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Abstract

We study the sensitivity of a MAP configuration of a discrete probabilistic graph-

ical model with respect to perturbations of its parameters. These perturbations are

global, in the sense that simultaneous perturbations of all the parameters (or any

chosen subset of them) are allowed. Our main contribution is an exact algorithm

that can check whether the MAP configuration is robust with respect to given per-

turbations. Its complexity is essentially the same as that of obtaining the MAP

configuration itself, so it can be promptly used with minimal effort. We use our

algorithm to identify the largest global perturbation that does not induce a change

in the MAP configuration, and we successfully apply this robustness measure in

two practical scenarios: the prediction of facial action units with posed images and

the classification of multiple real public data sets. A strong correlation between

the proposed robustness measure and accuracy is verified in both scenarios.

1 Introduction

Probabilistic graphical models (PGMs) such as Markov random fields (MRFs) and Bayesian net-

works (BNs) are widely used as a knowledge representation tool for reasoning under uncertainty.

When coping with such a PGM, it is not always practical to obtain numerical estimates of the

parameters—the local probabilities of a BN or the factors of an MRF—with sufficient precision.

This is true even for quantifications based on data, but it becomes especially important when elic-

iting the parameters from experts. An important question is therefore how precise these estimates

should be to avoid a degradation in the diagnostic performance of the model. This remains impor-

tant even if the accuracy can be arbitrarily refined in order to trade it off with the relative costs. This

paper is an attempt to systematically answer this question.

More specifically, we address sensitivity analysis (SA) of discrete PGMs in the case of maximum a

posteriori (MAP) inferences, by which we mean the computation of the most probable configuration

of some variables given an observation of all others.1

Let us clarify the way we intend SA here, while giving a short overview of previous work on SA

in PGMs. First of all, a distinction should be made between quantitative and qualitative SA. Quan-

titative approaches are supposed to evaluate the effect of a perturbation of the parameters on the

numerical value of a particular inference. Qualitative SA is concerned with deciding whether or not

the perturbed values are leading to a different decision, e.g., about the most probable configuration of

the queried variable(s). Most of the previous work in SA is quantitative, being in particular focused

on updating, i.e., the computation of the posterior probability of a single variable given some evi-

dence, and mostly focus on BNs. After a first attempt based on a purely empirical investigation [17],

a number of analytical methods based on the derivatives of the updated probability with respect to

1 Some authors refer to this problem as MPE (most probable explanation) rather than MAP.
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• correlates nicely with accuracy

• works for different types of model architectures
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Let’s s
ay tha

t you s
tart us

ing an
AI mo

del for
a high

-

risk ap
plicati

on, suc
h asm

edical
diagno

sis or s
elf-driv

ing

cars. A
t that p

oint, if
you us

e a clas
si!er t

o autom
atically

make
predic

tions,
it does

not su
"ce th

at you
r mod

el

genera
lly has

a 99% accura
cy: you

also w
ant to

know

wheth
er the

curren
t predi

ction i
s part o

f that o
ther 1%

of

the cas
es. Tha

t is, yo
u’d rea

lly wan
t to kn

ow how reliabl
e

the cu
rrent p

redicti
on is.

Severa
l appro

aches
for qua

ntifyin
g this r

eliabil
ity ex-

ist, two
of whi

ch we
intend

to com
pare. T

he mo
st com

-

mon a
pproac

h is un
certain

ty qua
nti!ca

tion [1
2, 13, 1

9],

whose
aim it is to

numer
ically q

uantif
y the a

moun
t of

uncert
ainty a

ssociat
ed wit

h a pre
diction

. We in
stead f

o-

cus on
an alte

rnative
approa

ch, wh
ich we

call rob
ustnes

s

quanti
!catio

n, who
se aim

it is to
quanti

fy how
robust

a

predic
tion is

agains
t unce

rtainty
. One m

ight sa
y that

we

quanti
fy how

much
uncert

ainty t
he mo

del cou
ld cope

with b
efore c

hangin
g its pr

edictio
n, and

this re
gardle

ss

of how
much

uncert
ainty i

s actua
lly pre

sent. W
hile ou

r

propos
ed term

inolog
y is ne

w, the
ideas b

ehind
robust

-

ness qu
anti!c

ation h
ave be

en suc
cessful

ly teste
d sever

al

times
by now

[6, 7, 1
5], alw

ays rel
ying o

n tech
niques

from imprec
ise pro

babilit
ies [1]

. Our c
ontrib

ution c
on-

sists in
concep

tually
introd

ucing
this ap

proach
in a ge

n-

eral se
tting a

nd com
paring

it with
uncert

ainty q
uanti!

