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e Desirability and Choice without Act-State Independence
e The Value of Incomparability
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Desirability and Choice without
Act-State Independence



Coherent sets of desirable gambles

Let Q be a finite possibility space.
A gamble g : © — R is an uncertain reward. We collect them in £().

A set of gambles D € £(Q2) that You judge desirable (prefer to the status quo, 0),
is coherent iff

D1.0¢D

D2. Iff>0andf#0,thenfeD
D3. If feDand A > 0then Afe D
D4. If f,ge Dthenf+geD
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Coherent sets of desirable gambles

T;\

E\r
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nt sets of desirable gambles

Ta

T4

Rather imprecise
(non-committal)

More precise:
(larger set, more committal)

Open half-space:
precise prob model
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Ta

Ta

TI

Coherent sets of desirable gambles

Symmetric half-space:
Uniform probability

IV

Half-open boundary:

Infinitesimally biased

I\r

E\r

Smallest coherent D
“The vacuous model”
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Example: Protection




Example: Protection

f : Buy Protection
g : Don’t Buy Protection

g-feD(byD2)
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Act-State Independence

e Savage: No trouble with Dominance. The
decision problem is ill-posed. Probabilities of
states must be independent of which gamble is
chosen.

e Problem 1. Independence: evidential or causal?
e Problem 2. It’s the decision-maker’s views

about independence that matter.

e No “choice events” in the desirability framework
e No way to model how info about choices affects
decision-maker’s views about states
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Evidential Decision Theory

e > is arelation on a g-algrebra 7 of Q

> is an asymmetric weak order (nontriviality, nullity)

Continuity: If A, TAorA, |l Aand B > A > C, then
B>A,>C
Averaging: If A and B are disjoint then

e A>BimplesA>AuUB>B
e A~B(A*¥BandB #* A)impliesA~AUB~B

Impartiality: If A, B, C are mutually disjoint and

A~B,A>CorC>A,AuC~BUC

then AU D ~ BU D whenever A, B, D are mutually
disjoint. 9/29



Impartiality: An Example

Blue or Red: £0. Green or Brown: £100.
Blue ~ Red
Green > Blue ~ Red, Brown > Blue ~ Red

Blue or Green > Red or Green
‘ e Learning Blue or Green is better news than

. . learning Red or Green

10/29



Impartiality: An Example

Blue or Red: £0. Green or Brown: £100.
e Blue ~ Red
Green > Blue ~ Red, Brown > Blue ~ Red

Blue or Green ~ Red or Green

’ ‘ e Learning Blue or Green, on the one hand, or
‘ Red or Green on the other—equally good news
. . e Happens iff Blue and Red are equiprobable

Blue or Brown ~ Red or Brown
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Evidential Decision Theory

Jeffrey’s Representation Theorem
If > satisfies the Jeffrey-Bolker axioms, then there is a
probability measure P and signed measure M on ¥ with
M > P such that

M(A) M(B)

A>Biffm>m

Letting U = M/P and noting M(A) = [, udP yields

A > B iff U(A) > U(B) iff L\p?,f\i)P g %DL(JS)P

Moreover U is unique up to fractional linear ’[ransformatiqgf29



Evidential Decision Theory

o Jeffrey treats A # B and B # A as indifference

e Completeness

Decision Theory

with a Human Face e Bradley provides IP version of EDT

e Bradley’s RT: > full agrees with a set of < P, M > pairs.

e Bradley’s axiomatization assumes > has a miniminal
(preserves strict part) Jeffrey coherent extension >’

e Open questions

o Satisfactory axiomatization of coherent partial evidential
preference relations

e Choice functions representable by sets of coherent partial
evidential preference relations

Richard Bradley
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EDT and Desirability

Let W be a finite possibility space and L(‘W) be the set of gambles on Q.
G C L(‘W) represents the gambles that are available to You.
Let Q = W x G and A be the set of act events Eg = {< w,f >€ Q| f = g}.
Let £(2) be the set of bounded gambles on Q.
Let pg(w, f) = g(w) if f = g, 0 otherwise.
Let O C L(Q) be a coherent set of desirable gambles
Interval Dominance: f > g iff
° sup{e>0|pf—€€Z)E,} > inf{e>0|e—pg€DEg}
° ORsup{e>0|pf—e€D5f}: inf{€>0|€—pg€Z)Eg}and

= [pr—sup{e>01pr—e € D € D, iff infe > 01 e~ pg € De,| - pg € D, |, g



Example: Protection

w1 w2
f : Buy Protection -410 -10
g : Don’t Buy Protection -400 0

e G ={f,g}
e Q={<wi,f><wyf><wig><wsg>}
e D is the coherent set of desirable gambles based on
_ _ My 9 m3 5 9
M= {m =< My, Mo, M3, My > | e 2 107 et Z 10}

° Sup{€>0|pf—€€DEf}:—50>—360:inf{€>0|€—pg€DEg} =f>g

15/29



EDT and Partial Preferences on Gambles

Let W be a finite possibility space and L(‘W) be the set of gambles on Q.

