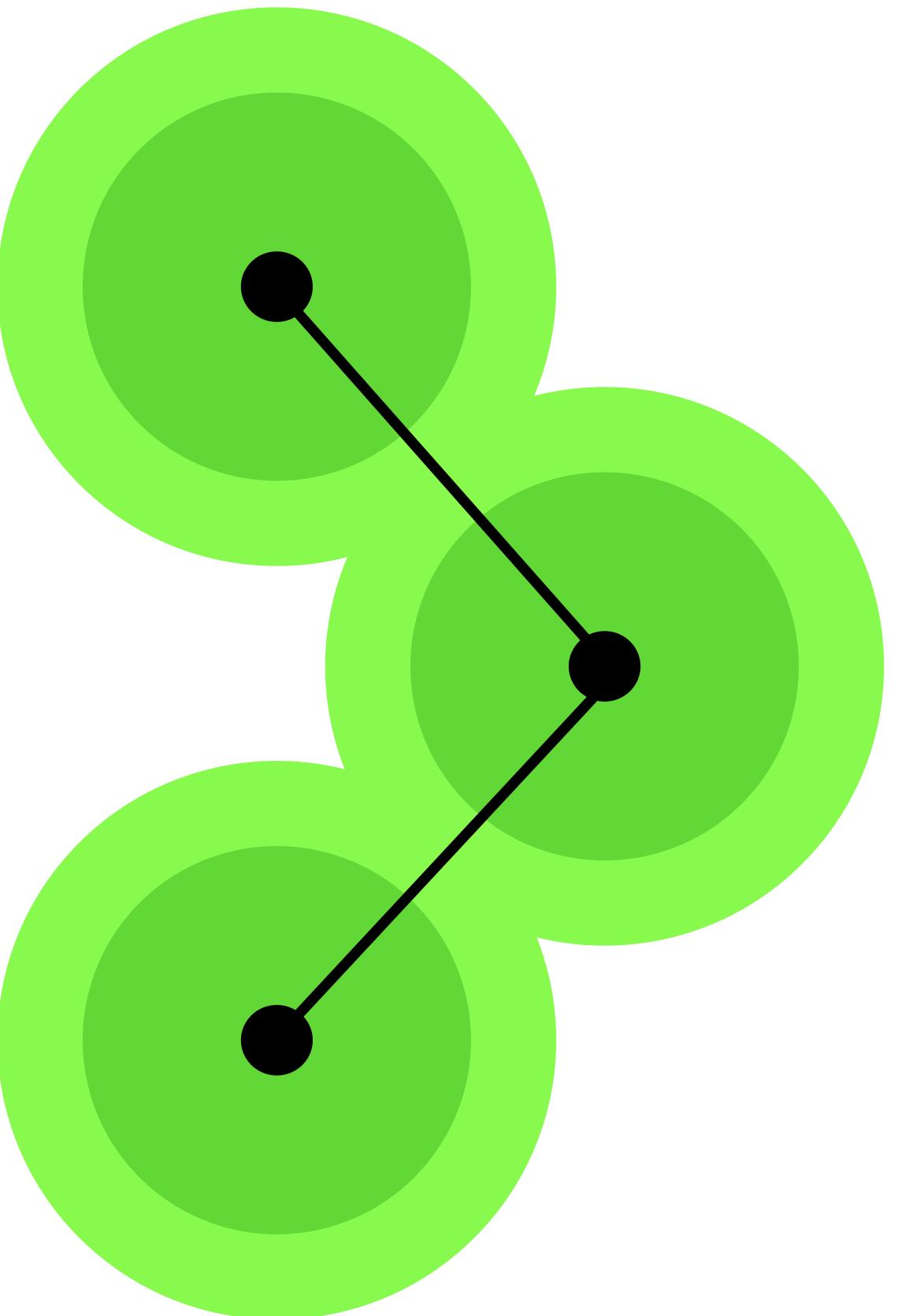
PROBABILISTIC CLASSIFIER



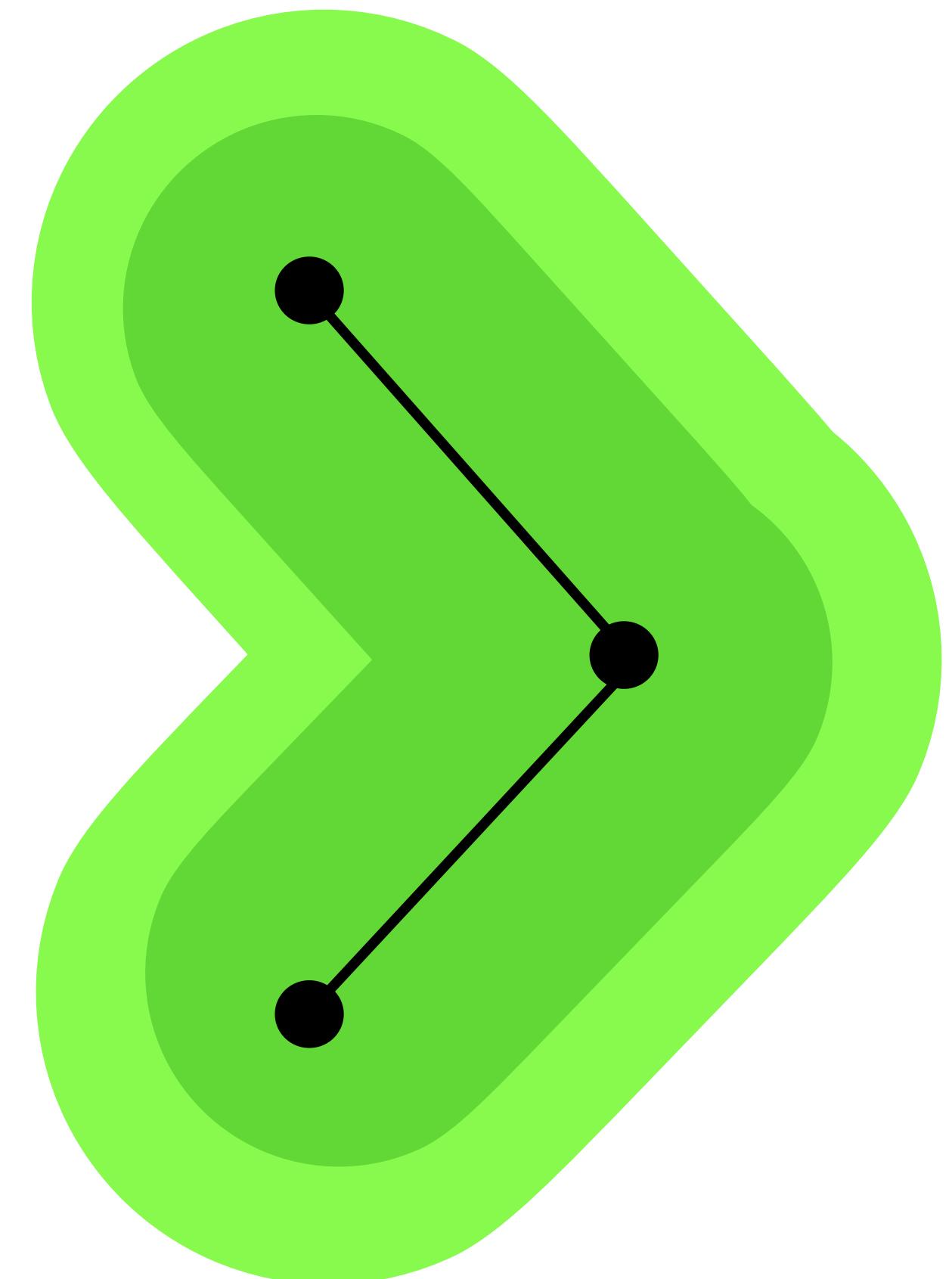
credal set \mathcal{P}
that contains
 $P_{\text{classif}}(X, Y)$

ROBUSTNESS:
“size” of largest \mathcal{P} for
which the precise
prediction is robust

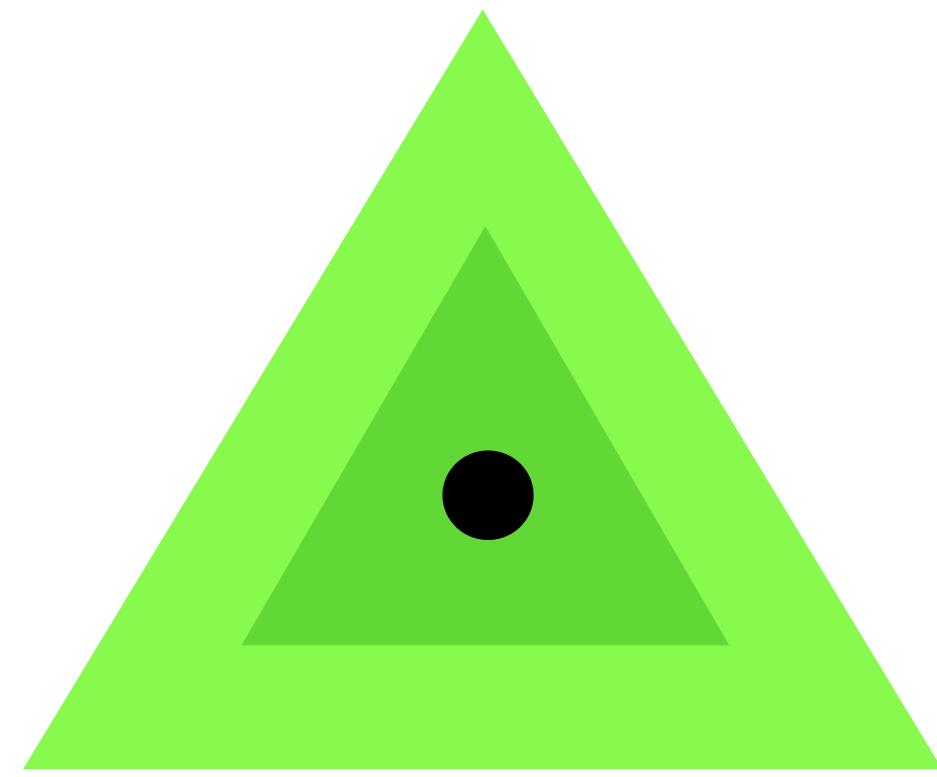
LOCAL



GLOBAL



ϵ -CONTAMINATION



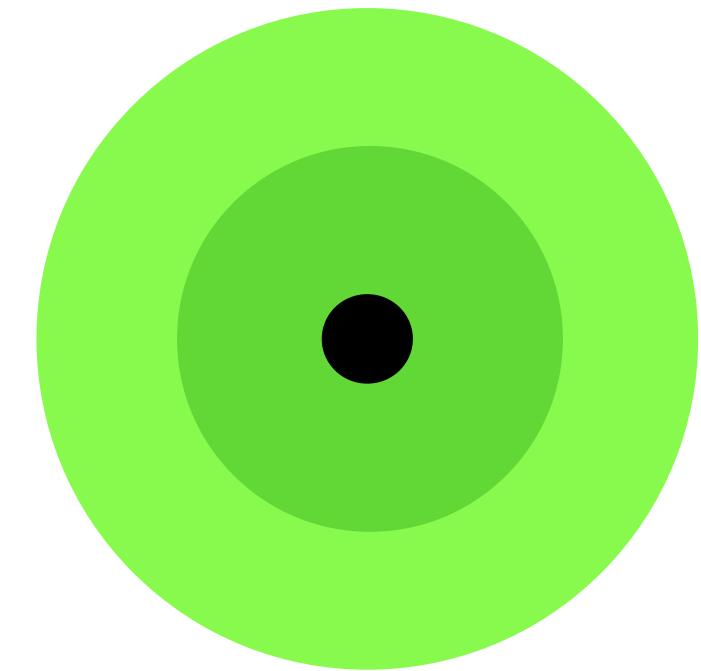
\mathcal{P}_ϵ

||

$$\{(1 - \epsilon)P_{\text{classif}} + \epsilon P: P \in \Delta\}$$

OTHER STUFF

distance-based, ...



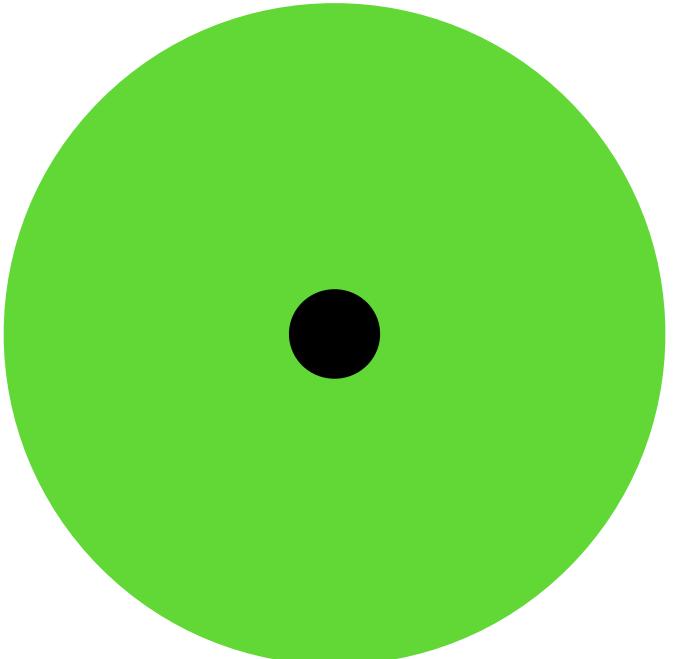
\mathcal{P}_ϵ

||

$$\{P \in \Delta: d(P_{\text{classif}}, P) < \epsilon\}$$

ROBUSTNESS QUANTIFICATION

PROBABILISTIC CLASSIFIER



credal set \mathcal{P}
that contains
 $P_{\text{classif}}(X, Y)$

ROBUSTNESS:
“size” of largest \mathcal{P} for
which the precise
prediction is robust

2014

MRF BN

Global Sensitivity Analysis for MAP Inference in Graphical Models

Jasper De Bock
Ghent University, SYSTeMS
Ghent (Belgium)
jasper.debock@ugent.be

Cassio P. de Campos
Queen's University
Belfast (UK)
c.decampos@qub.ac.uk

Alessandro Antonucci
IDSIA
Lugano (Switzerland)
alessandro@idsia.ch

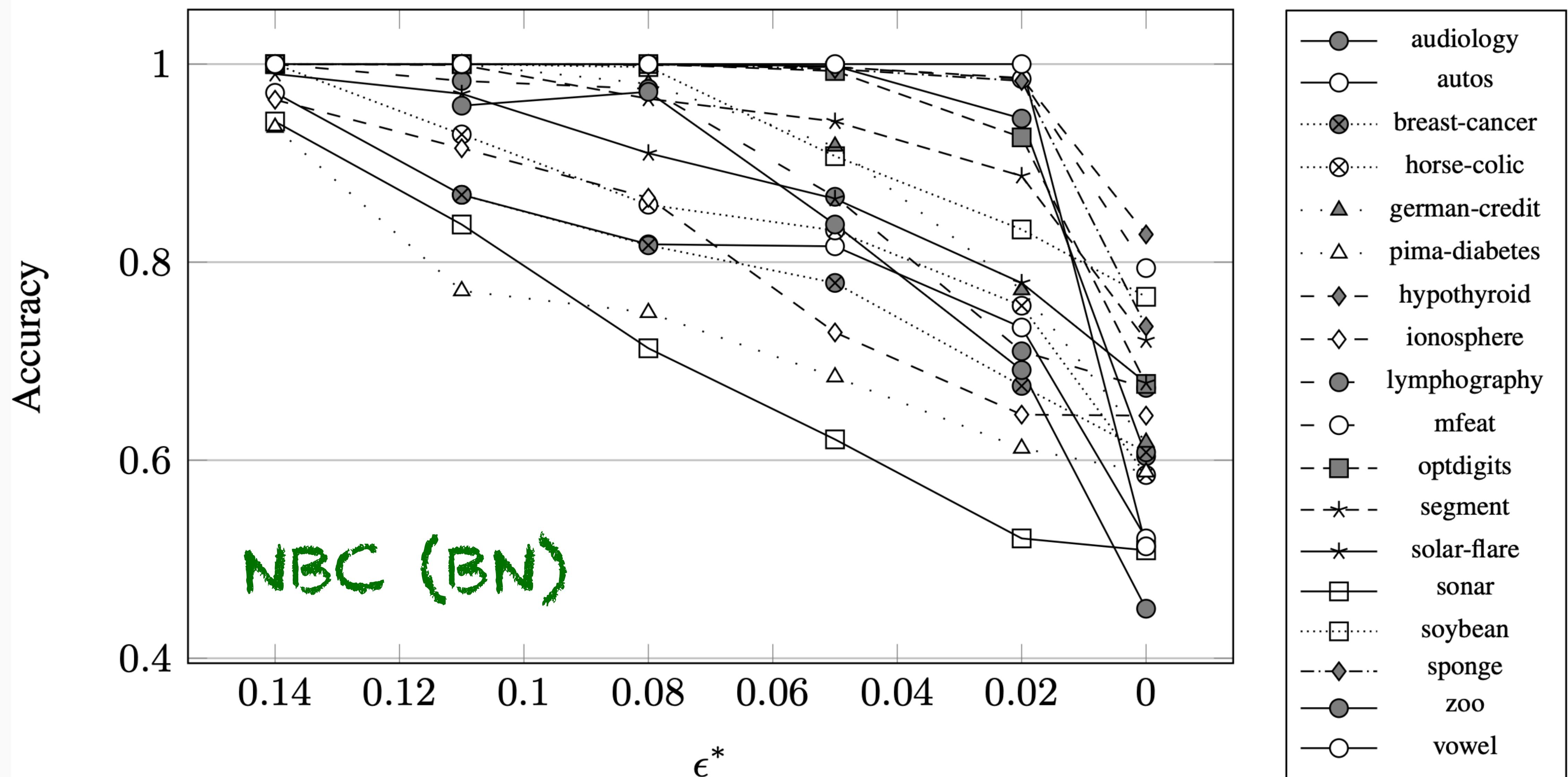
Abstract

We study the sensitivity of a MAP configuration of a discrete probabilistic graphical model with respect to perturbations of its parameters. These perturbations are global, in the sense that simultaneous perturbations of all the parameters (or any chosen subset of them) are allowed. Our main contribution is an exact algorithm to check whether the MAP configuration is robust with respect to given perturbations. Robustness is essentially the same as that of obtaining the MAP configuration by using minimal effort. We use our algorithm to obtain a measure in

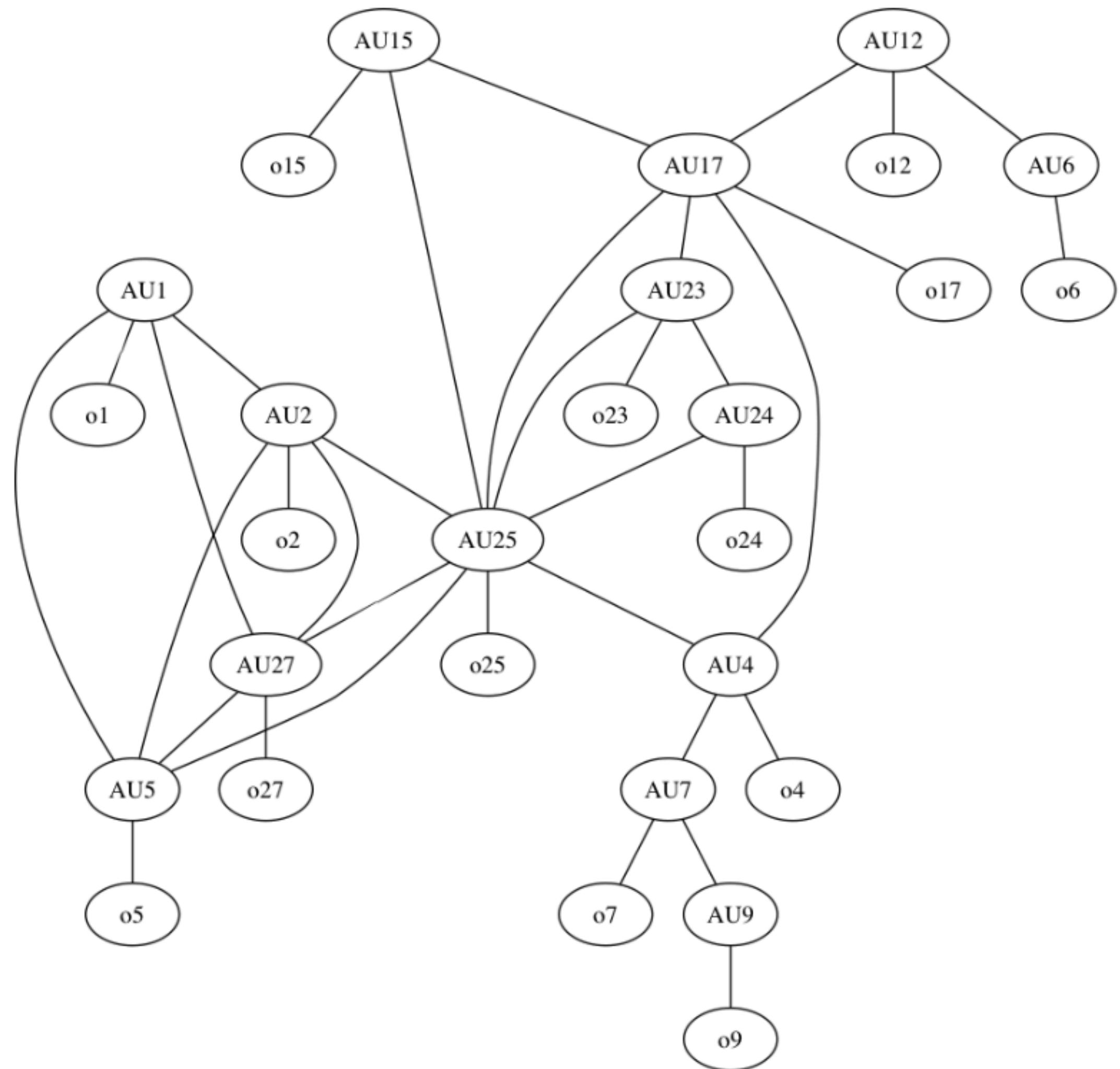
[1]