-

cation
.

In part
icular,

we foc
us on h

ow uncert
ainty a

nd rob
ust-

ness qu
anti!c

ation c
ompar

e in ca
ses wh

ere the
availab

le

data is
limited

or whe
n ther

e is a d
istribu

tion sh
ift be-

tween
the tra

in and
test da

ta. Ou
r moti

vation
for thi

s

compa
rison i

s fuele
d by t

he fac
t that

these
proble

ms

arise fr
equent

ly in pr
actice,

and ca
n have

a big im
pact on

how a class
i!er pe

rforms
in the

real w
orld (o

n unse
en

data) [
14, 17,

18, 22]
. For n

ow, we
mainly

focus o
n the

naive B
ayes cl

assi!er
as a tes

t case b
ecause

of its s
implic

-

ity and
e"cien

cy. Ho
wever,

our me
thods c

an be a
pplied

to mor
e comp

lex cla
ssi!ers

as wel
l.

From
our ex

perim
ents w

e conc
lude th

at robu
stness

quanti
!catio

n keep
s perfo

rming
well ev

en wit
h limit

ed

data o
r in th

e prese
nce of

a distr
ibution

shift, w
hile un

-

certain
ty qua

nti!ca
tion se

es a de
crease

in perf
orman

ce.

Moreo
ver, ou

r robu
stness

metric
s keep

on per
formin

g

well e
ven w

ithout
distrib

ution
shift a

nd wit
h enou

gh

data, m
eaning

that th
ere is n

o trade
-o# pa

id for t
he bet-

ter pro
tection

that th
ey o#e

r.
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We con
sider t

he pro
blem of clas

si!cati
on, wh

ere the

goal is
to pred

ict the
correc

t class
of an i

nstanc
e base

d

on its
feature

s. An e
xampl

e of a h
igh-ris

k class
i!catio

n

proble
m is pred

icting
wheth

er a pa
tient h

as can
cer (th

e

class) b
ased on

itsmed
ical da

ta and
images

(the fe
atures)

.

2.1. Cla
ssi!ers

. We d
enote

the cla
ss var

iable b
y 𝜔,

which
can tak

e on an
y value

𝜀 in the
!nite s

et of cl
asses

∱. An in
stance

can ha
ve one

or seve
ral fea

tures 𝜗𝜛
, with

𝜛 ω {1,… ,𝜚
}, where

𝜚 is the n
umber

of feat
ures. E

very

one of
these f

eature
s takes

values
𝜍𝜛 in th

e !nite
set ∲𝜛.

The ve
ctor co

ntaini
ng all

the fea
ture va

riables
𝜗𝜛 is de

-

noted
as 𝜗 = (𝜗1,… ,

𝜗𝜚). Th
e parti

cular f
eature

values

𝜍𝜛 of an
individ

ual ins
tance a

re colle
cted in

a featu
re vec-

tor 𝜍 =
(𝜍1,… ,

𝜍𝜚), to
which

we oft
en refe

r as th
e (set

of) fea
tures o

f said
instan

ce. All
such p

ossible
feature

vectors
are col

lected
in the

set ∲ = ∲1 ε⋛
ε∲𝜚. Ev

ery

instan
ce is d

etermi
ned by

the co
mbina

tion of
a class

𝜀

and its
feature

s 𝜍. In p
ractice

, howe
ver, we

typical
ly only

know t
he feat

ures of
an inst

ance. T
he aim

of a cla
ssi!er

is

then to
predic

t the u
nknow

n class
, given

those f
eature

s.

Forma
lly, thi

s is don
e with

a class
i!er: a

determ
inistic

functio
n𝜑 ϑ ∲

→ ∱ thatm
aps eac

h featu
re vect

or𝜍 ω ∲
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act

We consid
er

two concep
tually

diffe
ren

t approach
es

for ass
ess

ing the rel
iab

ilit
y

of the individual pred
icti

ons of a cla
ssi

fier:
Robustn

ess
Quantifi

cat
ion (RQ) and

Uncer
tain

ty
Quantifi

cat
ion (U

Q). We compare
both

approach
es

on a number
of

benchmark
data

set
s and show that there

is no cle
ar

winner
betw

een
the two, but

that they
are

complem
entar

y and can
be combined

to obtain
a hybrid

approach
that

outperf
orm

s both RQ and UQ. A
s a byproduct of our approach

, for eac
h data

set
, we

als
o obtain

an
ass

ess
ment of the rel

ativ
e im

porta
nce

of uncer
tain

ty and robustn
ess

as
source

s of unrel
iab

ilit
y.

