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Towards Robust Classification with Deep Generative Forests

Abstract

Decision Trees and Random Forests are among
the most widely used machine learning models,
and often achieve state-of-the-art performance
in tabular, domain-agnostic datasets. Nonethe-

020

Alvaro H. C. Correia! Robert Peharz! Cassio de Campos '

2. Generative Forests

Before discussing the main ideas of the paper, we introduce
Generative Forests and the required notation. As we focus
on classification tasks, we denote the set of explanatory
variables as X = { X3, X2, ..., X,,} and the target variable
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» correlates nicely with accuracy v
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* correlates nicely with accuracy
* works for different types of model architectures
» is conceptually different from UQ v
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» correlates nicely with accuracy v

* works for different types of model architectures
e is conceptually different from UQ

» also works with global perturbations +/

» is competitive with UQ +
* is good with distribution shift and small data sets +/
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[7]

Dataset UK Eloc hybrid ¥ Eclob hybrid ¥

Adult 0.9295 0.9066 0.9295 1.00 0.7690 0.9295 1.00
Austr. Cr. 0.9236 0.9139 0.9265 0.75 0.8872 0.9246 0.86
Bank M. 0.9485 0.9452 0.9485 0.55 0.9299 0.9481 0.88
BCW 0.9968  0.9962 0.9974  0.52 0.9961 0.9978 0.53
German Cr. 0.8338 : 0.8380 0.8378 0.53 0.7972 0.8376 0.85
Heart dis. 0.7602 0.7540 0.7602 0.95 : 0.6761 0.7600 0.95
Lymphogr. 0.9440 + 0.9419 0.9428 0.77 + 0.8981 0.9425 0.88
NPHA 0.4962 : 0.5021 0.4917 0.77 + 0.5159 0.4913 0.96
Nursery 0.9813 + 0.9822 0.9824 0.28 : 0.9730 0.9814 0.91
Solar (big) 0.8603 : 0.8926 0.8874 0.23 0.8693 0.8836 0.71
Solar (small)  0.8709 0.8597 0.8666  0.19 0.7990 0.8797  0.78
SPECT 0.9458  0.8915 0.9458 0.99 0.5738 0.9457 0.99
Stud. Math 0.9434 + 0.9465 0.9468 0.31 : 0.9205 0.9445 0.60
Stud. Port 0.8898 : 0.9276 0.9093 0.77 + 0.8952 0.9067 0.79
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