Cassio
de Campos

Alessandro
Antonucci

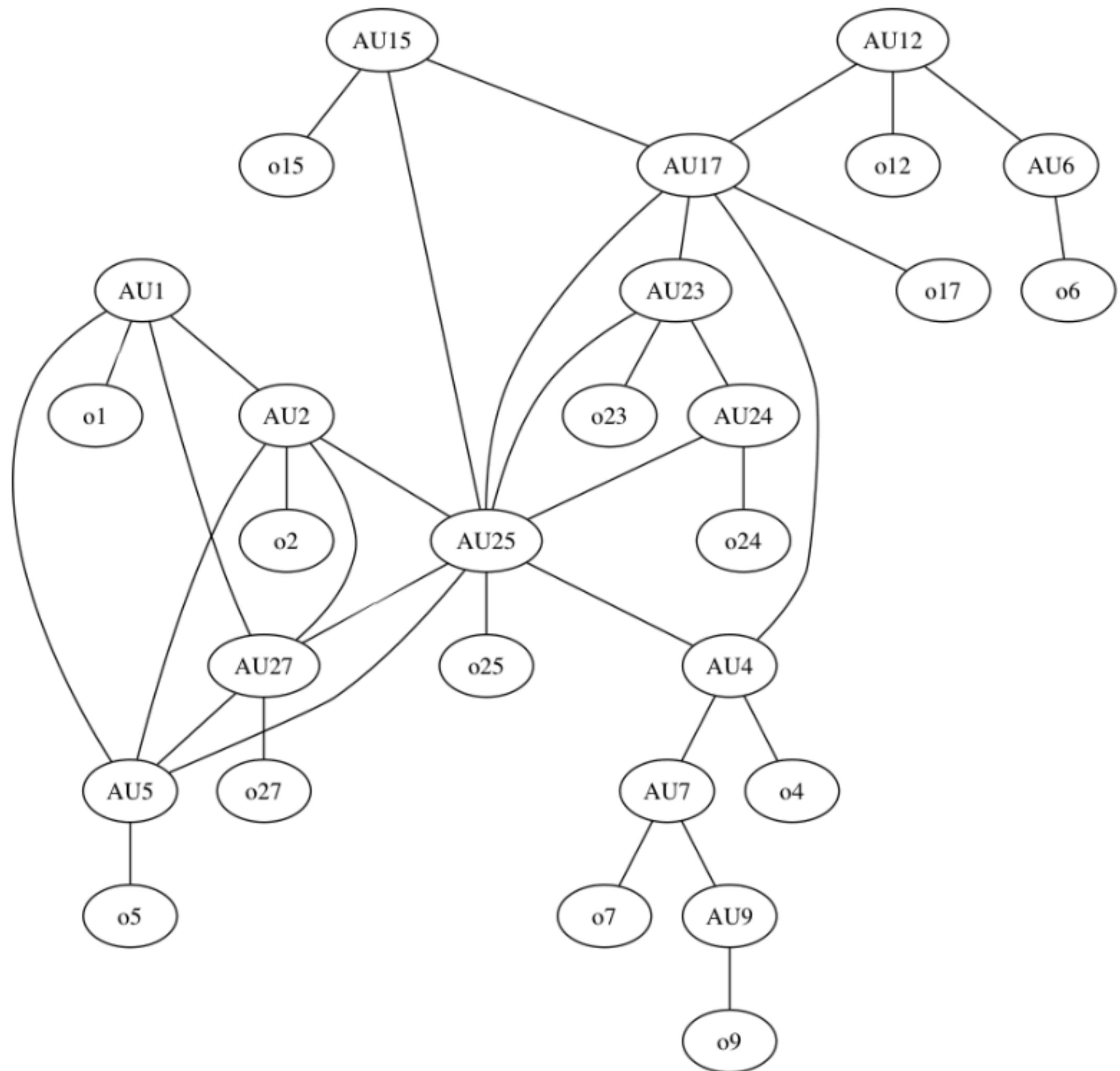


MRF

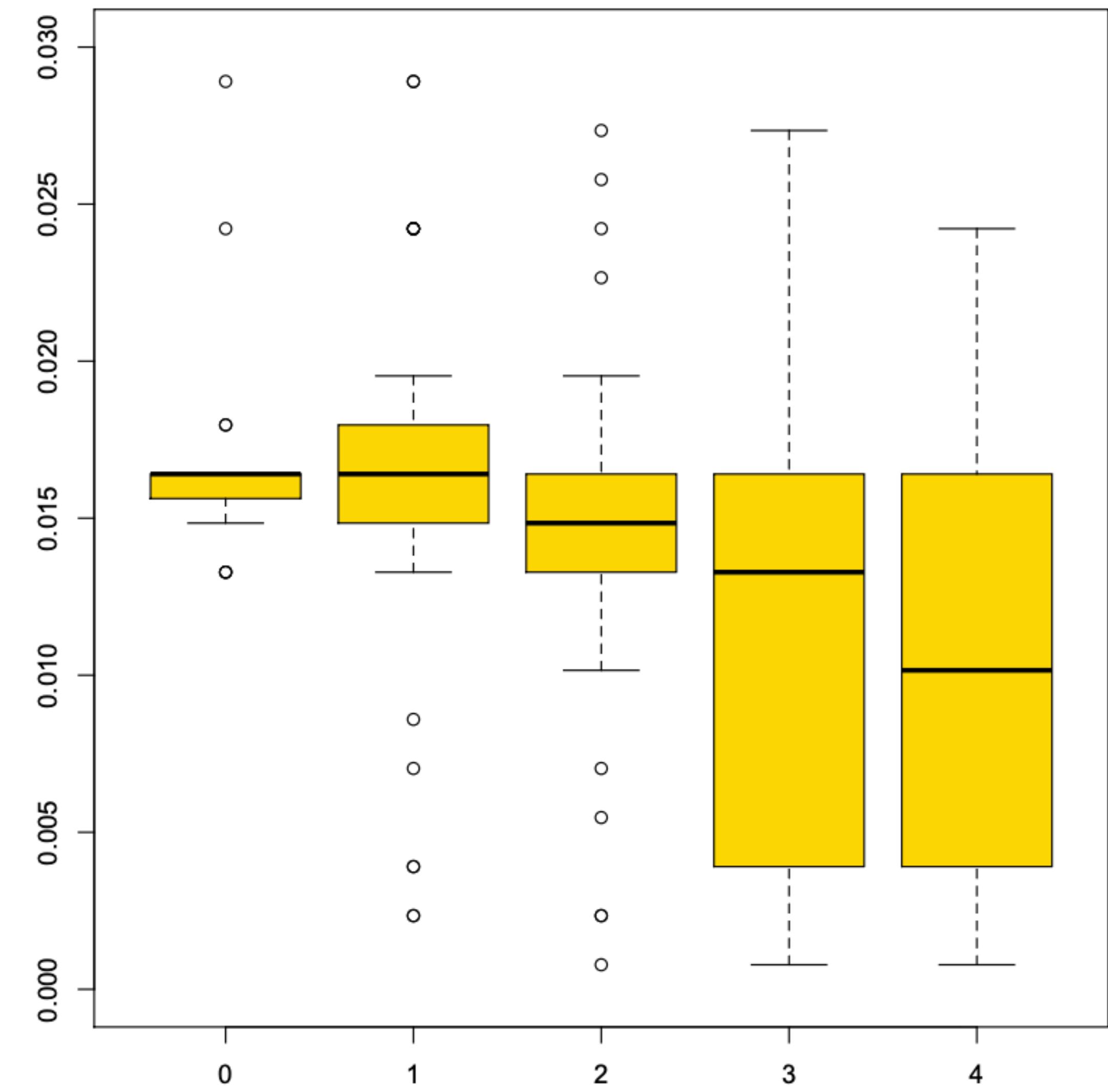


(a) MRF used in the computations.

MRF



[1] (a) MRF used in the computations.



(b) Robustness split by Hamming distances.

2017 - 2020

SPN

[2-4, ...]

ILR: Proceedings of Machine Learning Research, vol. 62, 205-216, 2017

Credal Sum-Product Networks

Denis Deratani Mauá
Institute of Mathematics and Statistics, Universidade de São Paulo (Brazil)

Fabio Gagliardi Cozman
Escola Politécnica, Universidade de São Paulo (Brazil)

Diarmuid Conaty
Cassio Polpo de Campos

Queen's University Belfast (United Kingdom)

Abstract

Sum-product networks are a relatively new and increasingly graphical models that allow for marginal inference with probabilistic models, sum-product networks are often learned in a credal sum-product networks, an imprecise extension of common inference algorithms and complexity results for common inference classification task using images of digits and show that a perturbation of the parameters of learned sum-product networks leads to reliable and unreliable classifications with high accuracy.

1. Introduction

Probabilistic models are usually built so that the quantitative (probabilistic) conclusions about such as Bayesian networks and Markov Networks are based on uncertain knowledge to be

1990: 1

Robustifying sum-product networks [☆]
Denis Deratani Mauá ^{a,*}, Diarmuid Conaty ^b, Fabio Gagliardi
Katja Poppenhaeger ^d, Cassio Polpo de Campos ^{b,e}

^a Institute of Mathematics and Statistics, Universidade de São Paulo, Brazil
^b Centre for Data Science and Scalable Computing, Queen's University Belfast, UK
^c Escola Politécnica, Universidade de São Paulo, Brazil
^d Astrophysics Research Centre, Queen's University Belfast, UK
^e Dept. of Information and Computing Sciences, Utrecht University, the Netherlands

ARTICLE INFO
Article history:
Received 6 December 2017
Received in revised form 5 July 2018
Accepted 10 July 2018
Available online 18 July 2018

Keywords:
Sum-product networks
Tractable probabilistic models
Credal classification
Sensitivity analysis
Robust statistics

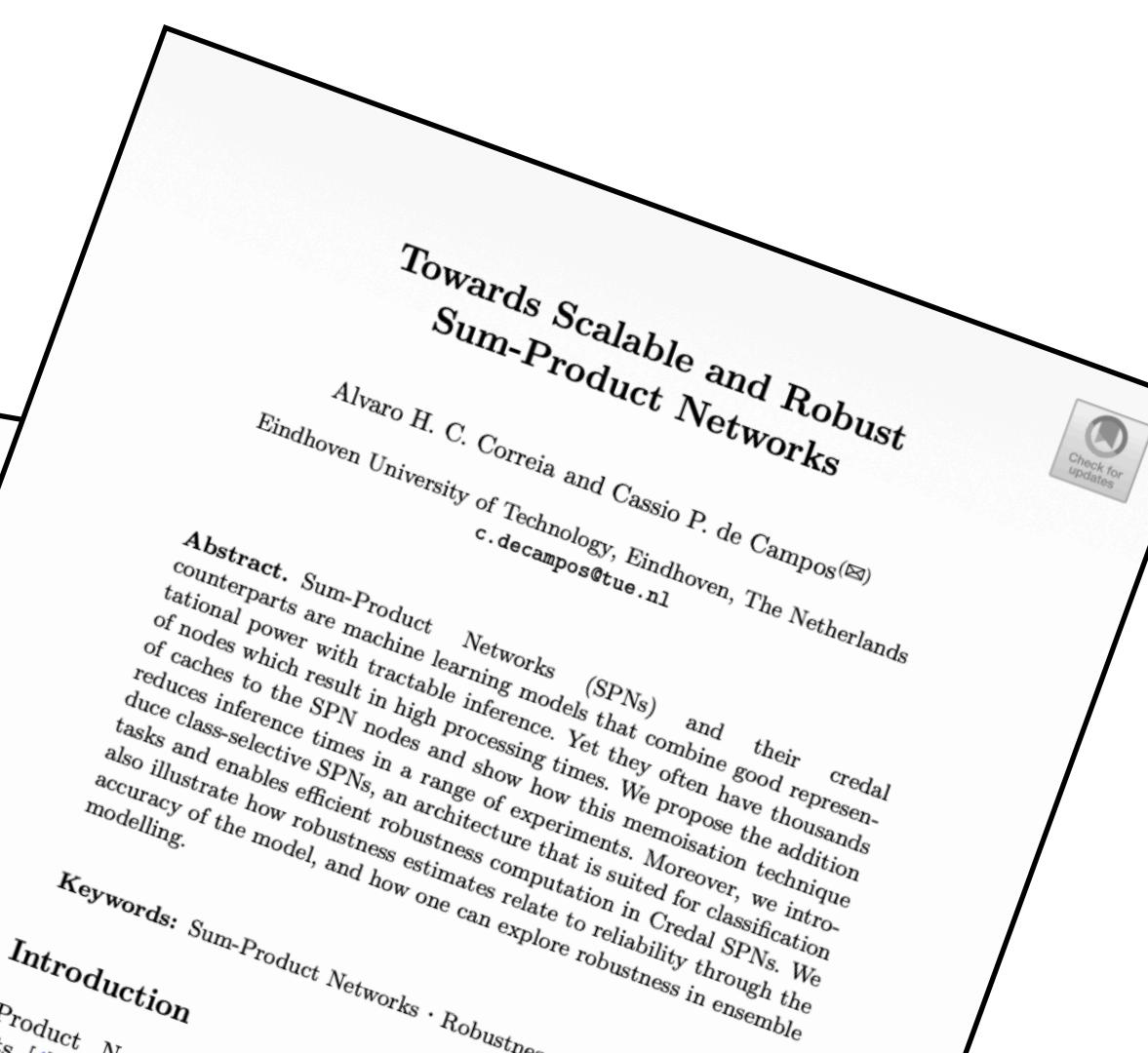
ABSTRACT
Sum-product networks are a relatively new and increasingly graphical models that allow for marginal inference with probabilistic models, sum-product networks are often learned in a credal sum-product networks, an imprecise extension of common inference algorithms and complexity results for common inference classification task using images of digits and show that a perturbation of the parameters of learned sum-product networks leads to reliable and unreliable classifications with high accuracy.

Keywords: Sum-product networks; tractable pro-

1. Introduction

Probabilistic graphical models such as Bayesian networks and Markov networks allow for the compact specification of uncertain knowledge through a graphical language that represents variables as nodes and dependences as graph connectivity [30,17]. Not only this graphical approach facilitates knowledge elicitation and communication, but is key to efficient inference. For example, while marginal inference in Bayesian and Markov networks is #P-hard, popular approximate inference algorithms are based on passing messages in a graphical representation: the belief propagation [6].

Keywords: Sum-product networks; tractable pro-



[5]
Gef+

Towards Robust Classification with Deep Generative Forests

Alvaro H. C. Correia ¹ Robert Peharz ¹ Cassio de Campos ¹

Abstract

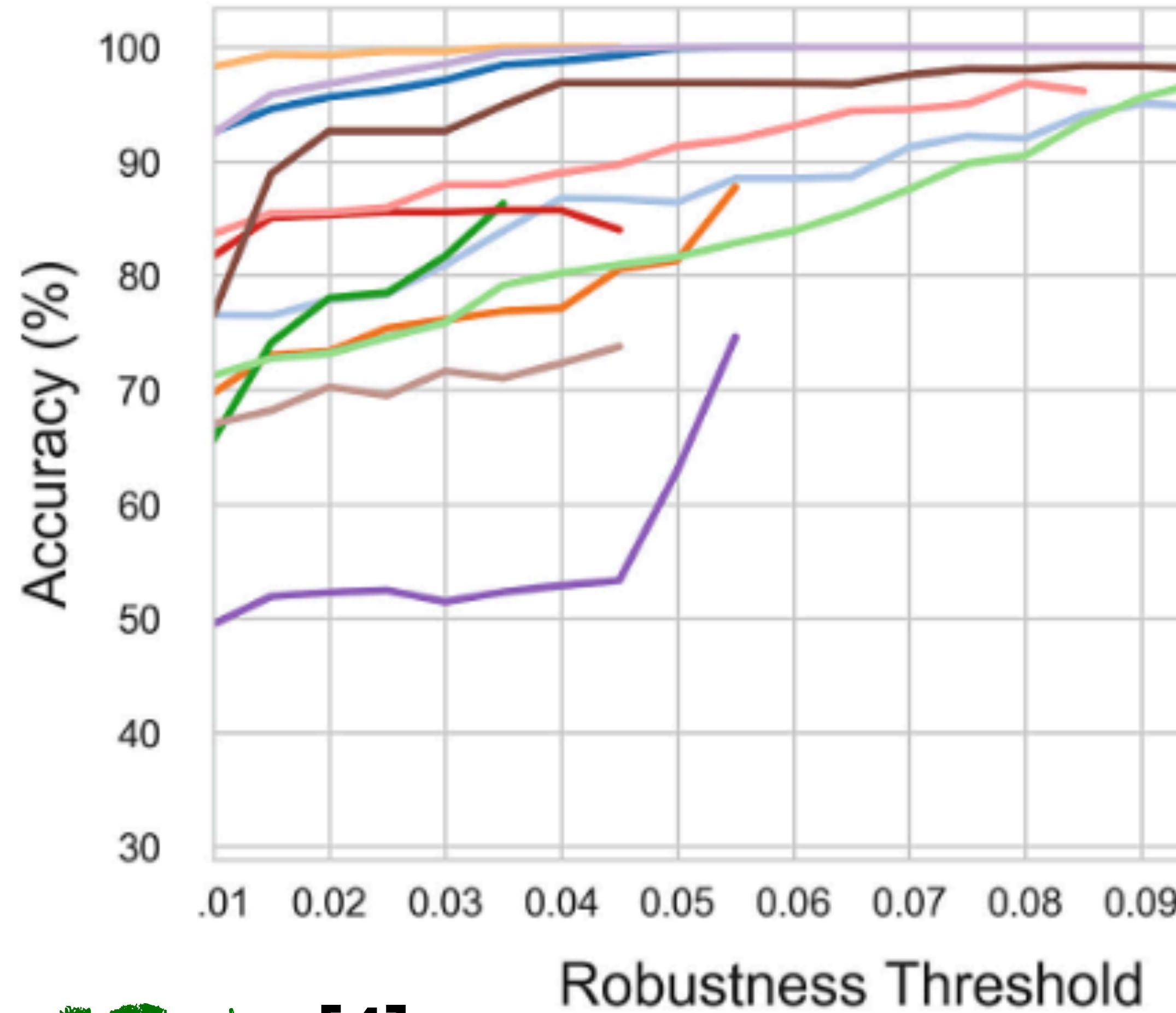
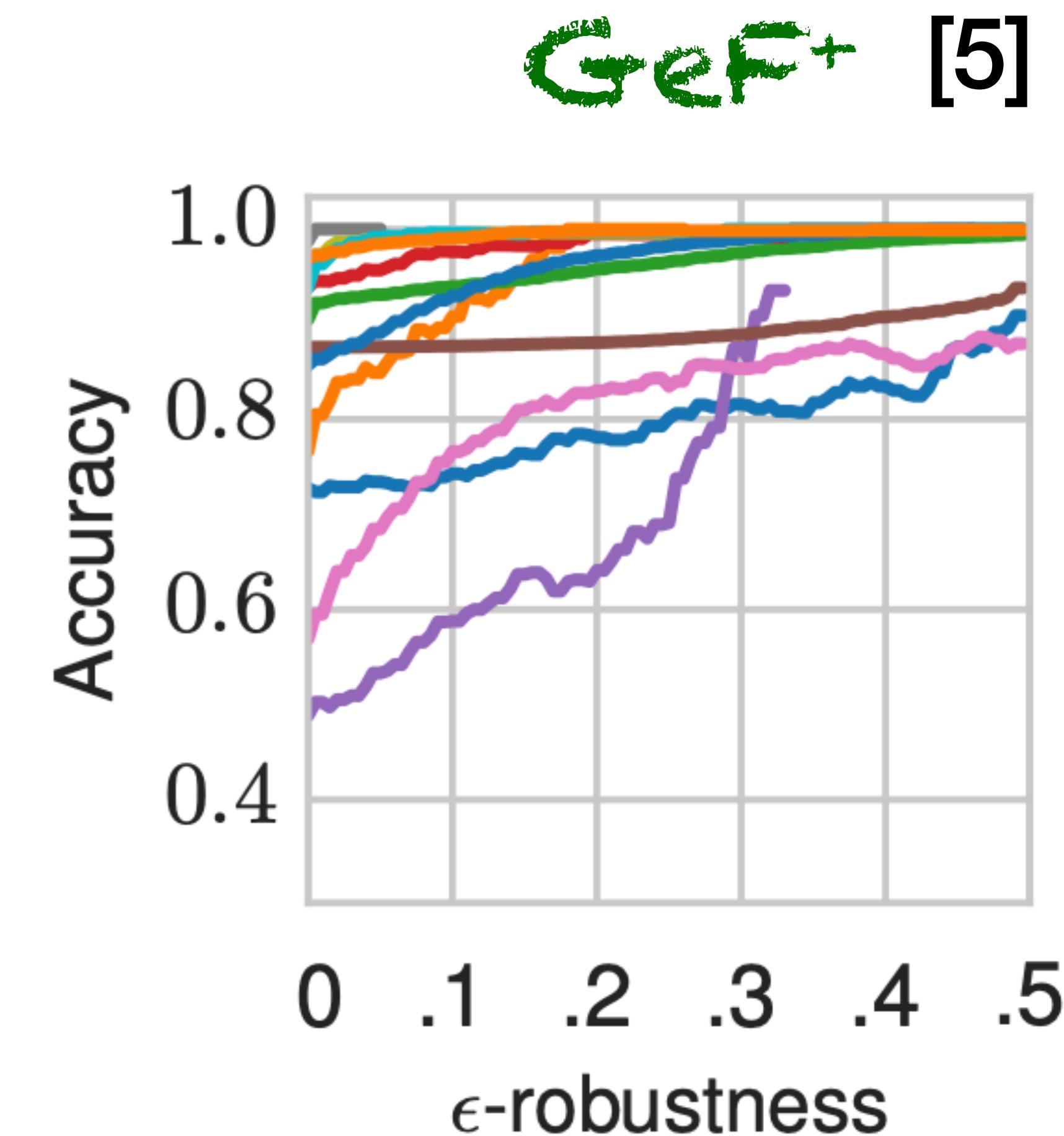
Decision Trees and Random Forests are among the most widely used machine learning models, and often achieve state-of-the-art performance in tabular, domain-agnostic datasets. Nonetheless, they are often unreliable in the presence of

2. Generative Forests

Before discussing the main ideas of the paper, we introduce Generative Forests and the required notation. As we focus on classification tasks, we denote the set of explanatory variables as $\mathbf{X} = \{X_1, X_2, \dots, X_m\}$ and the target variable as \mathbf{Y} . As usual, we write realizations of random variables

Cassio
de Campos
& various
co-authors

— hypothyroid — breast-cancer — flags
— ecoli — dermatology — diabetes
— colic — cmc — balance-scale
— heart-h — car — bridges



— diabetes
— german
— bank
— vowel
— cmc
— electricity
— gesture
— mice
— texture
— dna
— jungle
— phishing

ROBUSTNESS QUANTIFICATION

- correlates nicely with accuracy ✓
- works for different types of model architectures ✓

Adrián
Detavernier

Rodrigo
Lassance

2026 -

[6, 7, ...]

Robustness quantification: a new method for assessing the reliability of
the predictions of a classifier

Adrián Detavernier¹

¹Foundations Lab for imprecise probabilities, Ghent University, Belgium

ness quantification compare in cases wh-
data is limited or when there is a distri-
train and test data. Our moti-
by the fact that the
can have a big
116

Jasper De Bock¹

Robustness and uncertainty: two complementary
aspects of the reliability of the predictions of a classifier

Adrián Detavernier
Ghent University
Belgium

edations Lab for imprecise probabilities

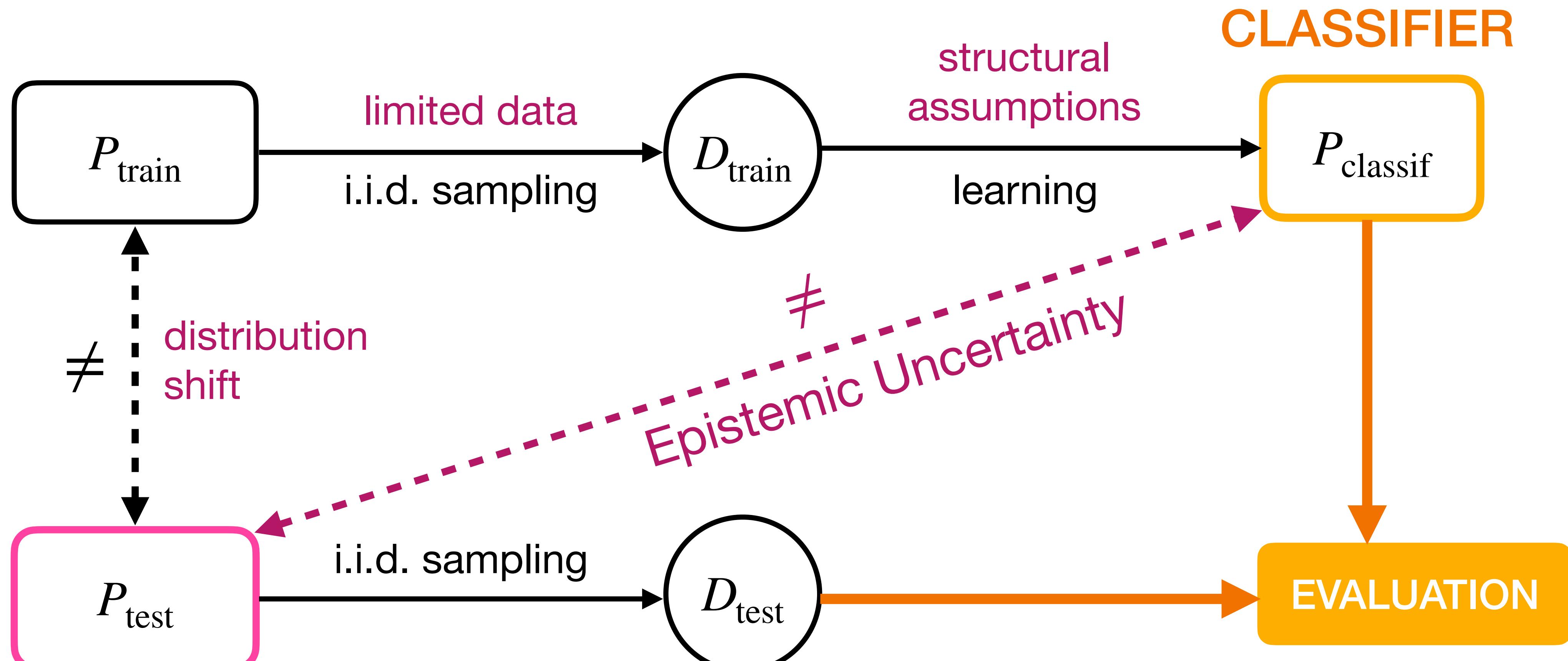
Abstract

Two different approaches for assessing the reliability
of a classifier: Robustness Quantification (RQ) and
Uncertainty Quantification (UQ). We compare both approaches on a number
of datasets. There is no clear winner between the two
approaches. We combined to obtain a hybrid approach
of our approach, for each data point we obtain a
confidence of uncertainty and a confidence of robustness.