1
Intro

ductio
n

Due to its
vas

t cap
abilit

ies
, AI has

beco
me ubiquito

us, its
use

cas
es

ran
ging fro

m automatin
g sim

ple

tas
ks to

making deci
sio

ns in
high-ris

k set
tin

gs. In
some cas

es,
esp

eci
ally

the ones
where

the sta
kes

are
high, we are

not only inter
est

ed
in the overa

ll perf
orm

ance
of the model,

but als
o in the qualit

y or,

to be more prec
ise

, the rel
iab

ilit
y of eac

h sin
gle pred

icti
on. If your ow

n heal
th is at sta

ke for insta
nce,

you car
e les

s about how
well

the model perf
orm

s on avera
ge; you only want to know

wheth
er you can

rel
y on the model’s

pred
icti

on in
your part

icu
lar

cas
e. So, in

an
ideal

world
, we’d

want to
know

for

eac
h pred

icti
on of an

AI model how
rel

iab
le it is.

For the lea
st rel

iab
le pred

icti
ons, a sec

ond opinion

of an
expert

could then
be ask

ed, more data
could be collec

ted
, etc

.

One of the more
popular

applica
tio

ns of AI models
, and the one we focus on in

this
paper,

is

cla
ssi

ficat
ion. In

that cas
e, the goal of the model is to

pred
ict

the corre
ct cla

ss
c of a given

insta
nce

out of a set
of possi

ble cla
sse

s C
. An insta

nce
is usually

desc
rib

ed
usin

g a number of fea
tures

(N
in

total)
. The val

ue f i
of the i-

th fea
ture tak

es
val

ues
in a set

F i
, which

we tak
e to be finite

beca
use

we’ll

res
tric

t ourse
lves

to
disc

ret
e fea

tures
. We’l

l cal
l the vect

or f
:=

(f1
, .
. .
, fN

) the (se
t of) fea

tures

of sai
d insta

nce,
which

tak
es

valu
es

in
F
:=

F i
→ · · ·

→ FN
. In

prac
tice

a cla
ssi

fier
then, given

an
insta

nce
(e.

g. a patie
nt),

uses
its

fea
tures

f (e.
g. the patie

nt’s
medica

l data
) to

try
to

pred
ict

the

corre
ct cla

ss c
(e.g

. the sic
kness

of the patie
nt).

We’ll
denote the cla

ss pred
icte

d by the cla
ssi

fier as
ĉ.

For eac
h such

pred
icti

on ĉ
of a cla

ssi
fier,

we can
now

try
to ass

ess
how

rel
iab

le it is.
In

this work, we

consid
er

two meth
ods for doing so, nam

ely
uncer

tainty quantifi
catio

n [10; 11; 15] and robustn
ess

quantifi
catio

n [5; 6; 7; 13].
What

both
approach

es
have in

common is that
they

are
base

d on the

core
idea

that there
is a lot of uncer

tain
ty

inv
olved

when
lea

rning a model fro
m

data
. Uncer

tain
ty

quantifi
cat

ion trie
s to

quantify
this uncer

tain
ty,

for the pred
icti

on ass
ocia

ted
with

a given
insta

nce.

Robustn
ess

quantifi
cat

ion, on the other hand, trie
s to quantify

the am
ount of (ep

iste
mic)

uncer
tain

ty

the model could
handle,

while
stil

l iss
uing the sam

e pred
icti

on for the given
insta

nce,
reg

ard
les

s of

how
much

uncer
tain

ty
there

act
ually

is.
In

a sid
e by sid

e compari
son, we’v

e rec
ently

dem
onstra

ted

that
robustn

ess
quantifi

cat
ion does

a bette
r job at

ass
ess

ing the rel
iab

ilit
y of the pred

icti
ons of a

cla
ssi

fier than
uncer

tain
ty quantifi

cat
ion, at lea

st for art
ificia

l data
and in the pres

ence
of distr

ibutio
n

shift
or when

there
was

a lim
ited

am
ount of data
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ning (EIM

L 2025) .

[6, 7, … ]
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