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• Desirability and Choice without Act-State Independence

• The Value of Incomparability
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Desirability and Choice without
Act-State Independence



Coherent sets of desirable gambles

Let Ω be a finite possibility space.

A gamble g : Ω→ R is an uncertain reward. We collect them in L(Ω).

A set of gambles D ⊆ L(Ω) that You judge desirable (prefer to the status quo, 0),
is coherent iff

D1. 0 < D

D2. If f > 0 and f , 0, then f ∈ D

D3. If f ∈ D and λ > 0 then λf ∈ D

D4. If f ,g ∈ D then f + g ∈ D
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Coherent sets of desirable gambles

H

T
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Coherent sets of desirable gambles

H

T

Rather imprecise
(non-committal)

H

T

More precise:
(larger set, more committal)

H

T

Open half-space:
precise prob model
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Coherent sets of desirable gambles

H

T

Symmetric half-space:
Uniform probability

H

T

Half-open boundary:
Infinitesimally biased

H

T

Smallest coherent D
“The vacuous model”
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Example: Protection
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Example: Protection

f : Buy Protection -410 -10
g : Don’t Buy Protection -400 0

g − f ∈ D (by D2)
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Act-State Independence

• Savage: No trouble with Dominance. The
decision problem is ill-posed. Probabilities of
states must be independent of which gamble is
chosen.

• Problem 1. Independence: evidential or causal?

• Problem 2. It’s the decision-maker’s views
about independence that matter.
• No “choice events” in the desirability framework
• No way to model how info about choices affects

decision-maker’s views about states
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Evidential Decision Theory

• � is a relation on a σ-algrebra F of Ω

• � is an asymmetric weak order (nontriviality, nullity)

• Continuity: If An ↑ A or An ↓ A and B � A � C, then
B � An � C

• Averaging: If A and B are disjoint then
• A � B implies A � A ∪ B � B
• A ∼ B (A � B and B � A ) implies A ∼ A ∪ B ∼ B

• Impartiality: If A ,B ,C are mutually disjoint and

A ∼ B , A � C or C � A , A ∪ C ∼ B ∪ C

then A ∪ D ∼ B ∪ D whenever A ,B ,D are mutually
disjoint. 9/29



Impartiality: An Example

• Blue or Red: £0. Green or Brown: £100.

• Blue ∼ Red

• Green � Blue ∼ Red, Brown � Blue ∼ Red

• Blue or Green � Red or Green
• Learning Blue or Green is better news than

learning Red or Green
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Impartiality: An Example

• Blue or Red: £0. Green or Brown: £100.

• Blue ∼ Red

• Green � Blue ∼ Red, Brown � Blue ∼ Red

• Blue or Green ∼ Red or Green
• Learning Blue or Green, on the one hand, or

Red or Green on the other—equally good news
• Happens iff Blue and Red are equiprobable

• Blue or Brown ∼ Red or Brown
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Evidential Decision Theory

Jeffrey’s Representation Theorem
If � satisfies the Jeffrey-Bolker axioms, then there is a
probability measure P and signed measure M on F with
M � P such that

A � B iff
M(A)

P(A)
>

M(B)

P(B)

Letting U = M/P and noting M(A) =
∫

A u dP yields

A � B iff U(A) > U(B) iff

∫
A u dP

P(A)
>

∫
B u dP

P(B)

Moreover U is unique up to fractional linear transformation.
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Evidential Decision Theory

• Jeffrey treats A � B and B � A as indifference
• Completeness

• Bradley provides IP version of EDT
• Bradley’s RT: � full agrees with a set of < P,M > pairs.
• Bradley’s axiomatization assumes � has a miniminal

(preserves strict part) Jeffrey coherent extension �′

• Open questions
• Satisfactory axiomatization of coherent partial evidential

preference relations
• Choice functions representable by sets of coherent partial

evidential preference relations
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EDT and Desirability

LetW be a finite possibility space and L(W) be the set of gambles on Ω.

G ⊆ L(W) represents the gambles that are available to You.

Let Ω =W×G and A be the set of act events Eg = {< ω, f >∈ Ω | f = g}.

Let L(Ω) be the set of bounded gambles on Ω.

Let ρg(ω, f) = g(ω) if f = g, 0 otherwise.

Let D ⊆ L(Ω) be a coherent set of desirable gambles

Interval Dominance: f � g iff

• sup
{
ε > 0 | ρf − ε ∈ DEf

}
> inf

{
ε > 0 | ε − ρg ∈ DEg

}
• OR sup

{
ε > 0 | ρf − ε ∈ DEf

}
= inf

{
ε > 0 | ε − ρg ∈ DEg

}
and

¬

[
ρf − sup

{
ε > 0 | ρf − ε ∈ DEf

}
∈ DEf iff inf

{
ε > 0 | ε − ρg ∈ DEg

}
− ρg ∈ DEg

]
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Example: Protection

ω1 ω2

f : Buy Protection -410 -10
g : Don’t Buy Protection -400 0

• G = {f ,g}
• Ω = {< ω1, f >,< ω2, f >,< ω1,g >,< ω2,g >}
• D is the coherent set of desirable gambles based on
M =

{
m =< m1,m2,m3,m4 > |

m2
m1+m2

> 9
10 ,

m3
m3+m4

> 9
10

}
• sup

{
ε > 0 | ρf − ε ∈ DEf

}
= −50 > −360 = inf

{
ε > 0 | ε − ρg ∈ DEg

}
⇒ f � g
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EDT and Partial Preferences on Gambles

LetW be a finite possibility space and L(W) be the set of gambles on Ω.