Jasper De Bock
Ghent University
Belgium

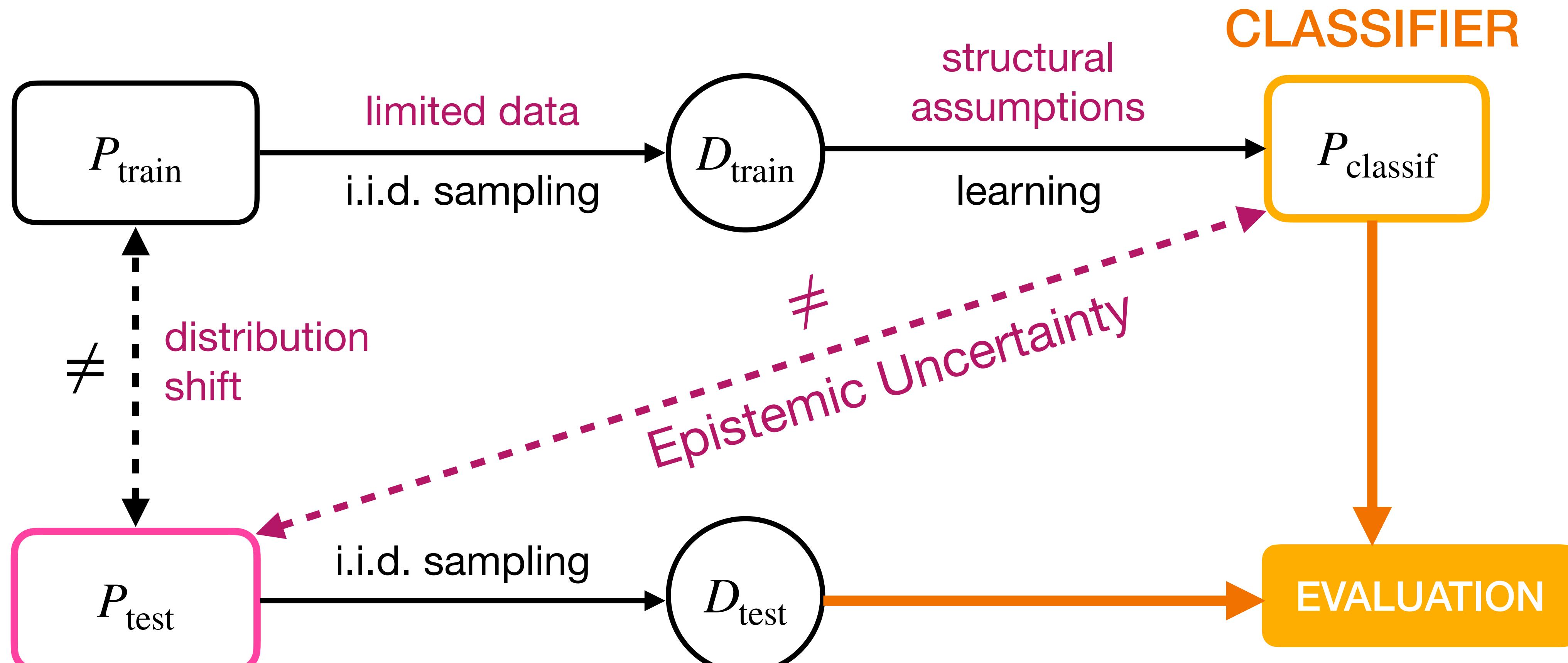
Foundations Lab for imprecise probabilities

CLASSIFICATION . . . is unreliable



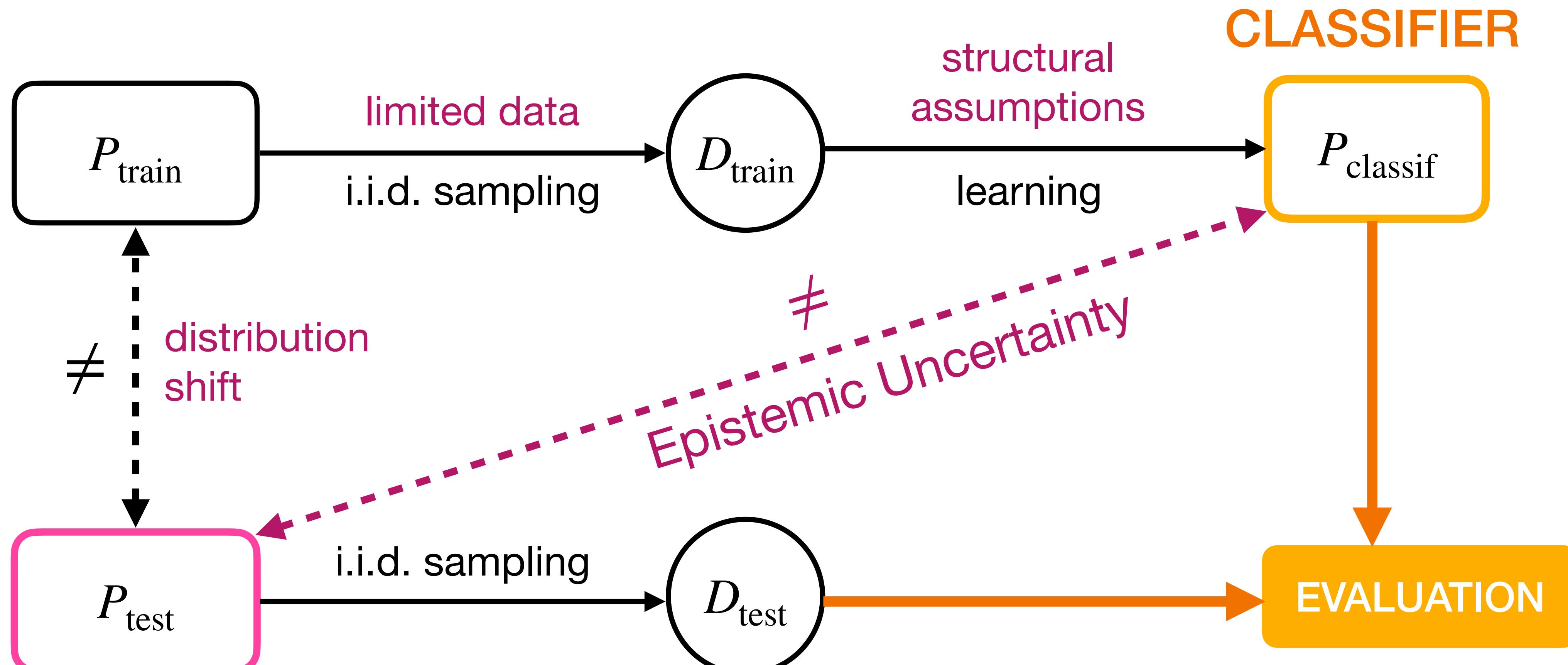
Aleatoric Uncertainty

UNCERTAINTY QUANTIFICATION

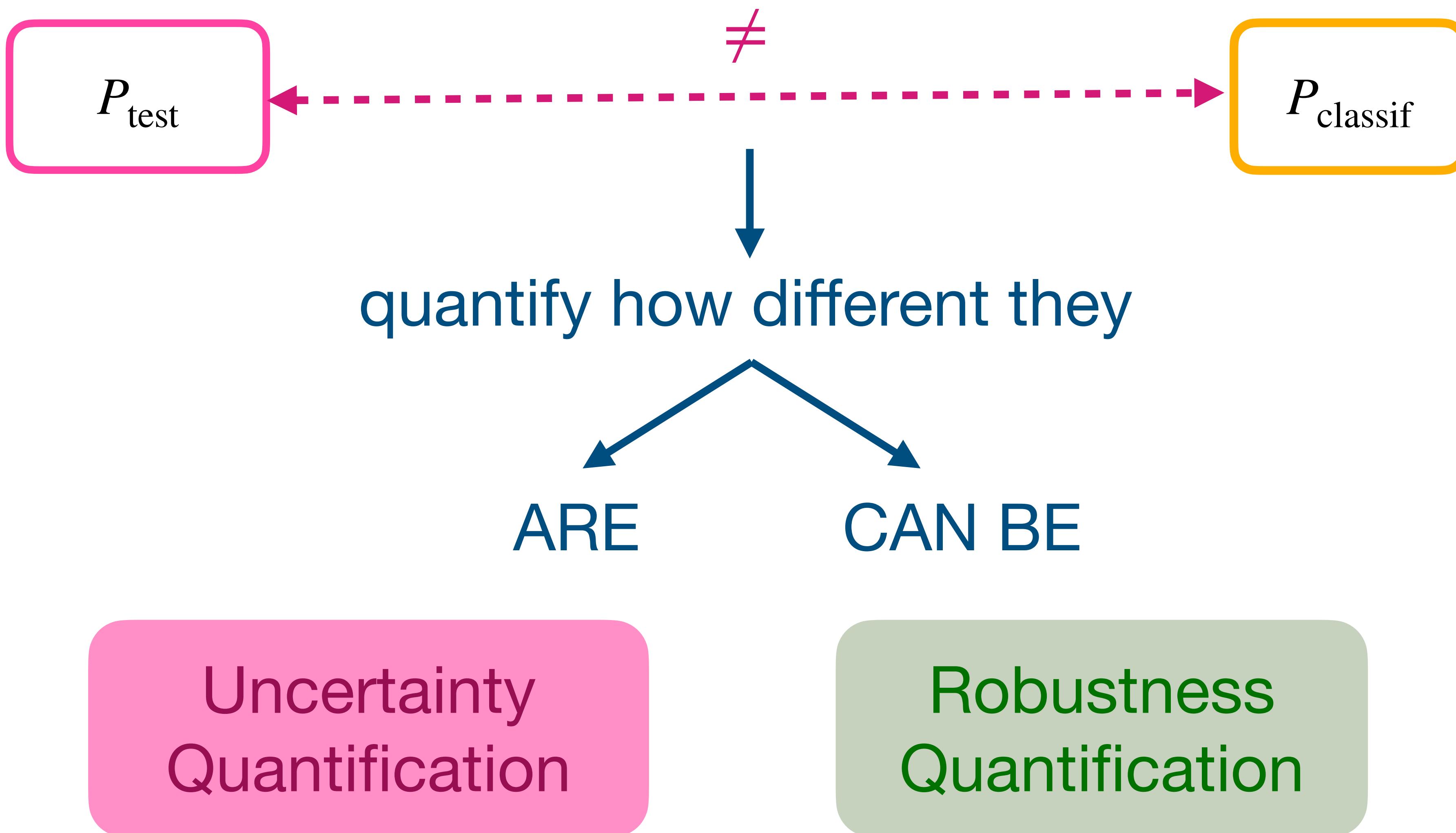


Aleatoric Uncertainty

ROBUSTNESS QUANTIFICATION



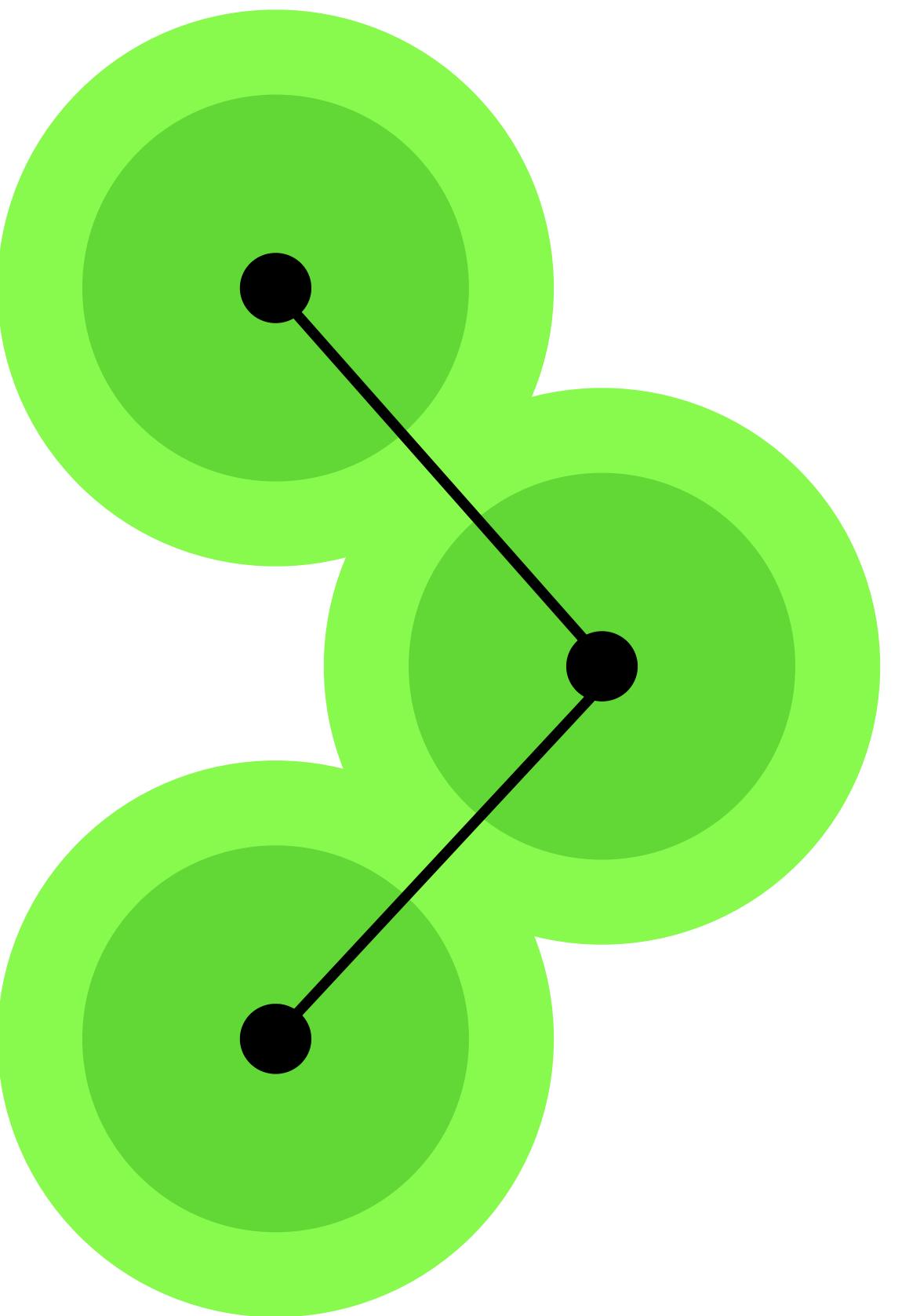
Aleatoric Uncertainty



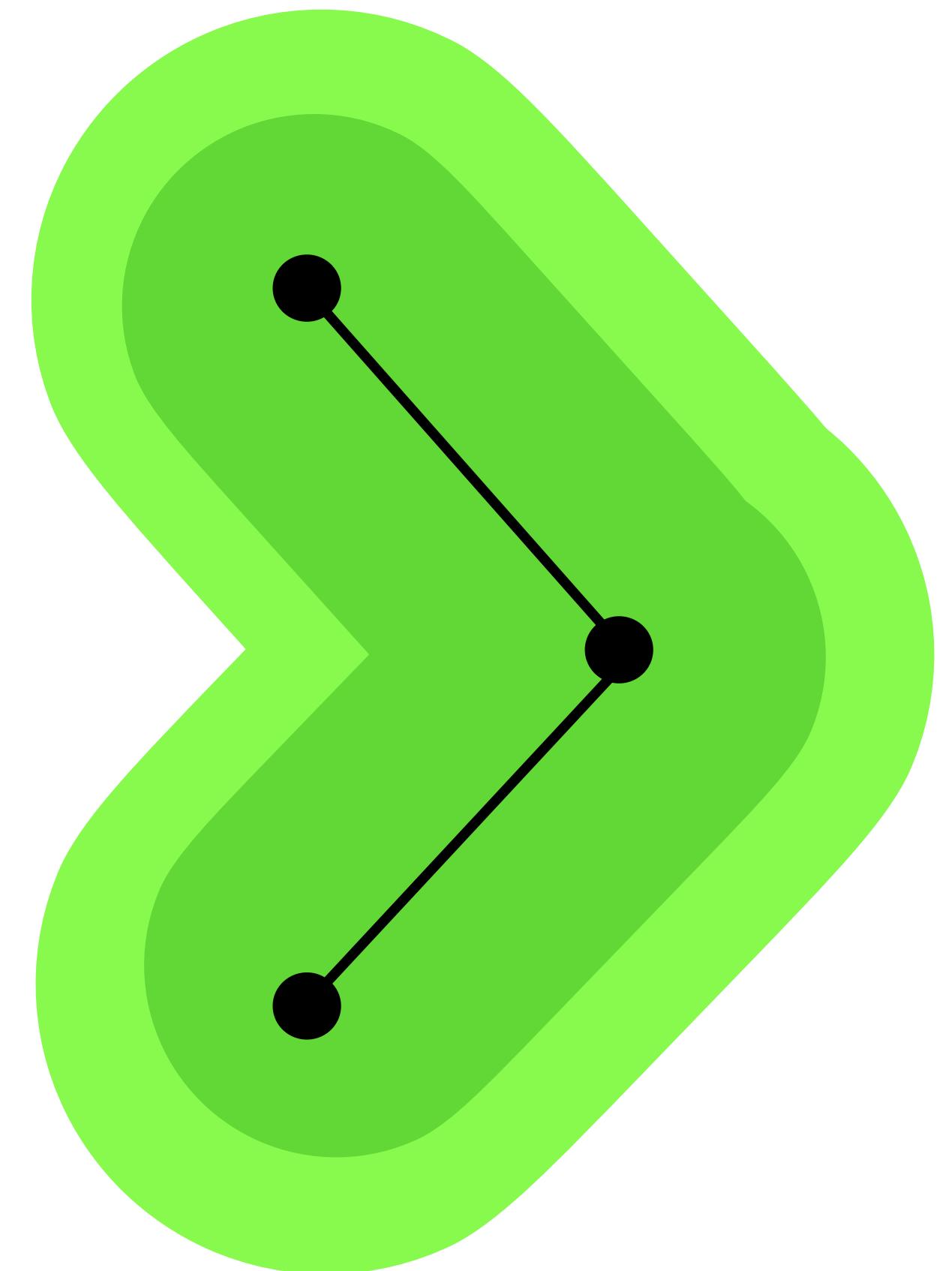
ROBUSTNESS QUANTIFICATION

- correlates nicely with accuracy
- works for different types of model architectures
- is conceptually different from UQ ✓

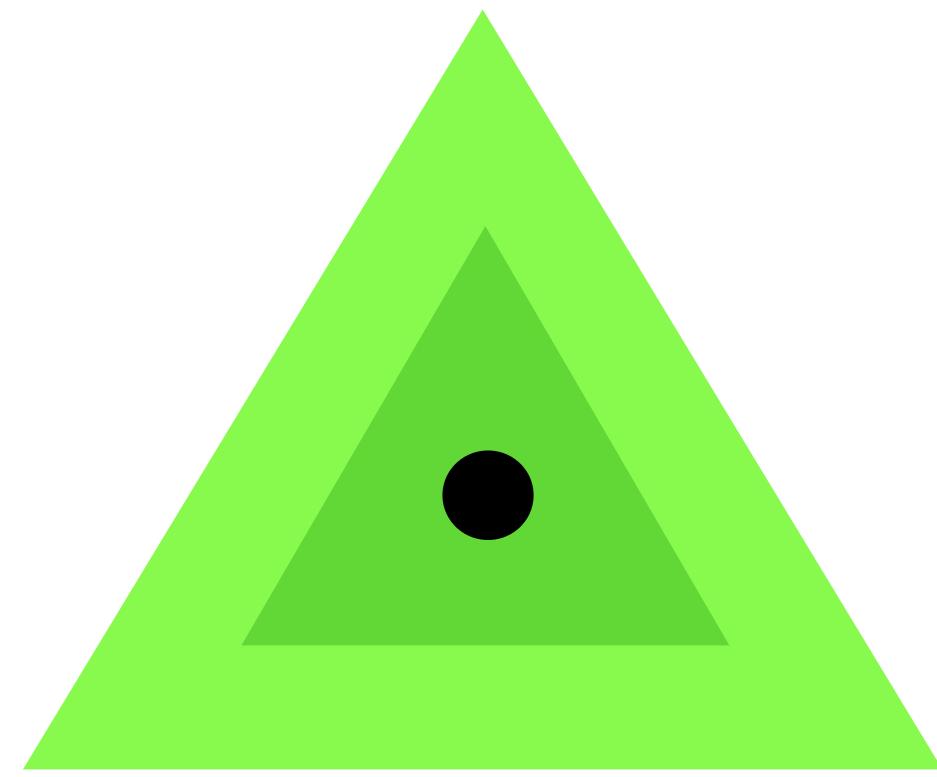
LOCAL



GLOBAL



ϵ -CONTAMINATION



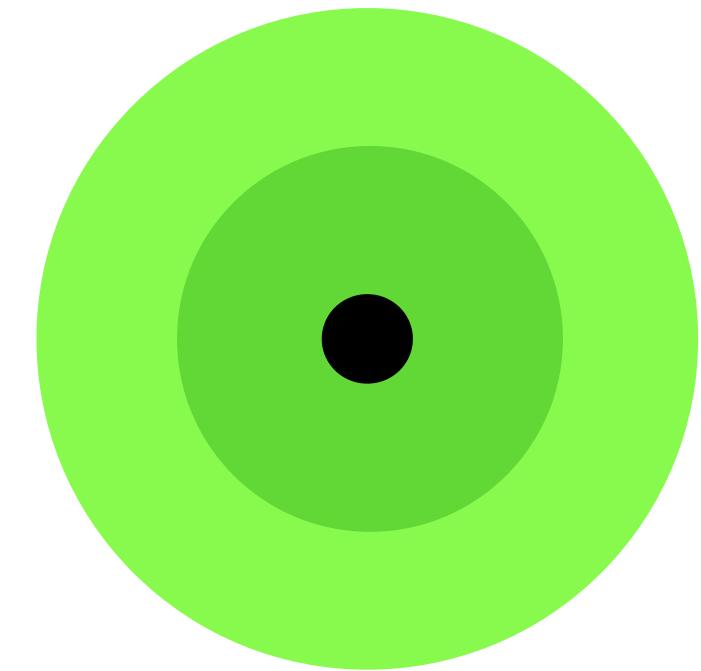
\mathcal{P}_ϵ

||

$$\{(1 - \epsilon)P_{\text{classif}} + \epsilon P: P \in \Delta\}$$

OTHER STUFF

distance-based, ...