G C L(‘W) represents the gambles that are available to You.

Let Q = W x G and A be the set of act events Eg = {< w,f >€ Q| f = gJ.

Let £(2) be the set of bounded gambles on .

Let pg(w, f) = g(w) if f = g, O otherwise.

Let L' be the linear space of partial gambles generated by A (i.e., y | A in LT for

ally e £L(Q), A € A; LT closed under function addition and scaling).
f>giff pr | Ef > pg | Eg.

Open Question: Axiomatize coherent partial preference relations on £ (Suppes

and Zanotti 1982). 16/29



EDT and Probability Filters

e £(Q) is the set of bounded gambles on Q = W x G.

e P is the set of coherent linear previsions on £(2) and B(P) is the
power set of

e F C PB(P) is coherent iff it is a proper filter:

F1. ¥ #0

F2. P,Q e ¥ impliesPNQe¥F
F3. Pe¥ and P C Q implies Q € ¥
F4. o ¢ F

¢ Rejection: R : Fin(G) — Fin(G)
e E-Admissibility: g € R(A) iff
{p | (3f € A)p(pr | Er) > plpg | Eg)} € F

e Maximality: g € R(A) iff (If € A) {p | p(pr | Ef) > p(pg | Eg)} €F
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CDT on Protection

f : Buy Protection
g : Don’t Buy Protection -400 0

Choosing f causes your windshield to remain unsmashed
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Causal vs. Evidential Decision Theory

: Twin Prisoner’s Dilemma

Rat

Silence

-20

EDT: Silent, CDT: Rat
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Causal Decision Theory

> is a relation on P(Q2) x C where C € B(Q2) is a set of “condi-
tions” which include the available acts

Joyce’s Representation Theorem

If > satisfies Joyce’s axioms, then there is a unique
supposition function P : () x C — [0, 1] and utility function
u: Q — R such that A > B iff

U(A) = Y P(@} | A)u(w) > )", P(lw} Il A)u(w) = U(B)

wef) weN

Moreover u is unique up to positive affine transformation.

20/29



Causal Decision Theory

Y.cq P(lw} ]| A)u(w) can be written as

Y, P}l 2) ), woulda(w, o )u()

weN W’ €N

wouldy is an imaging function

woulda (w, -) is a pmf that puts all probability mass on A

woulda (w, @) is roughly the probability, at w, that @’
would result were you to make A true
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Causal Decision Theory

CDT and Desirability:
e Qs a finite possibility space
e U:Q — Ris alinear utility
e wouldy is an imaging function

e D C L(Q) is a coherent set of desirable gambles

A > B iff woulds - u—wouldg - ue D
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The Value of Incomparability
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Guidance Value of Choice Functions

Let Q be a finite possibility space.

Let Fin(L(2)) be the space of all finite subsets of £(Q)

Let C : Fin(L(Q2)) — Fin(£L(X2)) be a choice function (so C(A) € A)
Let u be a measure on Fin(L())

Question: If we now know @ and u, but not exactly which decision problems C
was used to address, can we evaluate how well C did at guiding choice? (cf.
Schervish [1989])
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Pettigrew’s Approach
/// e Guidance value in the face of incomparability

W
/ / e Pettigrew: Decision-makers randomize over their
/
e 72 4 ’

é choice set
If C(A) ={g1,...,9n} then
p(A,C(A)) ={p1,...,pn) is a pmf.
Let uu(C(A)) = (g1(@),- .., gn(w))
Let 8u(A,C(A)) = p(A, C(A)) - uu(C(A))
e Expected payout at w if randomly picking from
C(A) viap(A,C(A))
Guidance Value:

0u(C) = f Eu(A,C(A)) du
Fin(£(Q)) 25/29



Pettigrew’s Challenge

/0
ol
‘w’,,/¢/ ﬁ)

1. No reasonable choice function is dominated in
terms of guidance value (guaranteed to be worse
than some other choice function)

2. Every imprecise C is dominated

C. Every imprecise C is unreasonable
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Strict C-Propriety

Suppose that forall i < n
0.0 = [ &, (AcA)
Fin(£(Q))

Suppose further that (X) > 0 for any non-degenerate X C Fin(L(Q2)).
Then for any probability mass function p : @ — R and any C # Cp

p-9(C) <p-9(Cp)
unless C # Cp on a set of measure zero.
g is a strictly C-proper.
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Wald’s Complete Class Theorem

Definition

C is Bayes optimal relative to g if and only if C maximizes
expected guidance value relative to some pmf p.
Definition

C is admissible relative to g if and only if there is no C’

such that g(C) < g(C’).

Wald’s Complete Class Theorem

Under mild conditions, satisfied by strictly C-proper g, C is
Bayes optimal (relative to g) if and only if C is admissible
(relative to g).
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Resolving Decision Problems with Incomparability

e De Bock & de Cooman 2014: If multiple candidate words are non-rejected,
cross-check against a dictionary
e Proponents of IP must think systematically about how to resolve

incomparability!
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