G ⊆ L(W) represents the gambles that are available to You.

Let Ω =W×G and A be the set of act events Eg = {< ω, f >∈ Ω | f = g}.

Let L(Ω) be the set of bounded gambles on Ω.

Let ρg(ω, f) = g(ω) if f = g, 0 otherwise.

Let L+ be the linear space of partial gambles generated by A (i.e., γ | A in L+ for
all γ ∈ L(Ω), A ∈ A; L+ closed under function addition and scaling).

f � g iff ρf | Ef � ρg | Eg.

Open Question: Axiomatize coherent partial preference relations on L+ (Suppes
and Zanotti 1982).
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EDT and Probability Filters

• L(Ω) is the set of bounded gambles on Ω =W×G.

• P is the set of coherent linear previsions on L(Ω) and P(P) is the
power set of P

• F ⊆ P(P) is coherent iff it is a proper filter:
F1. F , ∅
F2. P,Q ∈ F implies P ∩Q ∈ F
F3. P ∈ F and P ⊆ Q implies Q ∈ F
F4. ∅ < F

• Rejection: R : Fin(G)→ Fin(G)

• E-Admissibility: g ∈ R(A) iff{
p | (∃f ∈ A)p(ρf | Ef ) > p(ρg | Eg)

}
∈ F

• Maximality: g ∈ R(A) iff (∃f ∈ A)
{
p | p(ρf | Ef ) > p(ρg | Eg)

}
∈ F
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CDT on Protection

f : Buy Protection -410 -10
g : Don’t Buy Protection -400 0

Choosing f causes your windshield to remain unsmashed
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Causal vs. Evidential Decision Theory: Twin Prisoner’s Dilemma

Rat -10 0
Silence -20 -1

EDT: Silent, CDT: Rat
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Causal Decision Theory

� is a relation on P(Ω) × C where C ⊆ P(Ω) is a set of “condi-
tions” which include the available acts

Joyce’s Representation Theorem
If � satisfies Joyce’s axioms, then there is a unique
supposition function P : P(Ω)×C → [0,1] and utility function
u : Ω→ R such that A � B iff

U(A) =
∑
ω∈Ω

P({ω} || A)u(ω) >
∑
ω∈Ω

P({ω} || A)u(ω) = U(B)

Moreover u is unique up to positive affine transformation.
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Causal Decision Theory

•
∑
ω∈Ω P({ω} || A)u(ω) can be written as∑

ω∈Ω

P({ω} || Ω)
∑
ω′∈Ω

wouldA (ω,ω′)u(ω′)

• wouldA is an imaging function

• wouldA (ω, ·) is a pmf that puts all probability mass on A

• wouldA (ω,ω′) is roughly the probability, at ω, that ω′

would result were you to make A true
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Causal Decision Theory

CDT and Desirability:

• Ω is a finite possibility space

• u : Ω→ R is a linear utility

• wouldA is an imaging function

• D ⊆ L(Ω) is a coherent set of desirable gambles

• A � B iff wouldA · u − wouldB · u ∈ D
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The Value of Incomparability
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Guidance Value of Choice Functions

Let Ω be a finite possibility space.

Let Fin(L(Ω)) be the space of all finite subsets of L(Ω)

Let C : Fin(L(Ω))→ Fin(L(Ω)) be a choice function (so C(A) ⊆ A )

Let µ be a measure on Fin(L(Ω))

Question: If we now know ω and µ, but not exactly which decision problems C
was used to address, can we evaluate how well C did at guiding choice? (cf.
Schervish [1989])
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Pettigrew’s Approach

• Guidance value in the face of incomparability
• Pettigrew: Decision-makers randomize over their

choice set

• If C(A) = {g1, . . . ,gn} then
p(A ,C(A)) = 〈p1, . . . ,pn〉 is a pmf.

• Let uω(C(A)) =
〈
g1(ω), . . . ,gn(ω)

〉
• Let Eω(A ,C(A)) = p(A ,C(A)) · uω(C(A))

• Expected payout at ω if randomly picking from
C(A) via p(A ,C(A))

• Guidance Value:

gω(C) =

∫
Fin(L(Ω))

Eω(A ,C(A)) dµ
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Pettigrew’s Challenge

1. No reasonable choice function is dominated in
terms of guidance value (guaranteed to be worse
than some other choice function)

2. Every imprecise C is dominated

C. Every imprecise C is unreasonable
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Strict C-Propriety

Suppose that for all i 6 n

gω(C) =

∫
Fin(L(Ω))

Eω(A ,C(A)) dµ

Suppose further that µ(X) > 0 for any non-degenerate X ⊆ Fin(L(Ω)).

Then for any probability mass function p : Ω→ R and any C , Cp

p · g(C) < p · g(Cp)

unless C , Cp on a set of measure zero.

g is a strictly C-proper.
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Wald’s Complete Class Theorem

Definition

C is Bayes optimal relative to g if and only if C maximizes
expected guidance value relative to some pmf p.

Definition

C is admissible relative to g if and only if there is no C′

such that g(C) ≺ g(C′).

Wald’s Complete Class Theorem
Under mild conditions, satisfied by strictly C-proper g, C is
Bayes optimal (relative to g) if and only if C is admissible
(relative to g).
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Resolving Decision Problems with Incomparability

• De Bock & de Cooman 2014: If multiple candidate words are non-rejected,
cross-check against a dictionary

• Proponents of IP must think systematically about how to resolve
incomparability!
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