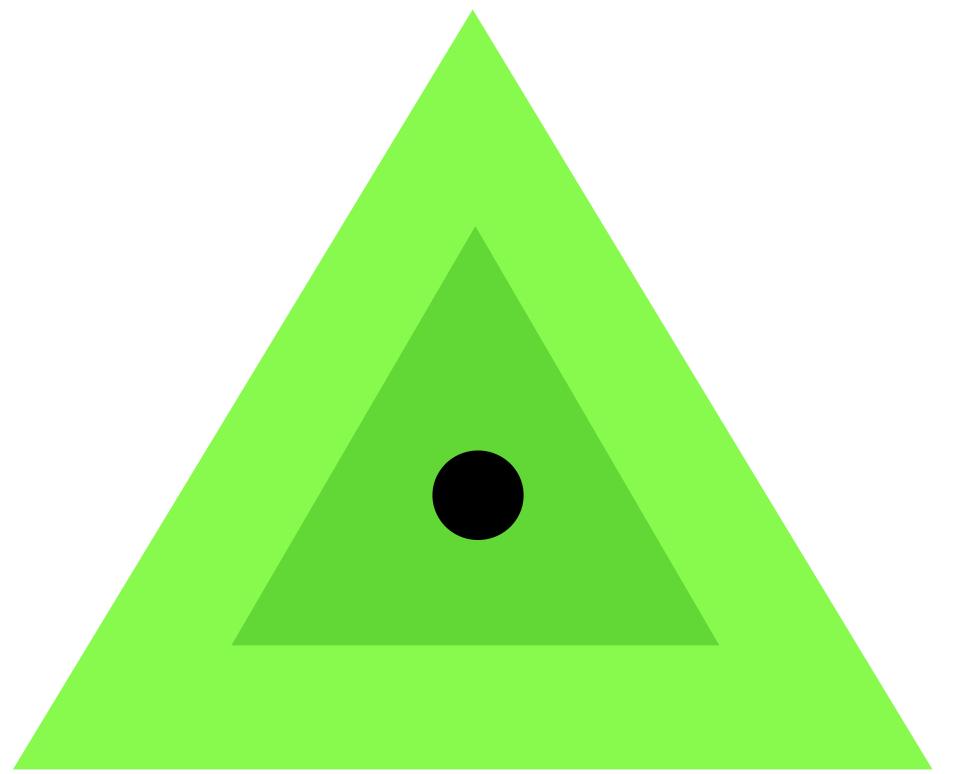
\mathcal{P}_ϵ

||

$$\{P \in \Delta: d(P_{\text{classif}}, P) < \epsilon\}$$

ϵ -CONTAMINATION

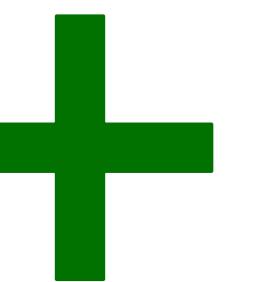
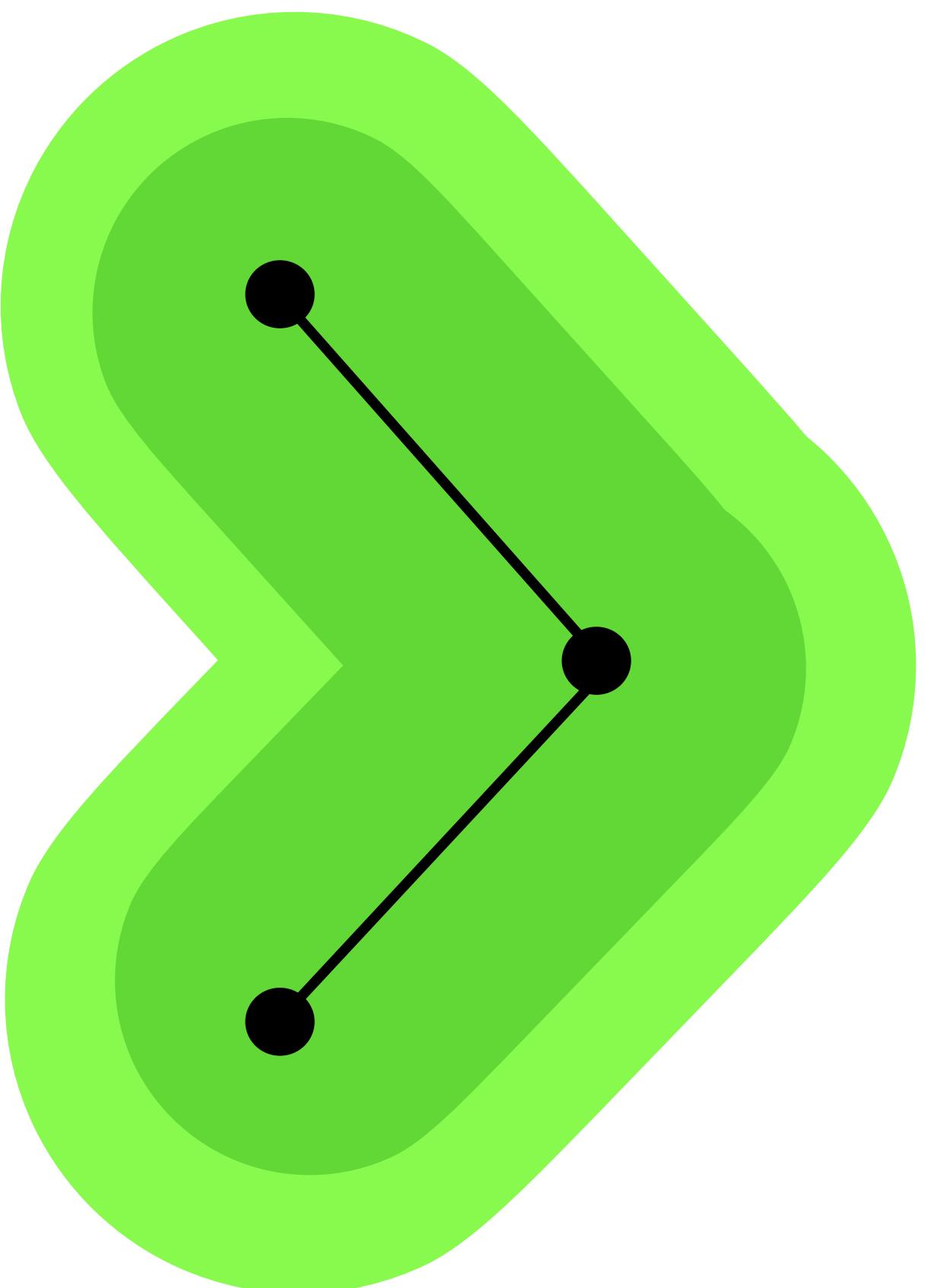
GLOBAL



\mathcal{P}_ϵ

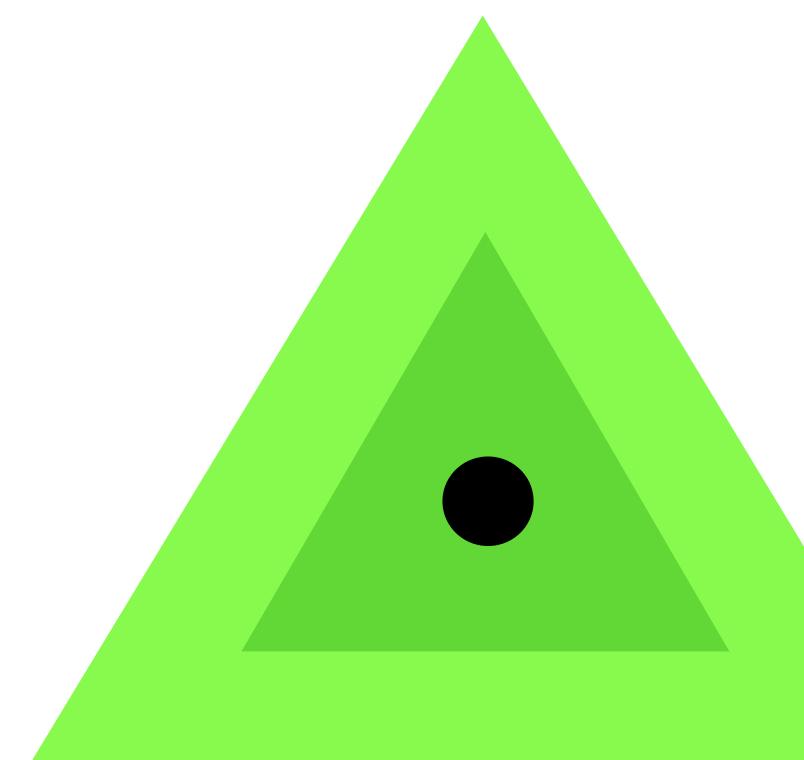
||

$$\{(1 - \epsilon)P_{\text{classif}} + \epsilon P: P \in \Delta\}$$



ϵ -CONTAMINATION

GLOBAL



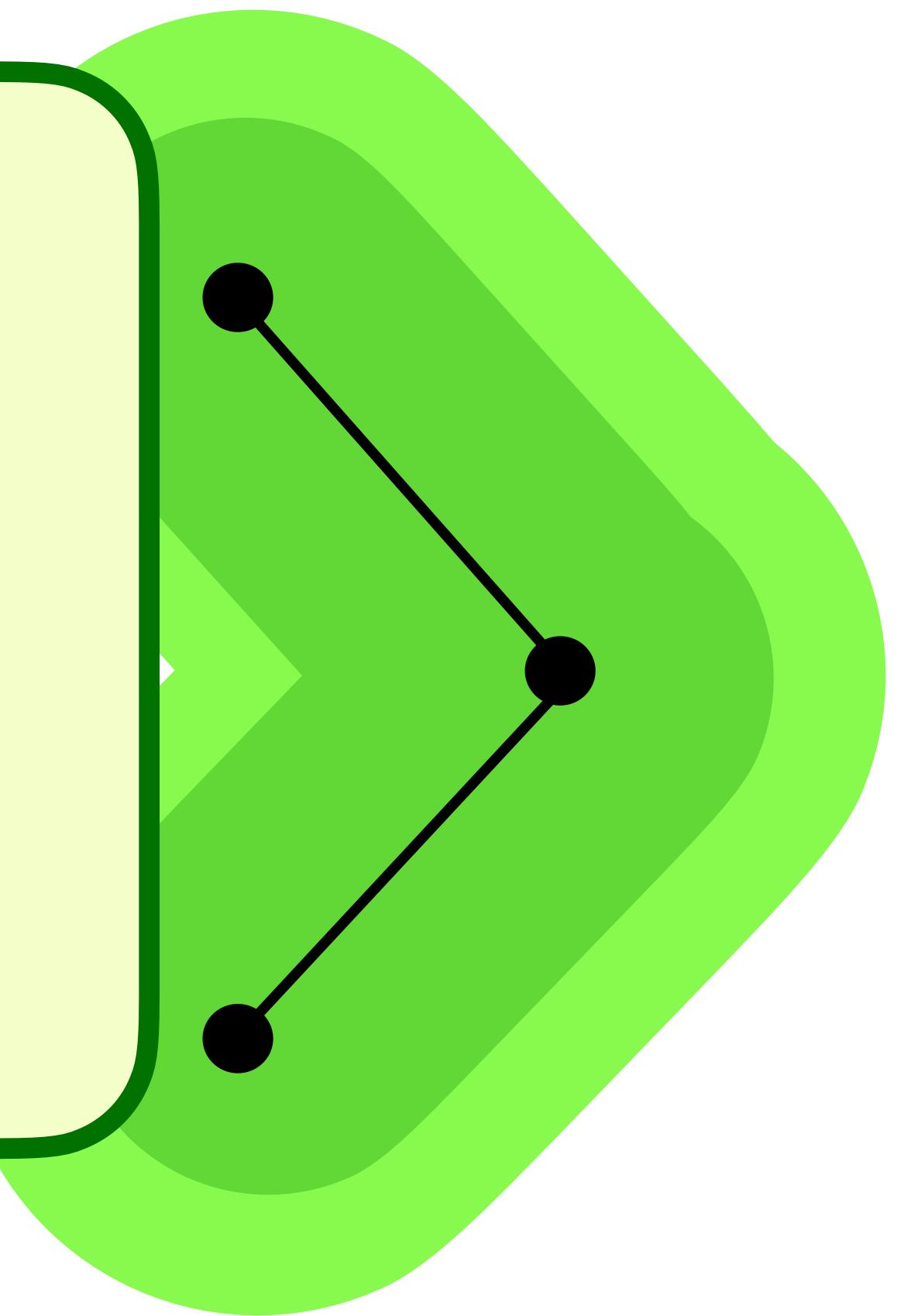
\mathcal{P}_ϵ
||

$$\{(1 - \epsilon)P_{\text{classif}} + \epsilon P: P \in \Delta\}$$

$$\epsilon_{\text{glob}} = \frac{\Delta}{1 + \Delta}$$

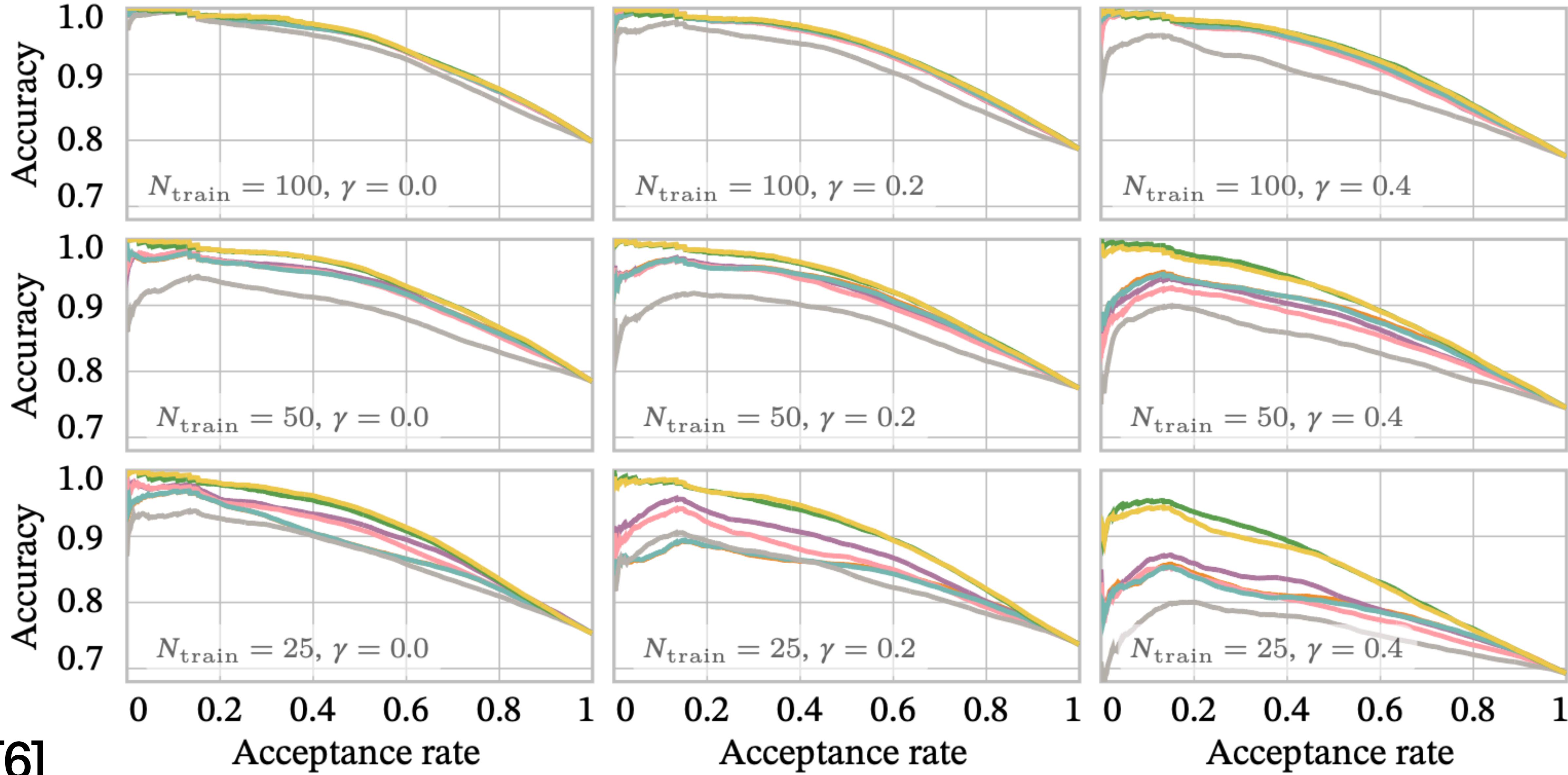
$$\Delta = P_{\text{classif}}(x, \hat{y}) - P_{\text{classif}}(x, \hat{y}_2)$$

$$\hat{y}_2 = \arg \max_{y \in \mathcal{Y} \setminus \{\hat{y}\}} P_{\text{classif}}(y | x)$$



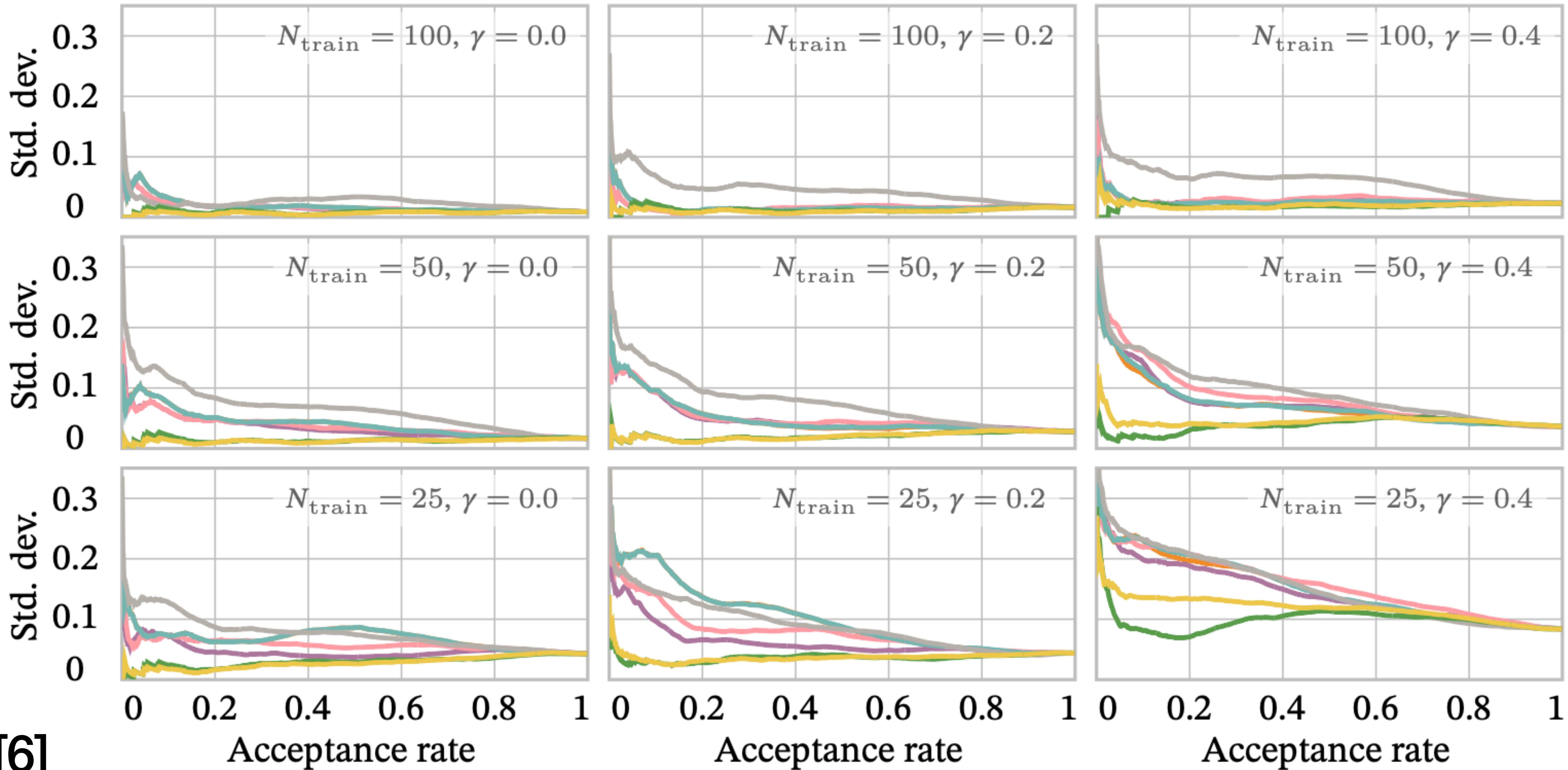
ROBUSTNESS QUANTIFICATION

- correlates nicely with accuracy
- works for different types of model architectures
- is conceptually different from UQ
- also works with global perturbations ✓

NBC

ROBUSTNESS QUANTIFICATION

- correlates nicely with accuracy ✓
- works for different types of model architectures
- is conceptually different from UQ
- also works with global perturbations ✓
- is competitive with UQ ✓
- is good with distribution shift and small data sets ✓

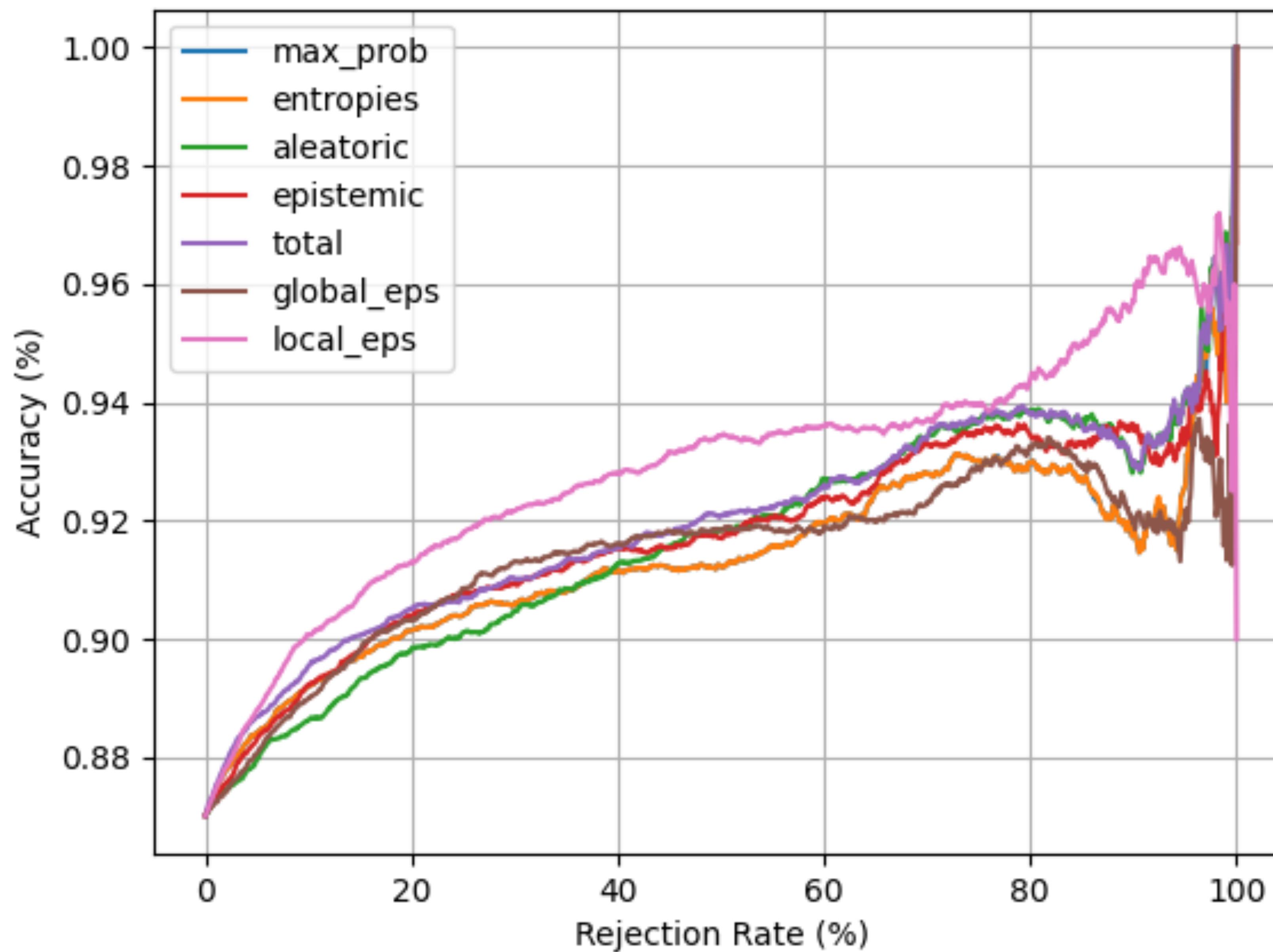
NBC

ROBUSTNESS QUANTIFICATION

- correlates nicely with accuracy
- works for different types of model architectures
- is conceptually different from UQ
- also works with global perturbations
- is competitive with UQ
- is good with distribution shift and small data sets
- is more stable than UQ ✓

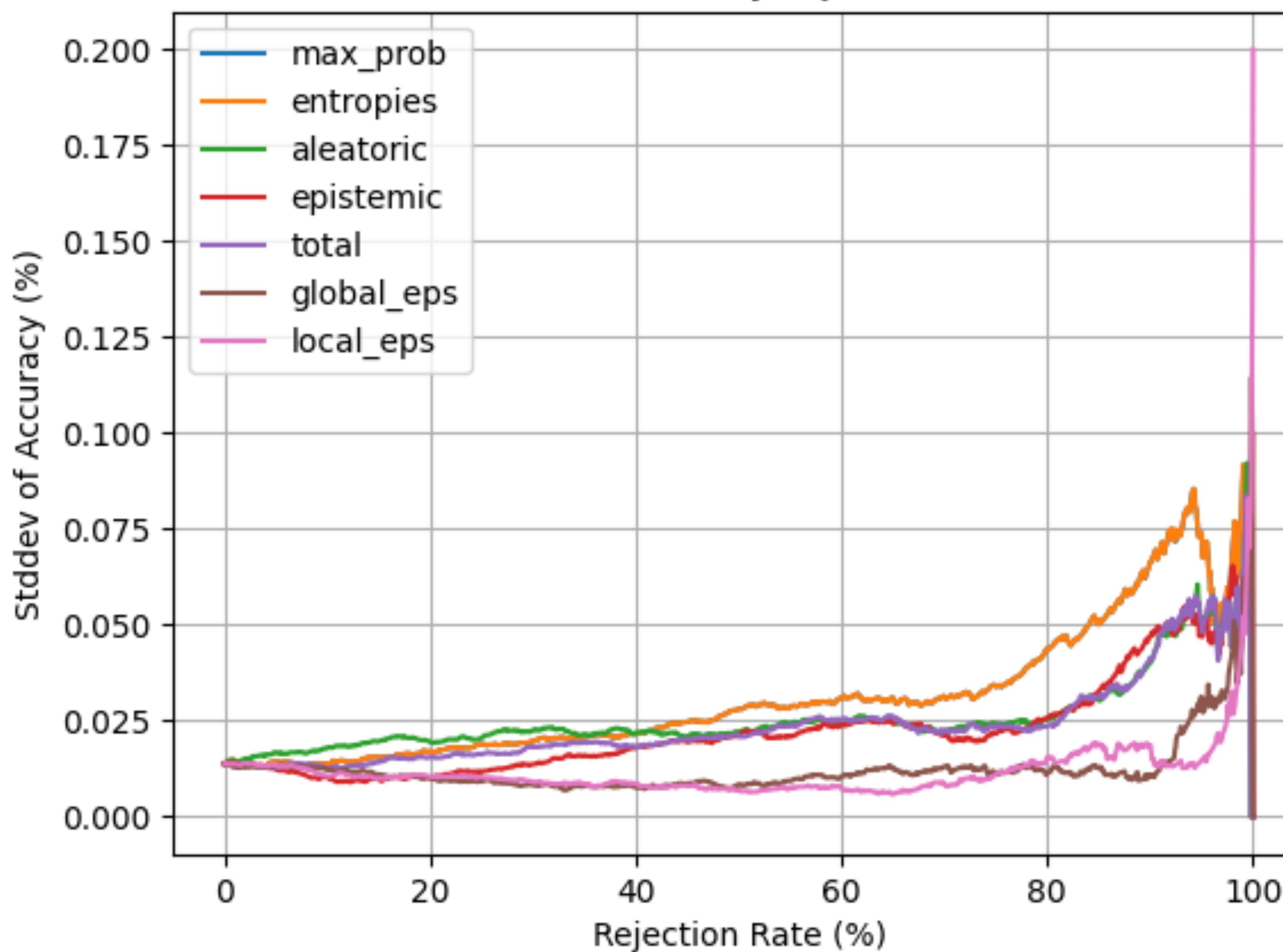
NBC

accuracy-rejection curve



NBC

Stddev of accuracy-rejection curve

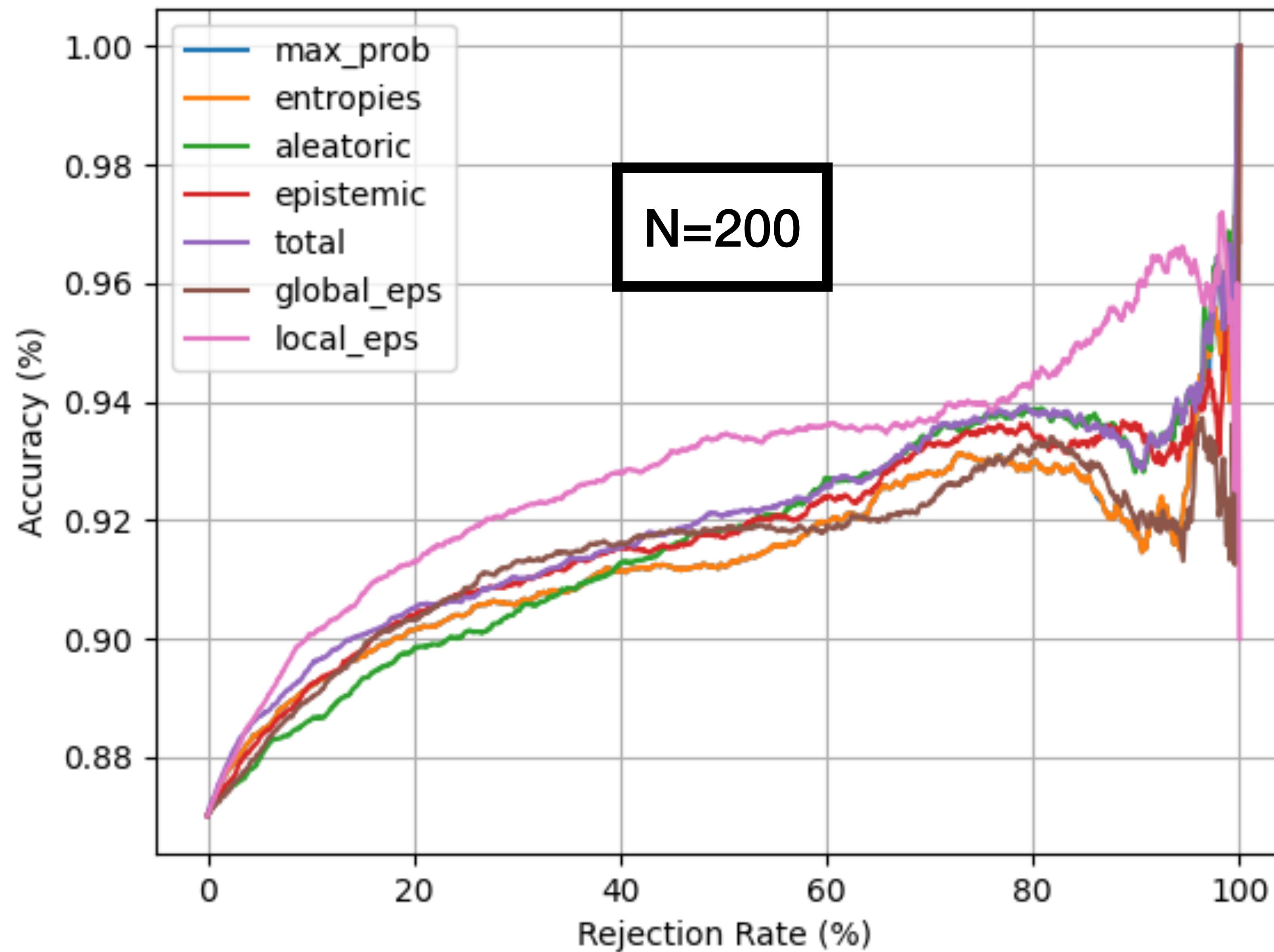


ROBUSTNESS QUANTIFICATION

- correlates nicely with accuracy ✓
- works for different types of model architectures
- is conceptually different from UQ
- also works with global perturbations ✓
- is competitive with UQ ✓
- is good with distribution shift and small data sets
- is more stable than UQ ✓

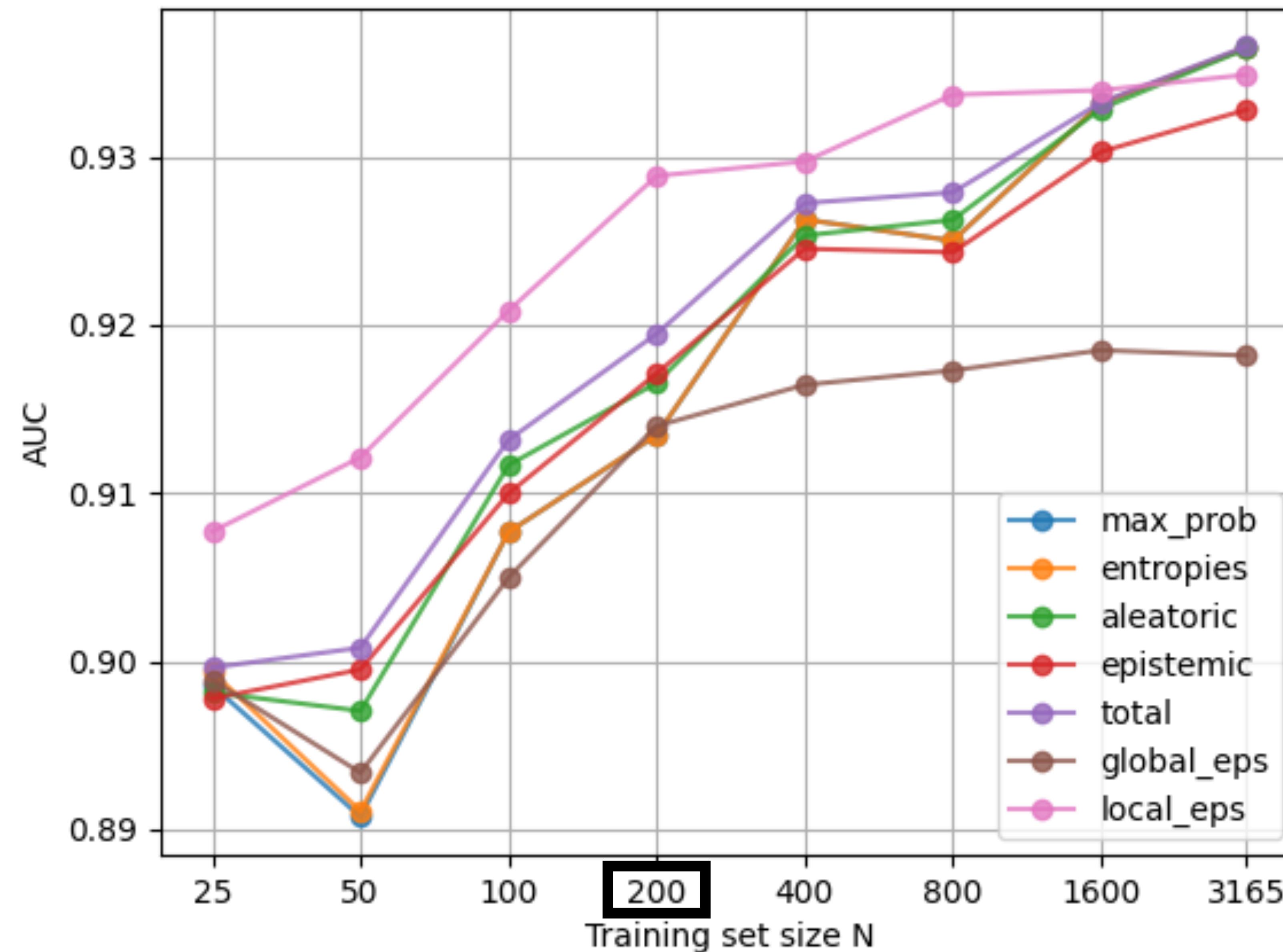
NBC

accuracy-rejection curve



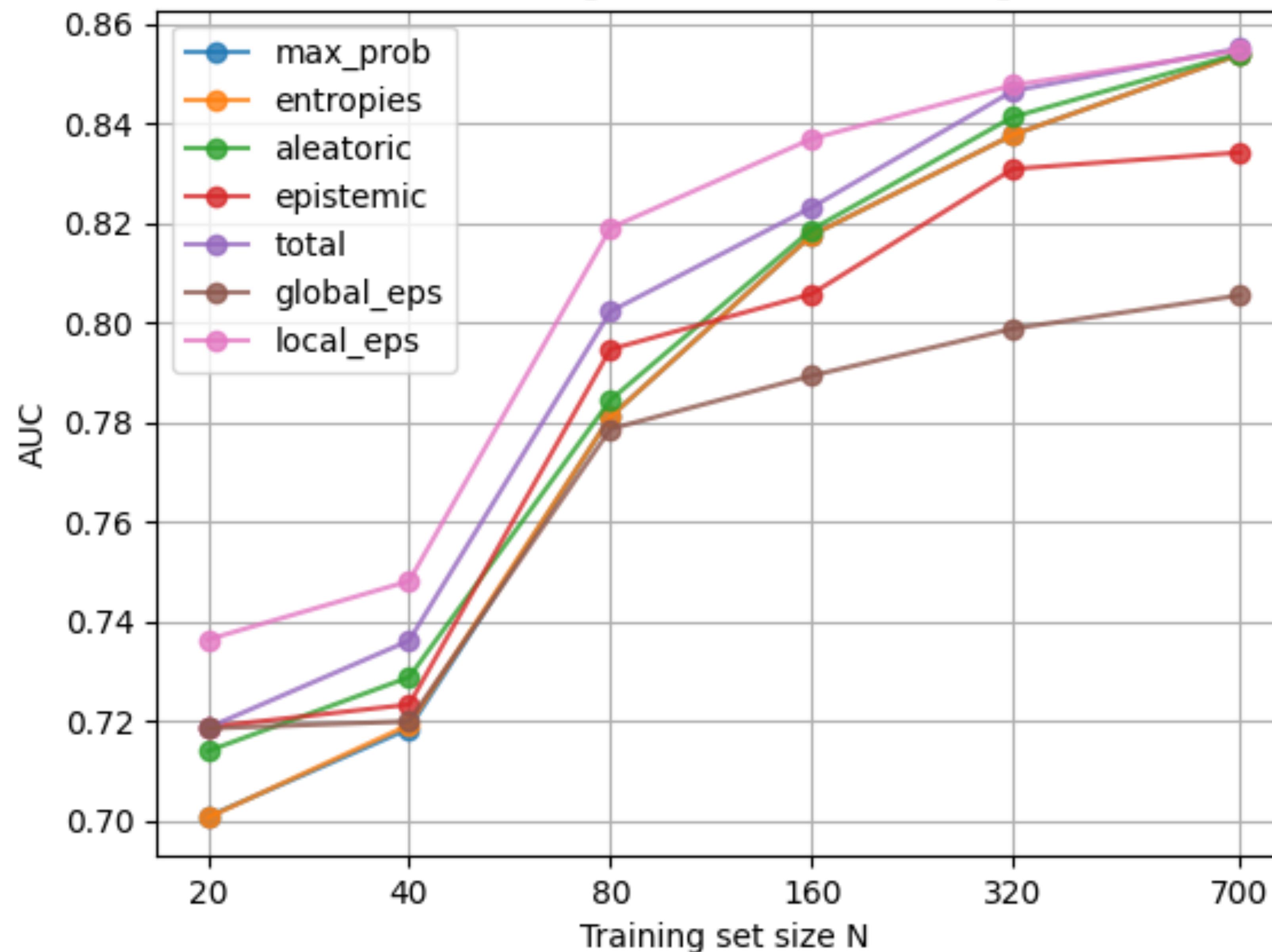
NBC

AUC vs Training set size for dataset bank



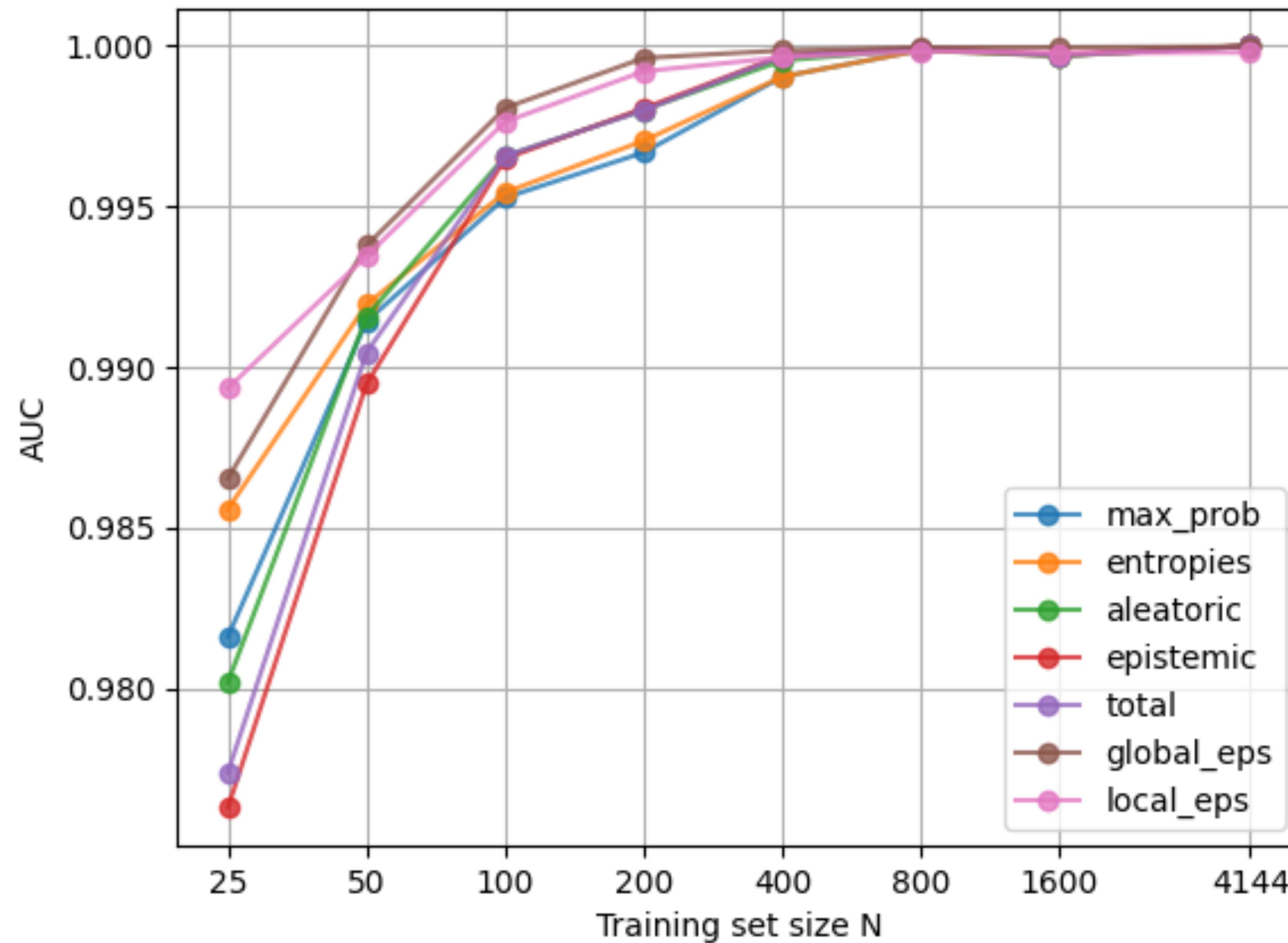
NBC

AUC vs Training set size for dataset german



NBC

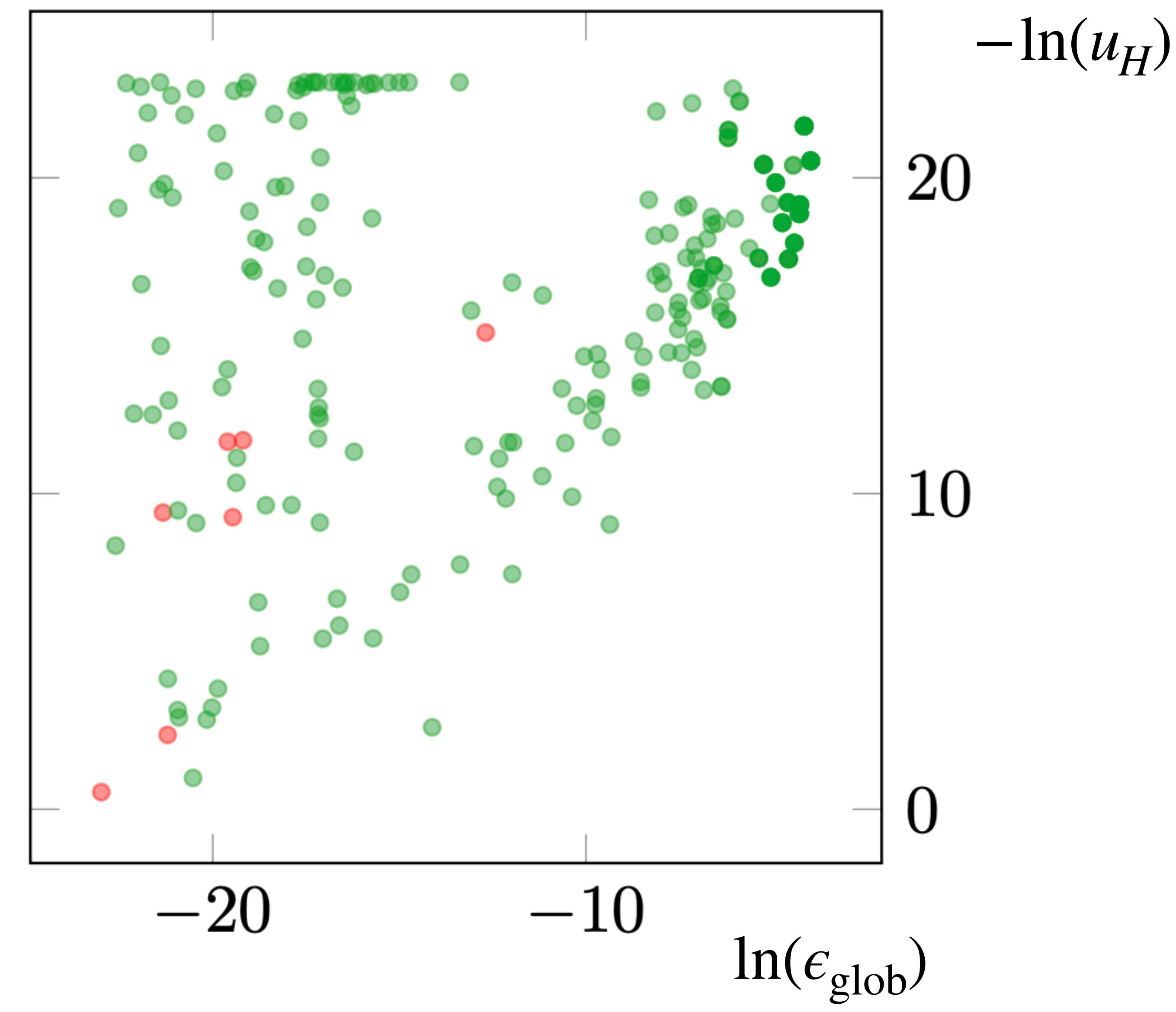
AUC vs Training set size for dataset mushroom



ROBUSTNESS QUANTIFICATION

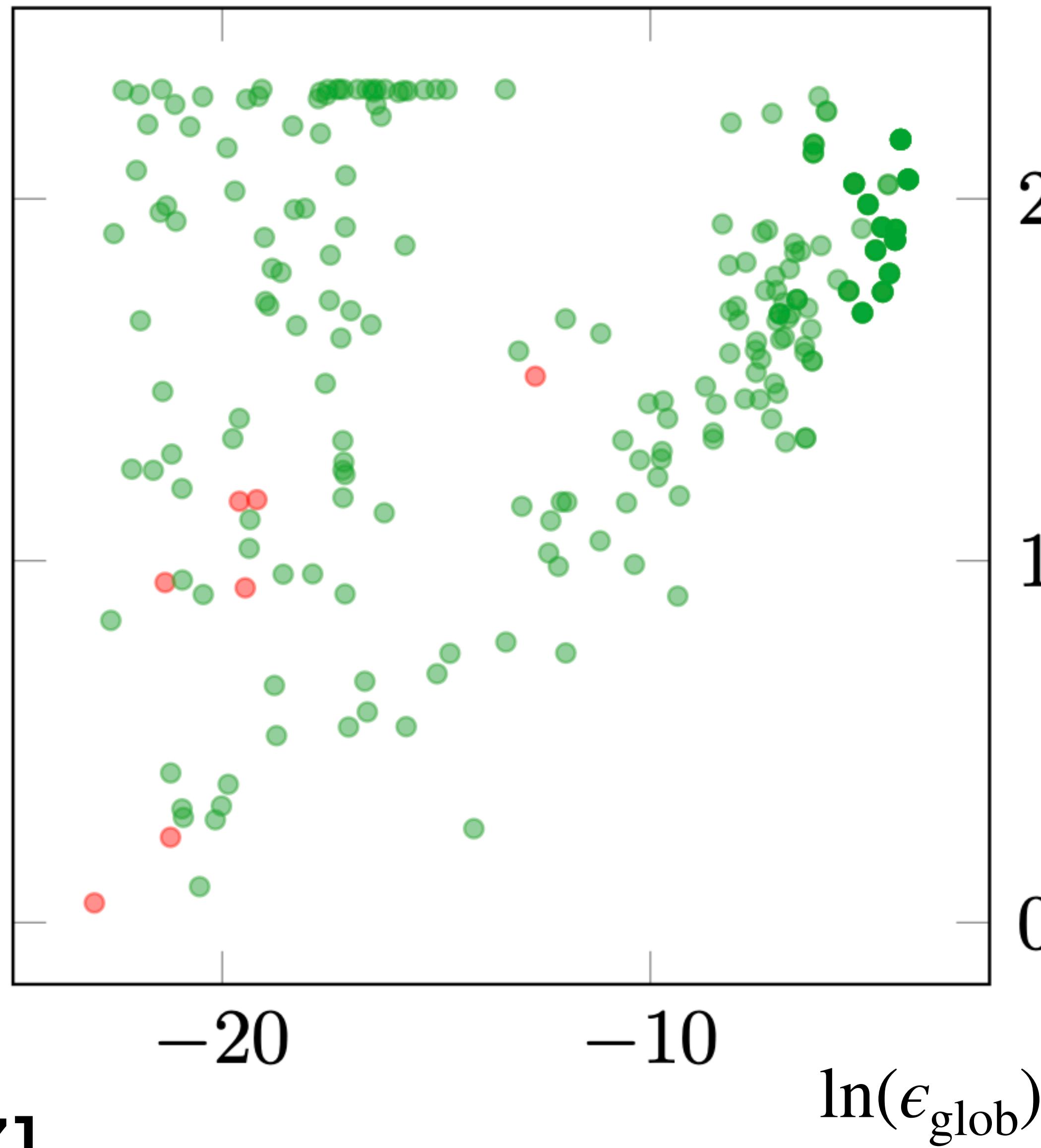
- correlates nicely with accuracy
- works for different types of model architectures
- is conceptually different from UQ
- also works with global perturbations ✓
- is competitive with UQ ✓
- is good with distribution shift and small data sets ✓
- is more stable than UQ ✓

NBC



ROBUSTNESS QUANTIFICATION

- correlates nicely with accuracy ✓
- works for different types of model architectures
- is conceptually different from UQ
- also works with global perturbations ✓
- is competitive with and complementary to UQ ✓
- is good with distribution shift and small data sets
- is more stable than UQ

 $-\ln(u_H)$

20

uncertainty ordering

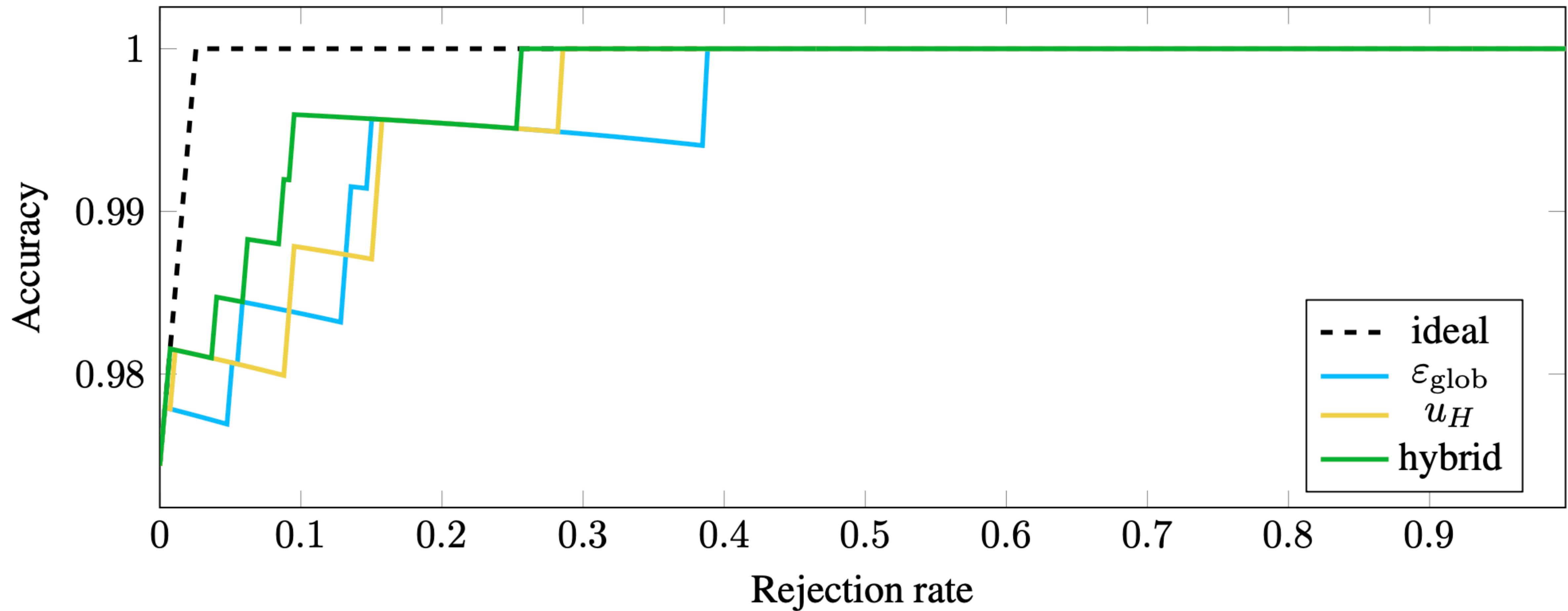
 $n_{u_H,i}$: order of i according to u_H

robustness ordering

 $n_{\epsilon_{\text{glob}},i}$: order of i according to u_H

hybrid ordering

 $h_i = \gamma n_{u_H,i} + (1 - \gamma) n_{\epsilon_{\text{glob}},i}$

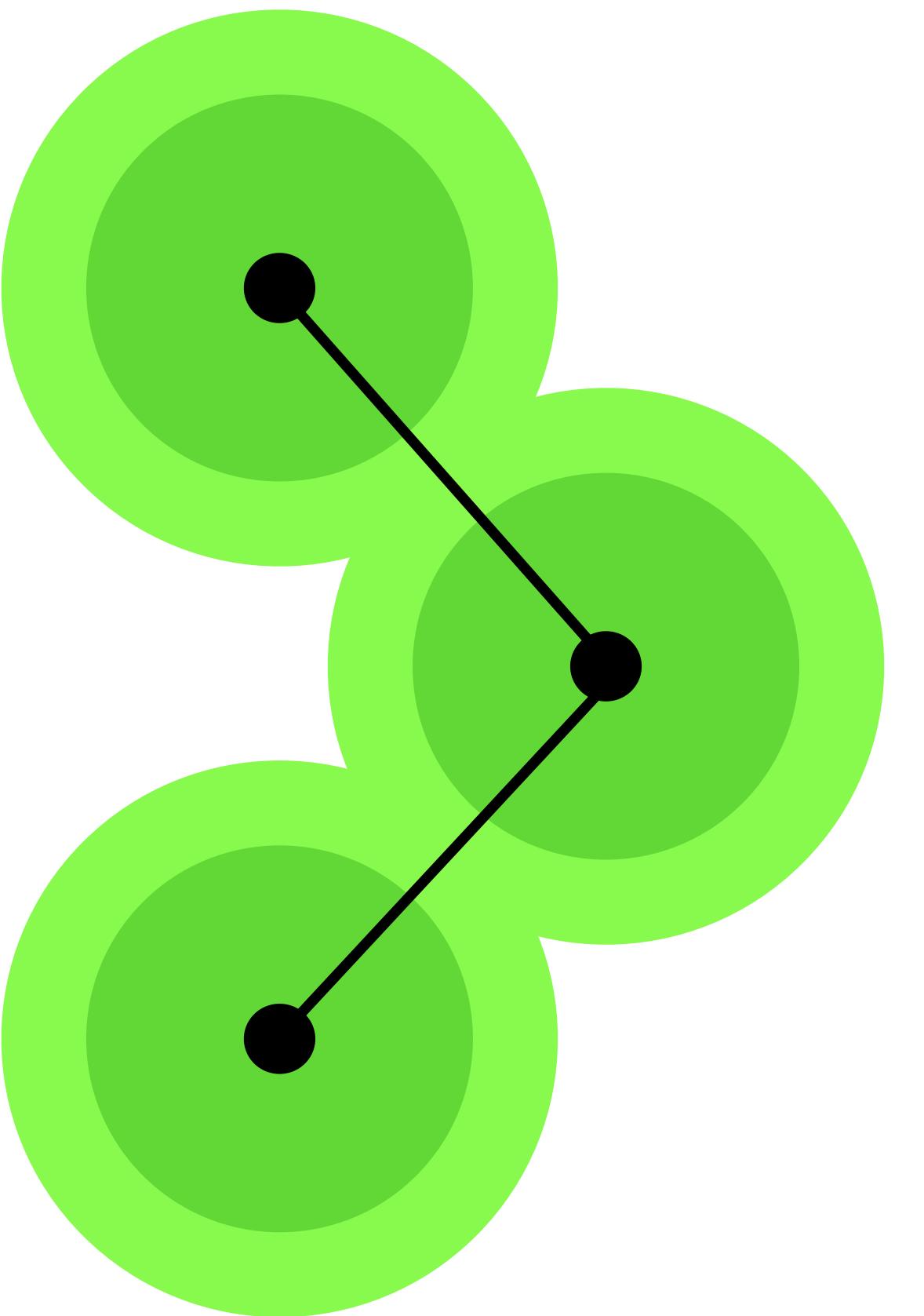


Dataset	u_H	ε_{loc}	hybrid	γ	ε_{glob}	hybrid	γ
Adult	0.9295	0.9066	0.9295	1.00	0.7690	0.9295	1.00
Austr. Cr.	0.9236	0.9139	0.9265	0.75	0.8872	0.9246	0.86
Bank M.	0.9485	0.9452	0.9485	0.55	0.9299	0.9481	0.88
BCW	0.9968	0.9962	0.9974	0.52	0.9961	0.9978	0.53
German Cr.	0.8338	0.8380	0.8378	0.53	0.7972	0.8376	0.85
Heart dis.	0.7602	0.7540	0.7602	0.95	0.6761	0.7600	0.95
Lymphogr.	0.9440	0.9419	0.9428	0.77	0.8981	0.9425	0.88
NPHA	0.4962	0.5021	0.4917	0.77	0.5159	0.4913	0.96
Nursery	0.9813	0.9822	0.9824	0.28	0.9730	0.9814	0.91
Solar (big)	0.8603	0.8926	0.8874	0.23	0.8693	0.8836	0.71
Solar (small)	0.8709	0.8597	0.8666	0.19	0.7990	0.8797	0.78
SPECT	0.9458	0.8915	0.9458	0.99	0.5738	0.9457	0.99
Stud. Math	0.9434	0.9465	0.9468	0.31	0.9205	0.9445	0.60
Stud. Port	0.8898	0.9276	0.9093	0.77	0.8952	0.9067	0.79

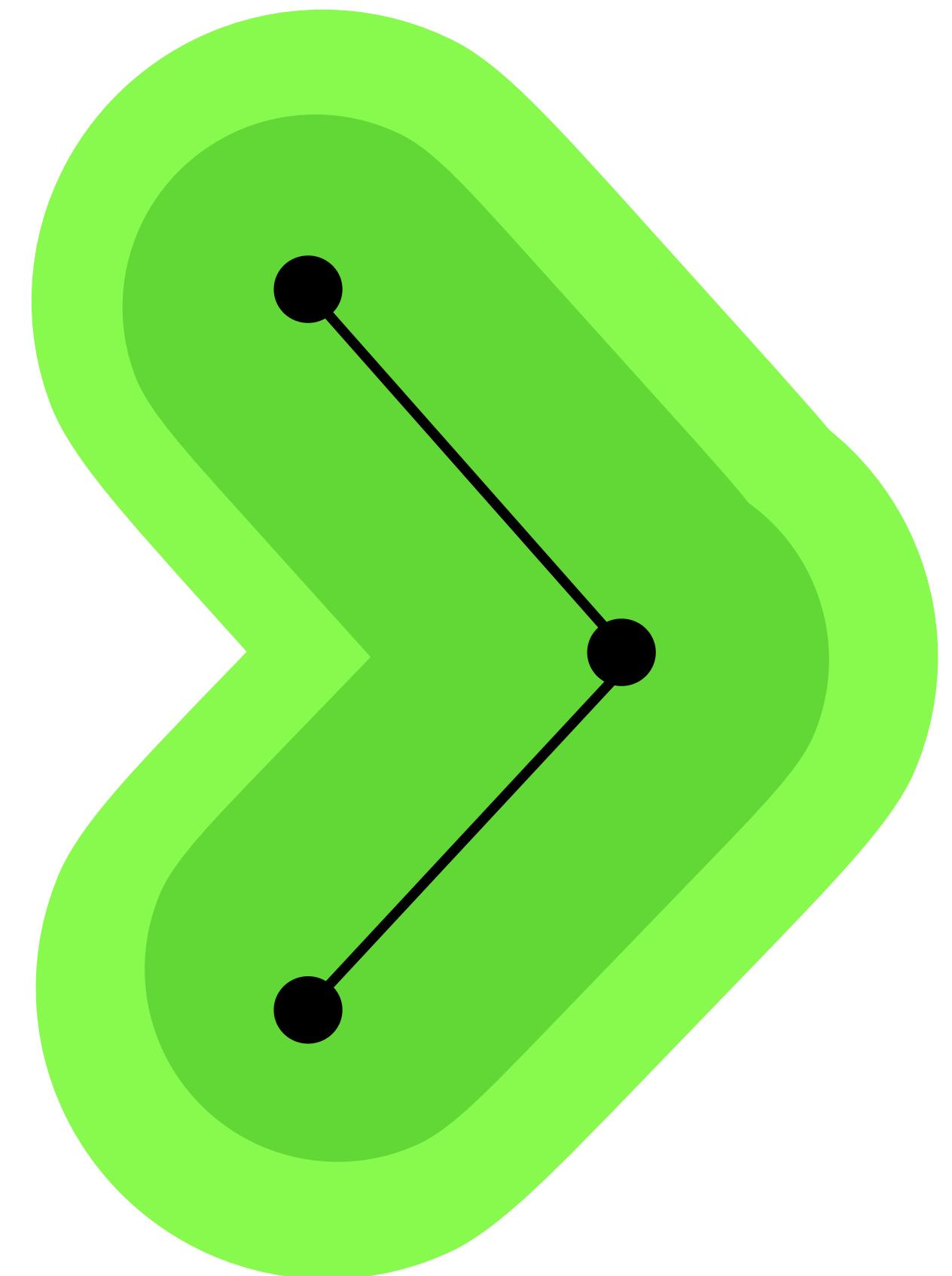
ROBUSTNESS QUANTIFICATION

- correlates nicely with accuracy ✓
- works for different types of model architectures
- is conceptually different from UQ
- also works with global perturbations ✓
- is competitive with and complementary to UQ ✓
- is good with distribution shift and small data sets
- is more stable than UQ

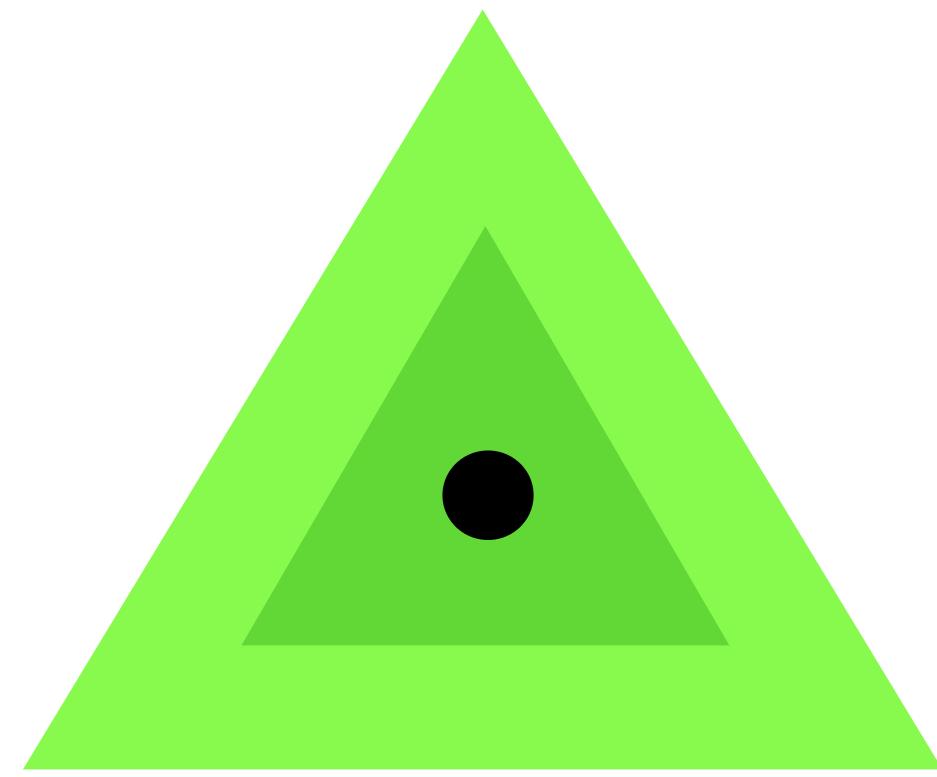
LOCAL



GLOBAL



ϵ -CONTAMINATION



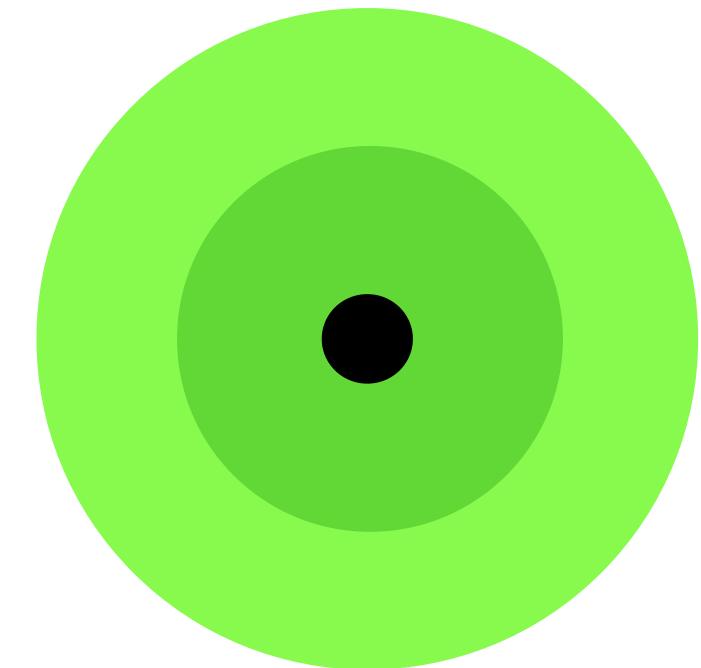
\mathcal{P}_ϵ

||

$$\{(1 - \epsilon)P_{\text{classif}} + \epsilon P: P \in \Delta\}$$

OTHER STUFF

distance-based, ...



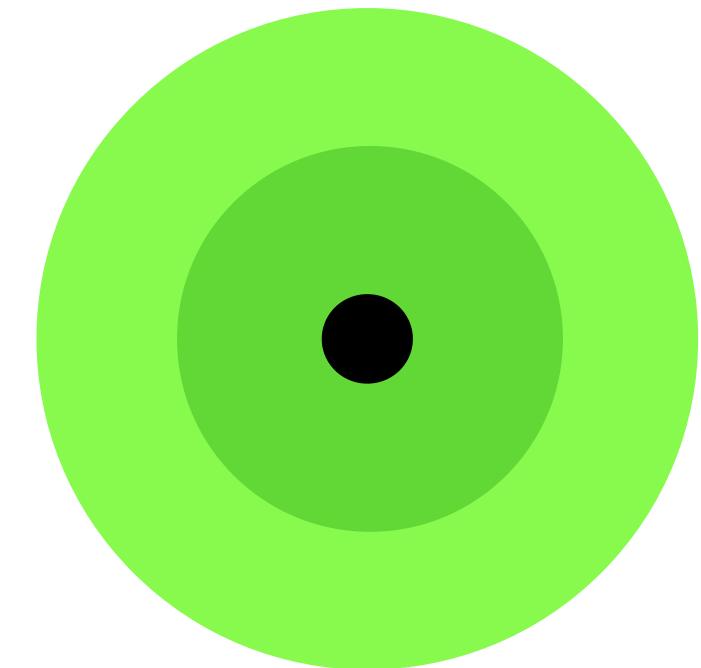
\mathcal{P}_ϵ

||

$$\{P \in \Delta: d(P_{\text{classif}}, P) < \epsilon\}$$

OTHER STUFF

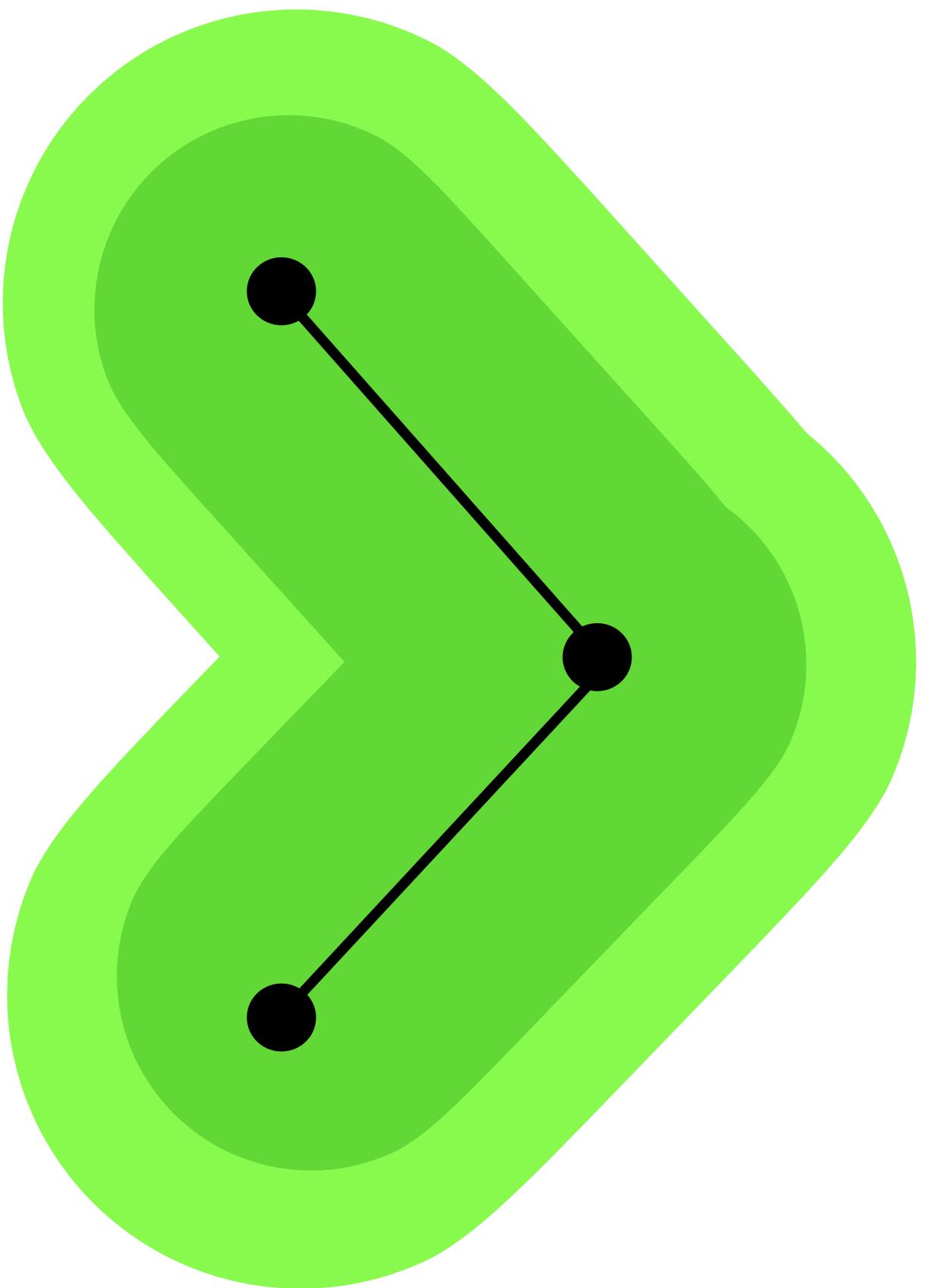
distance-based, ...



$$d(P_1, P_2) = \max \left\{ \sup_A \frac{P_1(A)}{P_2(A)}, \sup_A \frac{P_2(A)}{P_1(A)} \right\}$$

$$\mathcal{P}_\epsilon \quad || \quad \{P \in \Delta : d(P_{\text{classif}}, P) < \epsilon\}$$

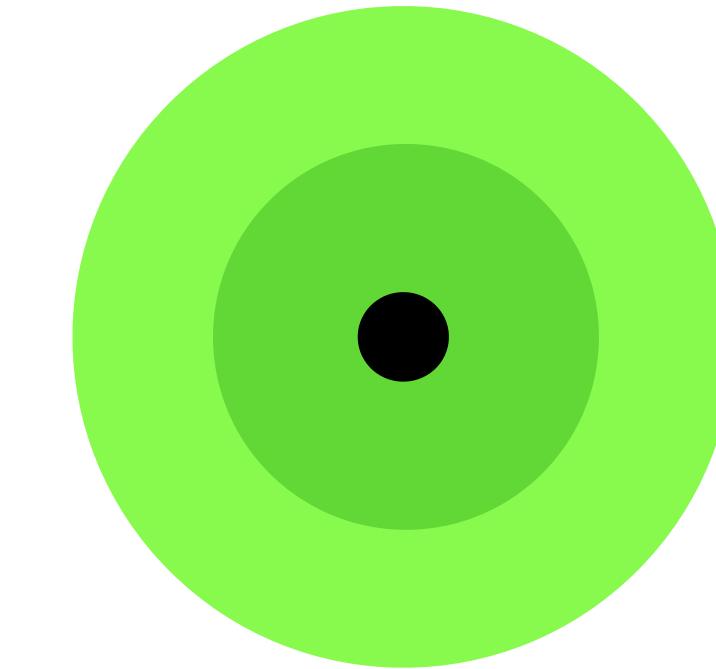
GLOBAL



OTHER STUFF

distance-based, ...

+



\mathcal{P}_ϵ

||

$\{P \in \Delta : d(P_{\text{classif}}, P) < \epsilon\}$

GLOBAL

discrete features:

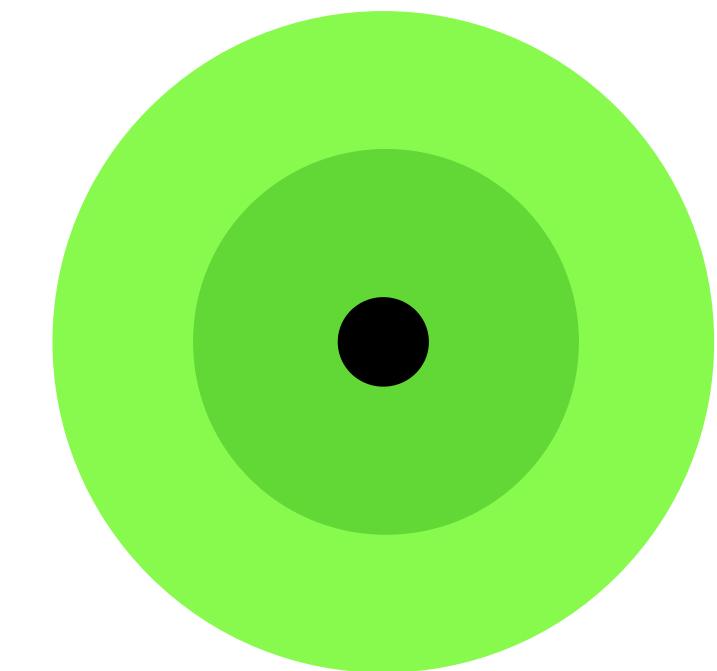
$$\epsilon_{\text{glob}} = \min \left\{ \frac{1}{1 - \Delta}, \sqrt{\frac{P_{\text{classif}}(x, \hat{y})}{P_{\text{classif}}(x, \hat{y}_2)}} \right\}$$

$$\Delta = P_{\text{classif}}(x, \hat{y}) - P_{\text{classif}}(x, \hat{y}_2)$$

$$\hat{y}_2 = \arg \max_{y \in \mathcal{Y} \setminus \{\hat{y}\}} P_{\text{classif}}(y \mid x)$$

OTHER STUFF

distance-based, ...



$$\mathcal{P}_\epsilon$$

||

$$\{P \in \Delta : d(P_{\text{classif}}, P) < \epsilon\}$$

GLOBAL

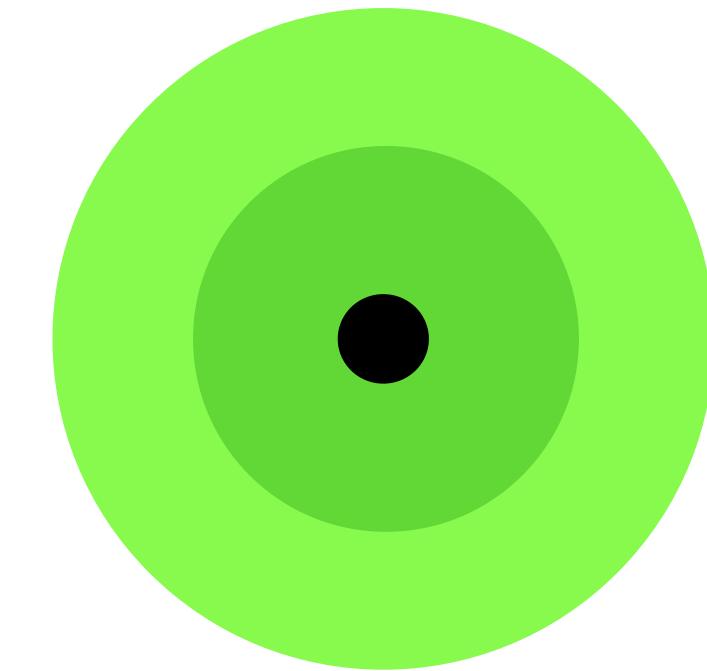
at least one continuous feature:

$$\epsilon_{\text{glob}} = \sqrt{\frac{P_{\text{classif}}(x, \hat{y})}{P_{\text{classif}}(x, \hat{y}_2)}}$$

$$\hat{y}_2 = \arg \max_{y \in \mathcal{Y} \setminus \{\hat{y}\}} P_{\text{classif}}(y \mid x)$$

OTHER STUFF

distance-based, ...

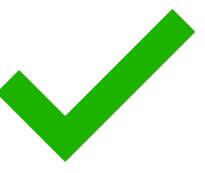


$$\mathcal{P}_\epsilon$$

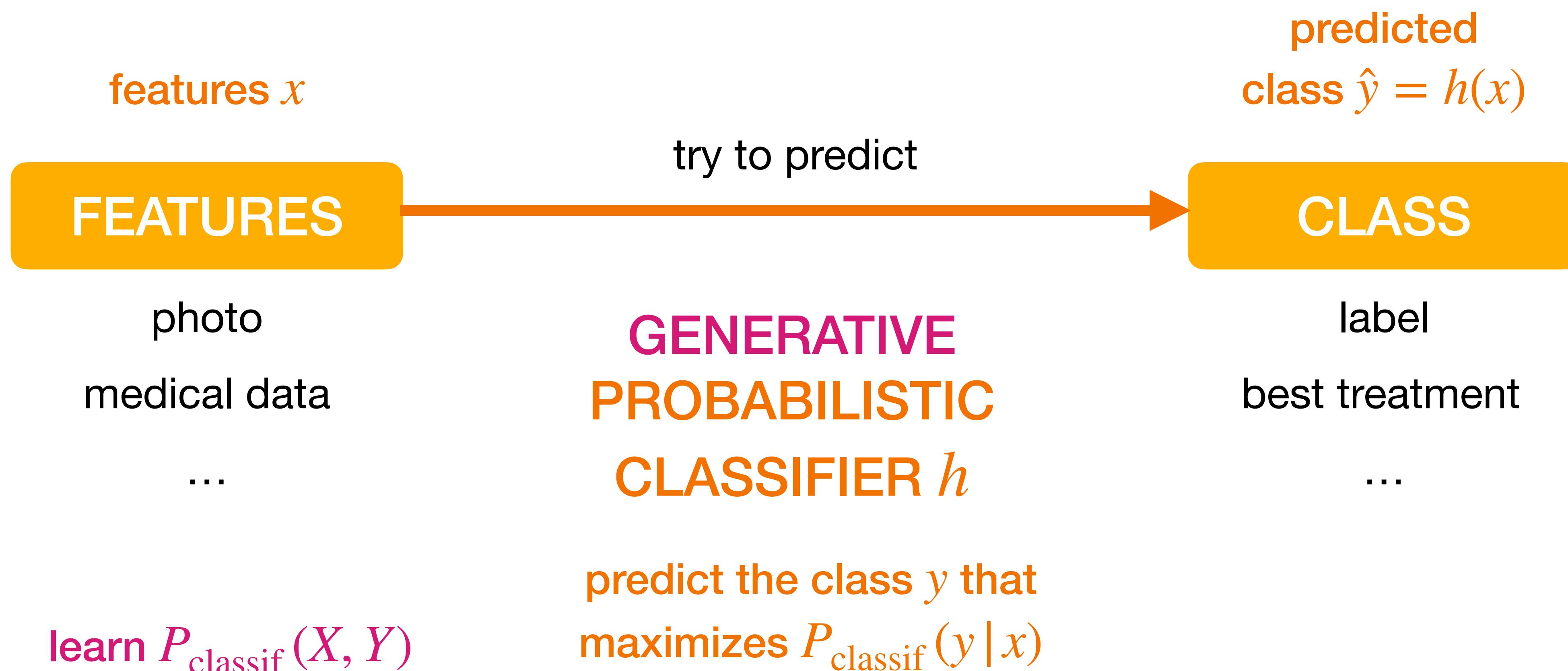
||

$$\{P \in \Delta : d(P_{\text{classif}}, P) < \epsilon\}$$

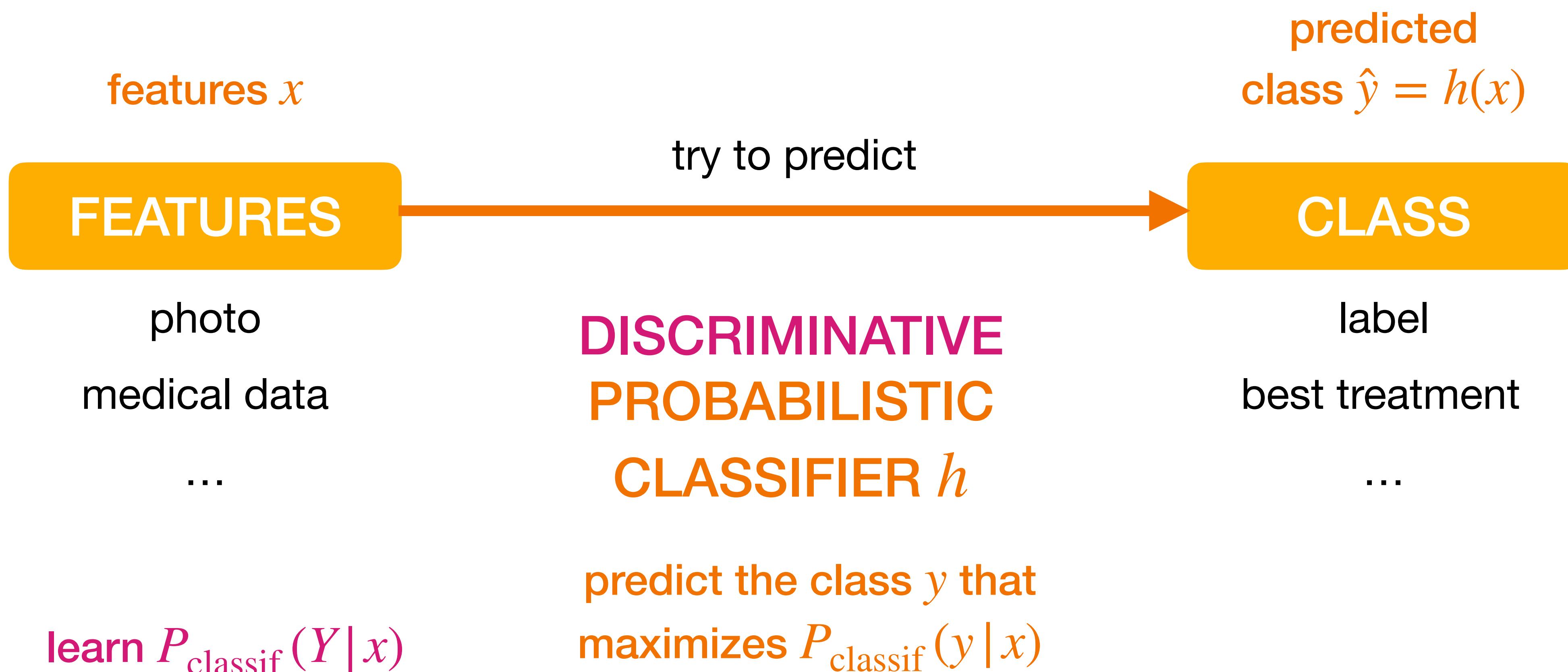
ROBUSTNESS QUANTIFICATION

- correlates nicely with accuracy
- works for different types of model architectures
- is conceptually different from UQ
- also works with global perturbations
- is competitive with and complementary to UQ
- is good with distribution shift and small data sets
- is more stable than UQ
- is not limited to epsilon-contamination 

CLASSIFICATION



CLASSIFICATION



GLOBAL

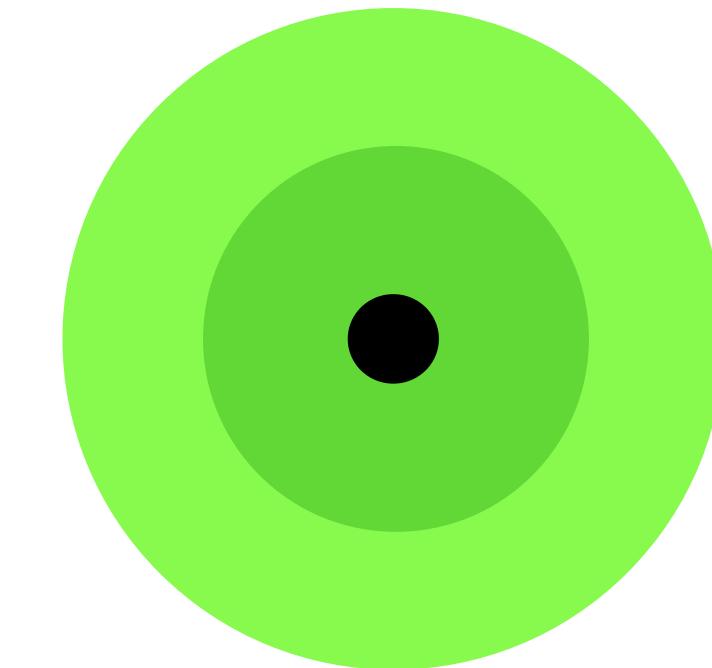
at least one continuous feature:

$$\epsilon_{\text{glob}} = \sqrt{\frac{P_{\text{classif}}(x, \hat{y})}{P_{\text{classif}}(x, \hat{y}_2)}}$$

$$\hat{y}_2 = \arg \max_{y \in \mathcal{Y} \setminus \{\hat{y}\}} P_{\text{classif}}(y \mid x)$$

OTHER STUFF

distance-based, ...



\mathcal{P}_ϵ

||

$$\{P \in \Delta : d(P_{\text{classif}}, P) < \epsilon\}$$

GLOBAL

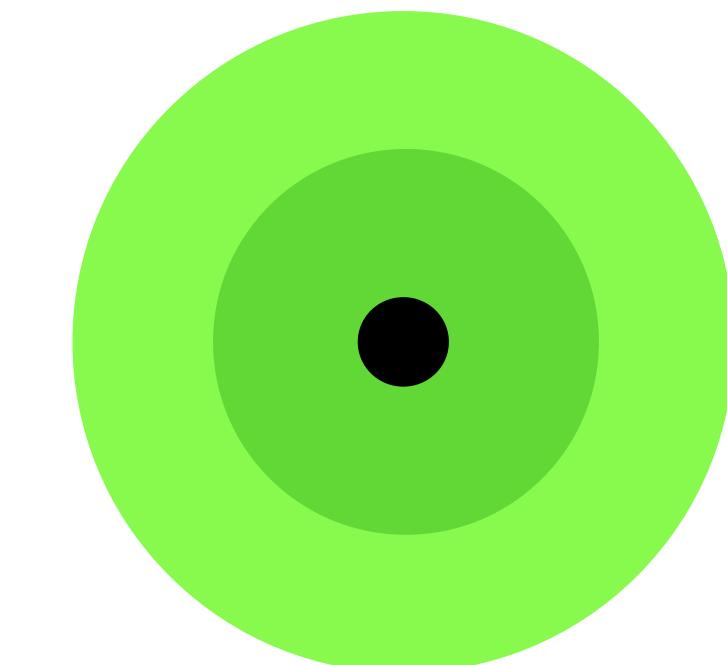
OTHER STUFF

distance-based, ...

at least one continuous feature:

$$\epsilon_{\text{glob}} = \sqrt{\frac{P_{\text{classif}}(x, \hat{y})}{P_{\text{classif}}(x, \hat{y}_2)}} = \sqrt{\frac{P_{\text{classif}}(\hat{y} | x)}{P_{\text{classif}}(\hat{y}_2 | x)}}$$

$$\hat{y}_2 = \arg \max_{y \in \mathcal{Y} \setminus \{\hat{y}\}} P_{\text{classif}}(y | x)$$



$$\mathcal{P}_\epsilon$$

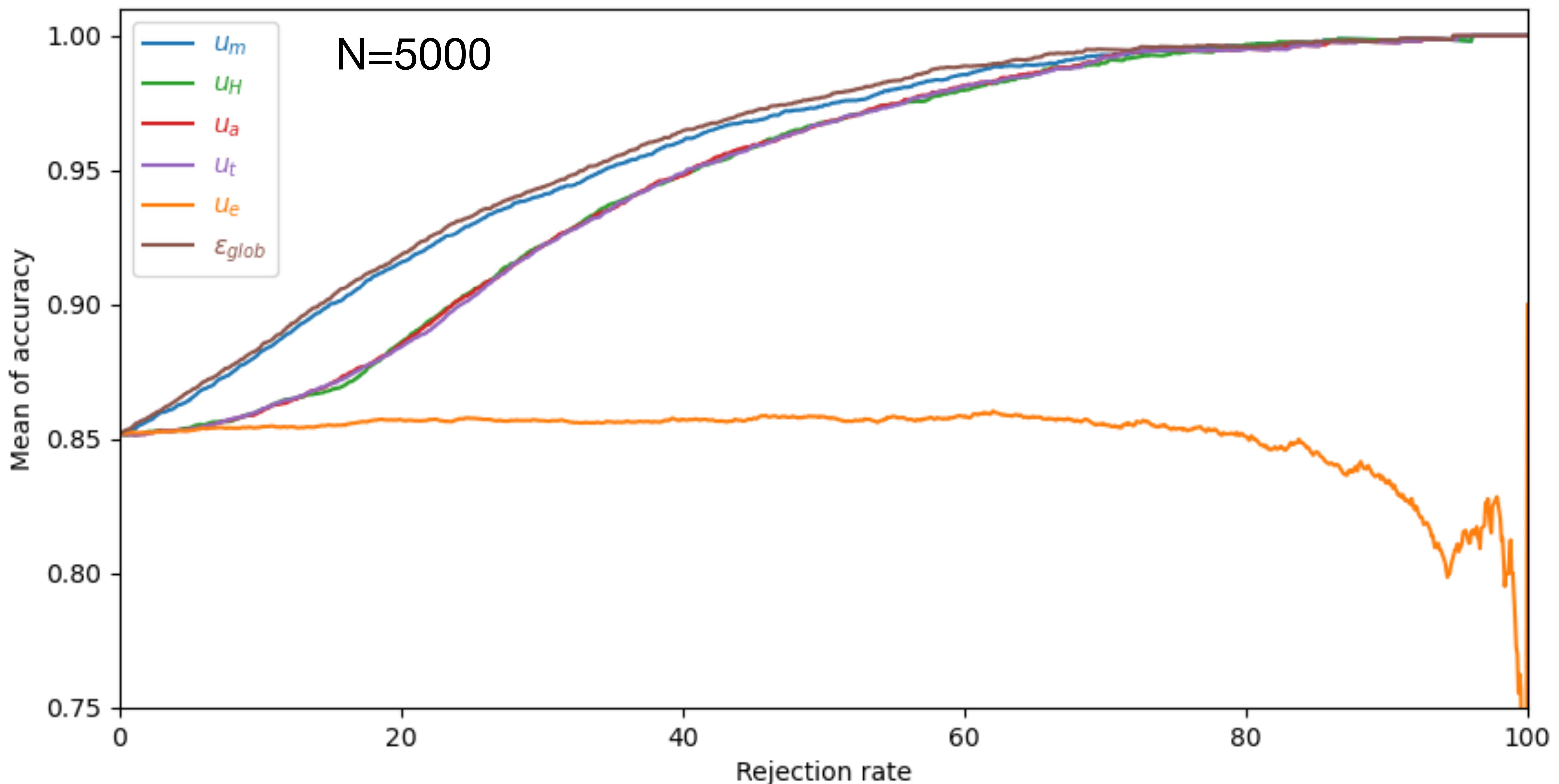
||

$$\{P \in \Delta : d(P_{\text{classif}}, P) < \epsilon\}$$

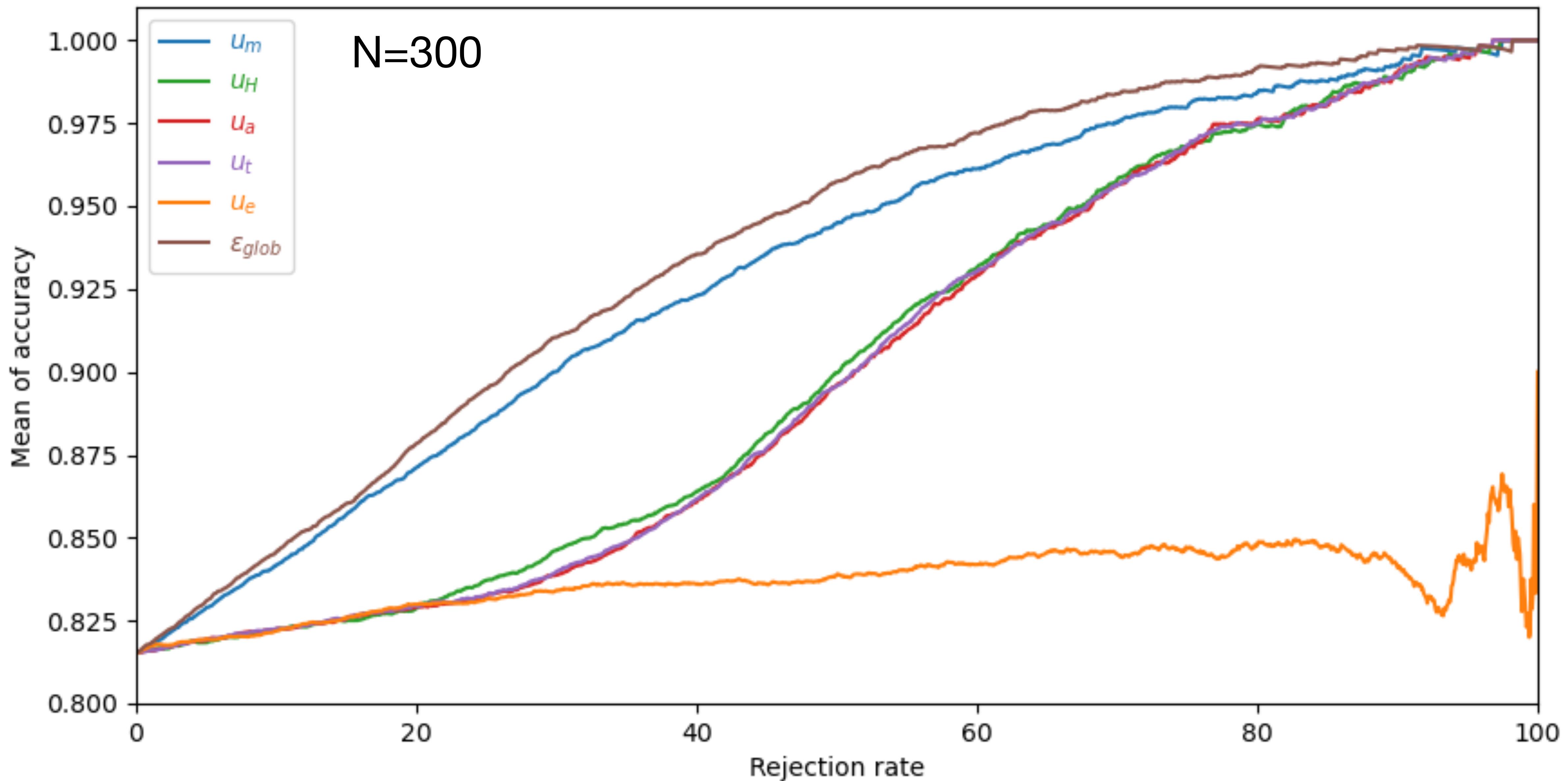
ROBUSTNESS QUANTIFICATION

- correlates nicely with accuracy
- works for different types of model architectures
- is conceptually different from UQ
- also works with global perturbations
- is competitive with and complementary to UQ
- is good with distribution shift and small data sets
- is more stable than UQ
- is not limited to epsilon-contamination
- also works for discriminative classifiers ✓

RF



RF



ROBUSTNESS QUANTIFICATION

- correlates nicely with accuracy ✓
- works for different types of model architectures ✓
- is conceptually different from UQ
- also works with global perturbations ✓
- is competitive with and complementary to UQ ✓
- is good with distribution shift and small data sets ✓
- is more stable than UQ
- is not limited to epsilon-contamination ✓
- also works for discriminative classifiers ✓

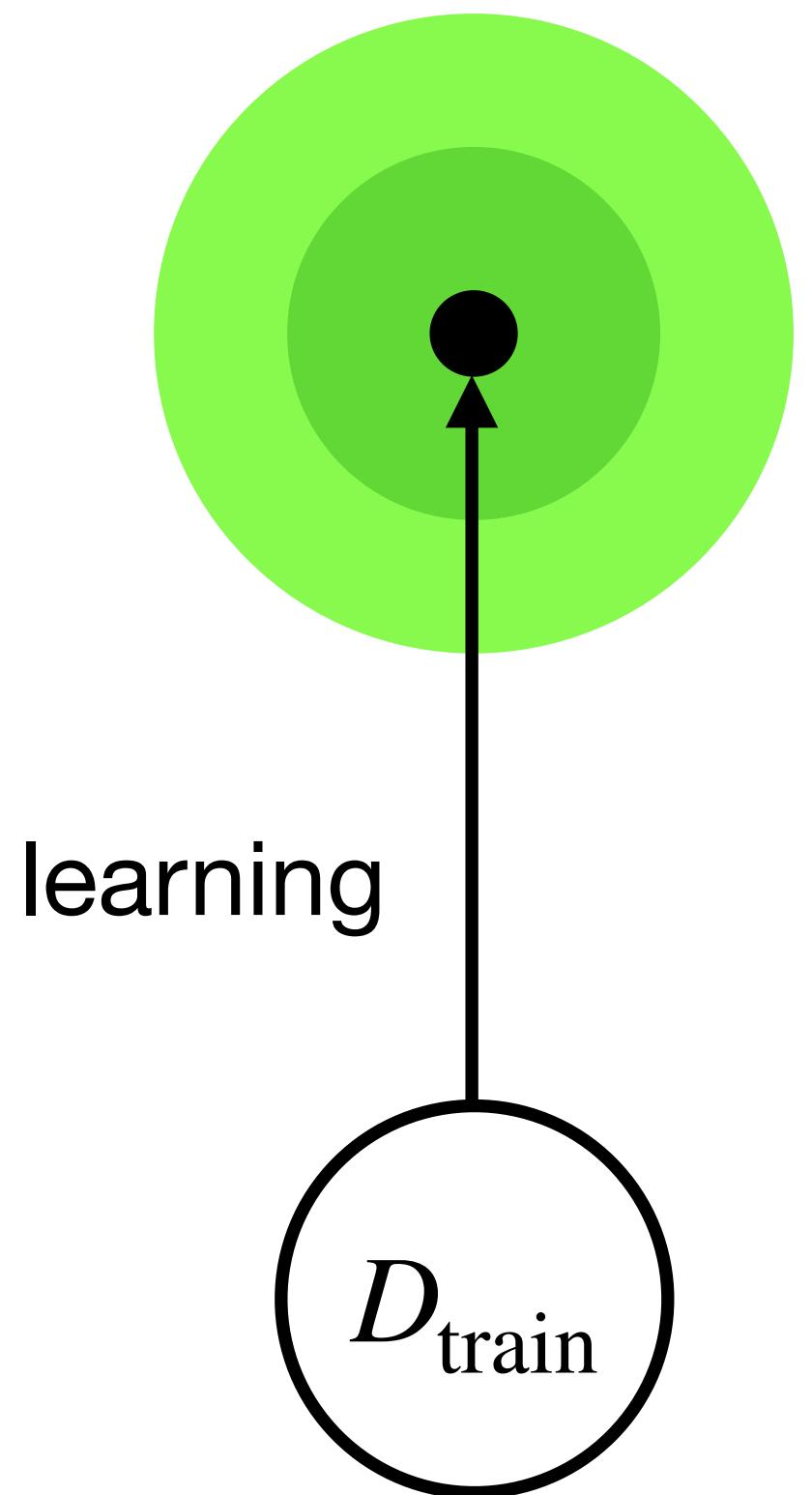
ROBUSTNESS QUANTIFICATION

- correlates nicely with accuracy ✓
- works for different types of model architectures ✓
- is conceptually different from UQ ✓
- also works with global perturbations ✓
- is competitive with and complementary to UQ ✓
- is good with distribution shift and small data sets ✓
- is more stable than UQ ✓
- is not limited to epsilon-contamination ✓
- also works for discriminative classifiers ✓

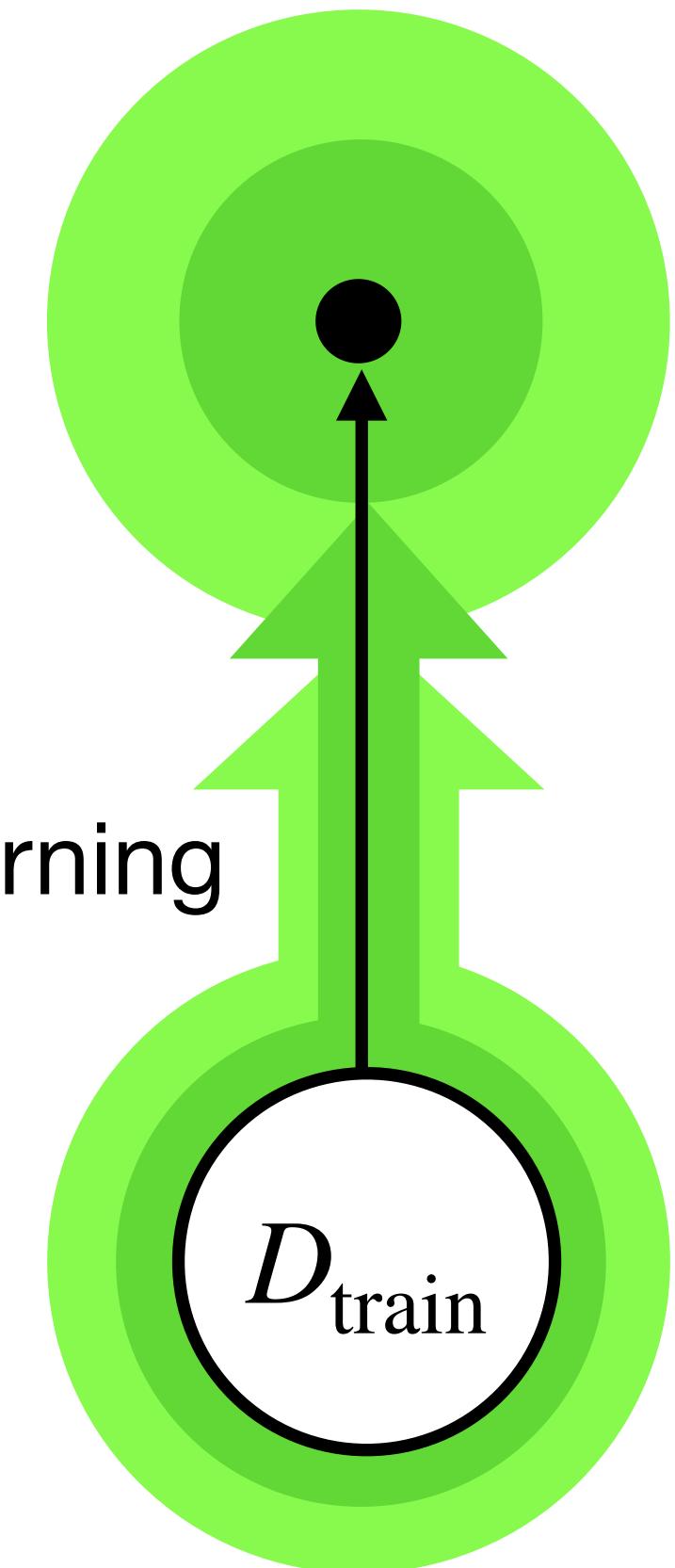
BUT...WAIT! THERE'S MORE

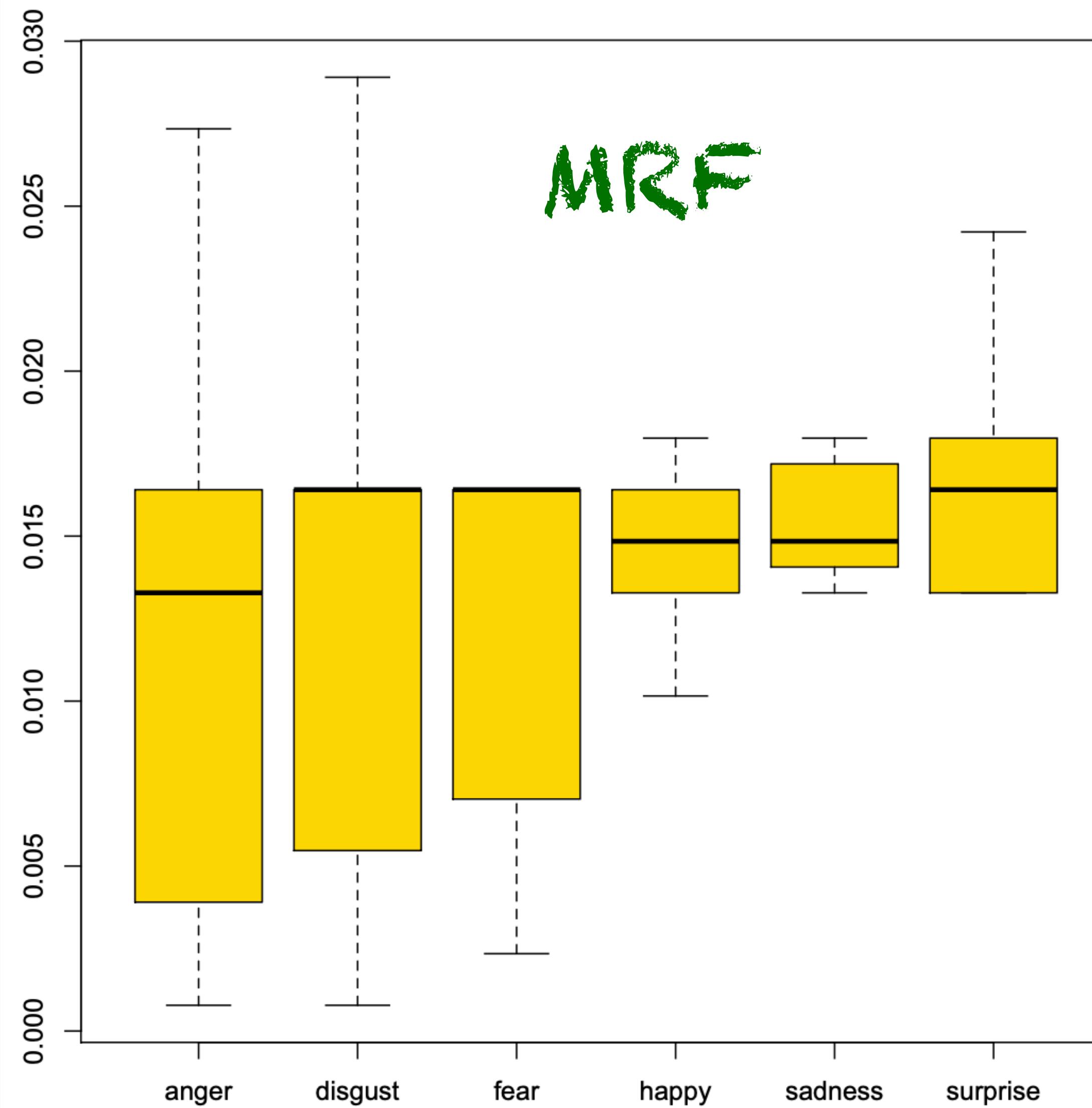


DIRECT

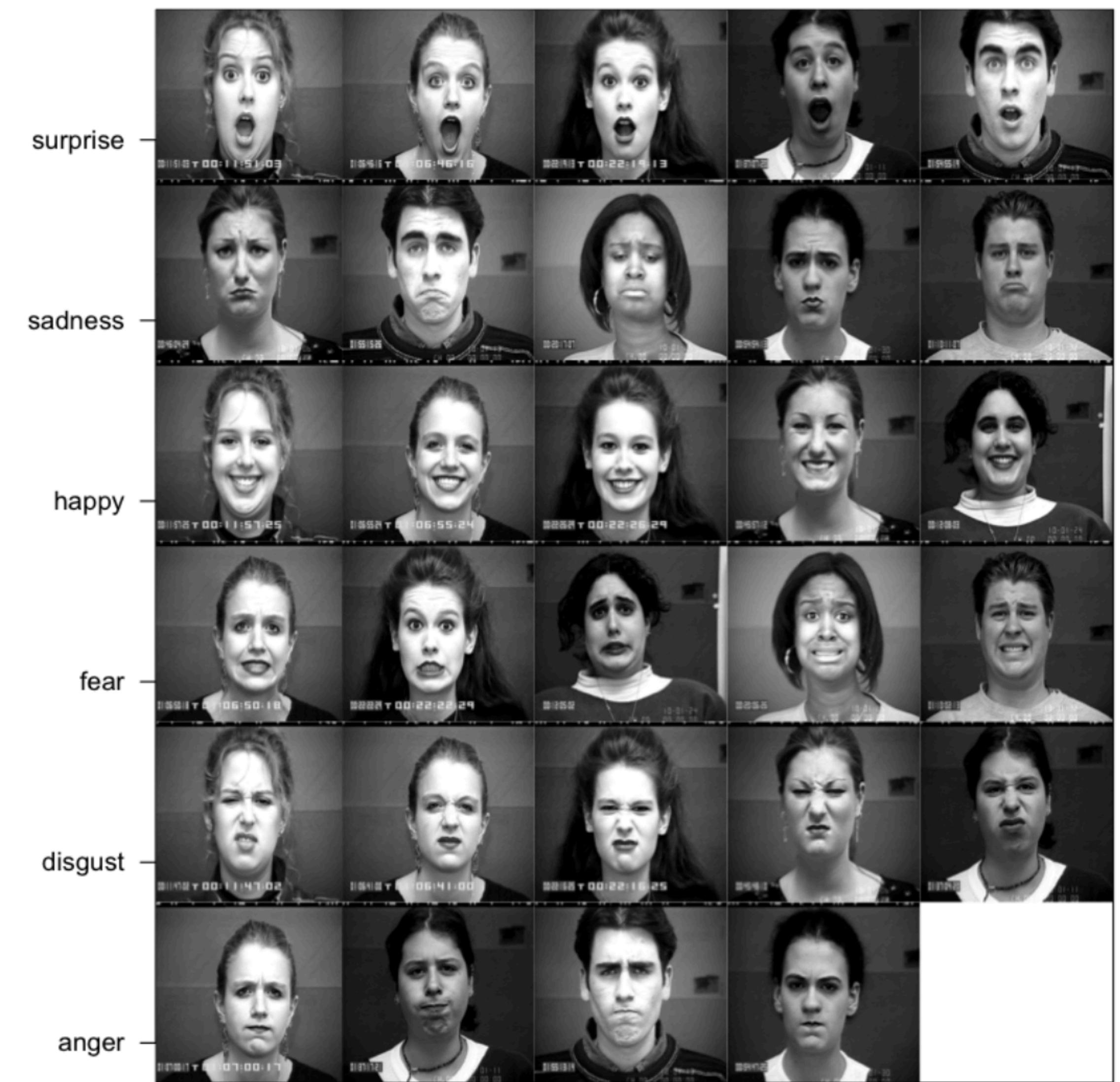


INDIRECT





(a) Robustness split by emotions.



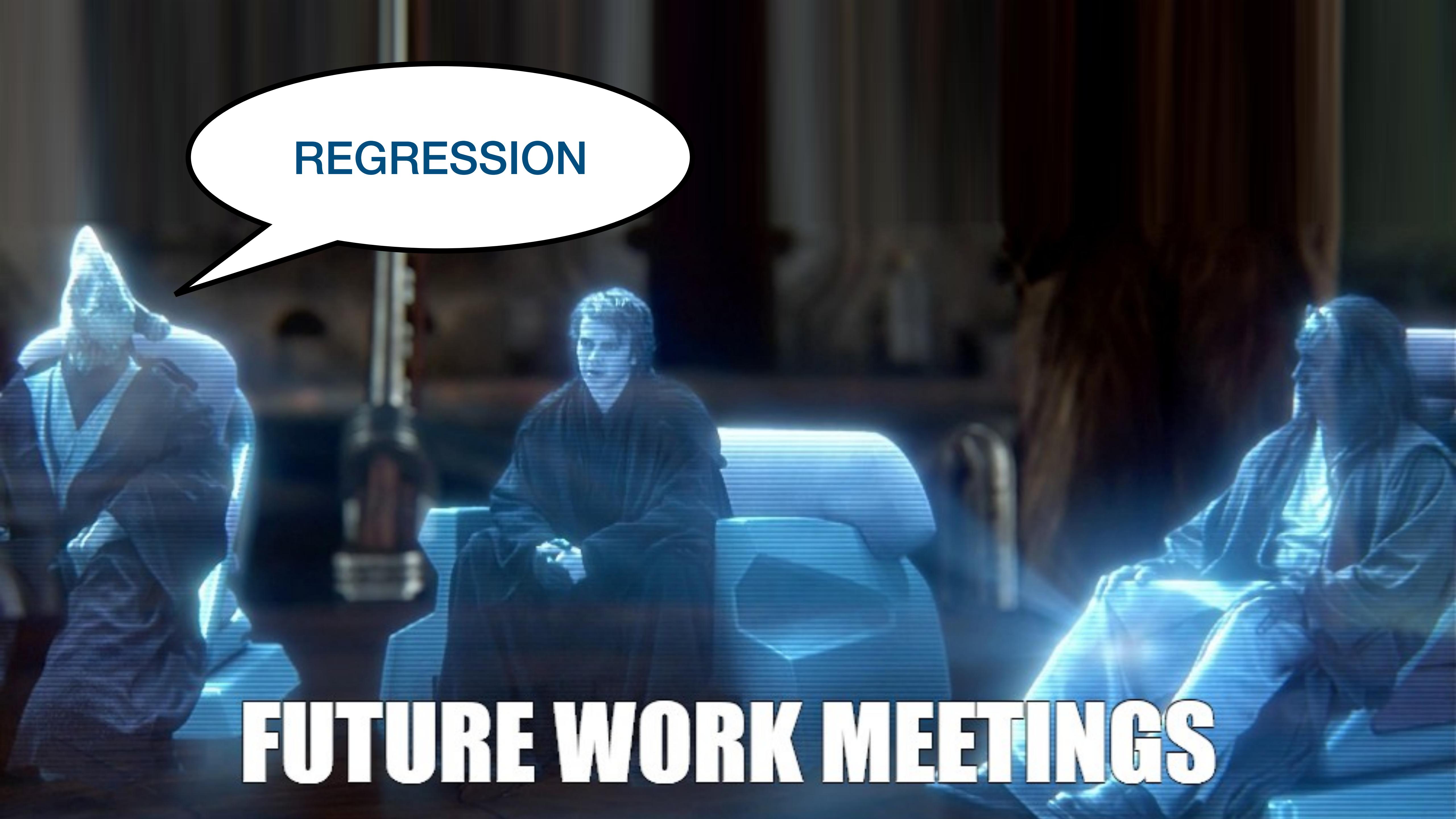
(b) Examples of emotions.

A group of people are gathered in a dark room, illuminated by a bright blue light. The people are dressed in dark clothing, and their features are partially obscured by the low light. The overall atmosphere is mysterious and dramatic.

FUTURE WORK MEETINGS

CALIBRATION

FUTURE WORK MEETINGS



REGRESSION

FUTURE WORK MEETINGS

A group of people are gathered in a dark room, illuminated by a blue light. They appear to be in a meeting or a presentation. A large, white, speech bubble is positioned in the upper right corner of the image. Inside the bubble, the text "CONFORMAL PREDICTION" is written in a bold, dark blue font.

CONFORMAL
PREDICTION

FUTURE WORK MEETINGS

jasper.debock@ugent.be

- [1] Global Sensitivity Analysis for MAP Inference in Graphical Models. De Bock, de Campos & Antonucci. 2014.
- [2] Credal sum-product networks.
Mauá, Cozman, Conaty & de Campos. 2017.
- [3] Robustifying sum-product networks.
Mauá, Conaty, Cozman, Poppenhaeger & de Campos. 2018.
- [4] Towards Scalable and Robust Sum-Product Networks.
Correia & de Campos. 2019.
- [5] Towards Robust Classification with Deep Generative Forests.
Correia, Peharz & de Campos. 2020

[6] Robustness quantification: a new method for assessing the reliability of the predictions of a classifier.
De Tavernier, De Bock. 2025.

[7] Robustness and uncertainty: two complementary aspects of the reliability of the predictions of a classifier.
De Tavernier, De Bock. 2025.

[8] A hierarchy of sum-product networks using robustness.
Conaty, Martínez del Rincon & de Campos. 2019.

[9] A Robust Dynamic Classifier Selection Approach for Hyperspectral Images with Imprecise Label Information.
Li, Huang, De Bock & Pižurica. 2020.