Bringing philosophy and IP into conversation: Puzzles and challenges for decision theory

Jason Konek

22 November 2024

Department of Philosophy, Bristol SIPTA Seminar

- Desirability and Choice without Act-State Independence
- The Value of Incomparability

Desirability and Choice without Act-State Independence

Let Ω be a finite possibility space.

A gamble $g: \Omega \to \mathbb{R}$ is an uncertain reward. We collect them in $\mathcal{L}(\Omega)$.

A set of gambles $\mathcal{D} \subseteq \mathcal{L}(\Omega)$ that You judge desirable (prefer to the status quo, 0), is **coherent** iff

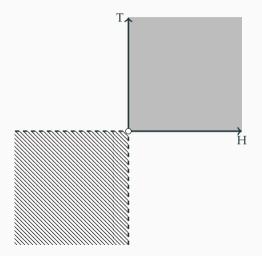
D1. $0 \notin D$

D2. If $f \ge 0$ and $f \ne 0$, then $f \in \mathcal{D}$

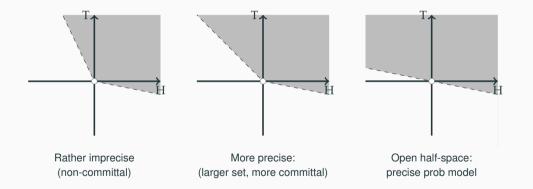
D3. If $f \in \mathcal{D}$ and $\lambda > 0$ then $\lambda f \in \mathcal{D}$

```
D4. If f, g \in \mathcal{D} then f + g \in \mathcal{D}
```

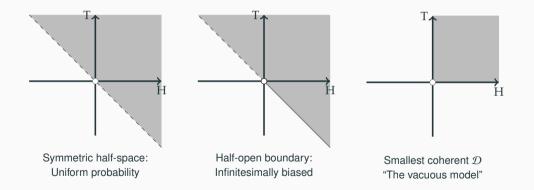
Coherent sets of desirable gambles



Coherent sets of desirable gambles



Coherent sets of desirable gambles



Example: Protection

f : Buy Protection	-410	-10
g : Don't Buy Protection	-400	0

 $g - f \in \mathcal{D}$ (by D2)

Act-State Independence

- Savage: No trouble with Dominance. The decision problem is ill-posed. Probabilities of states must be independent of which gamble is chosen.
- Problem 1. Independence: evidential or causal?
- Problem 2. It's the decision-maker's views about independence that matter.
 - No "choice events" in the desirability framework
 - No way to model how info about choices affects decision-maker's views about states

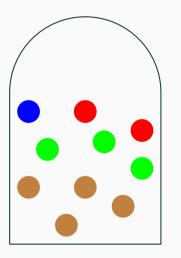
Evidential Decision Theory

- > is a relation on a σ -algrebra \mathcal{F} of Ω
- > is an asymmetric weak order (nontriviality, nullity)
- **Continuity**: If $A_n \uparrow A$ or $A_n \downarrow A$ and B > A > C, then $B > A_n > C$
- Averaging: If A and B are disjoint then
 - A > B implies $A > A \cup B > B$
 - $A \sim B$ ($A \neq B$ and $B \neq A$) implies $A \sim A \cup B \sim B$
- Impartiality: If A, B, C are mutually disjoint and

 $A \sim B$, $A \succ C$ or $C \succ A$, $A \cup C \sim B \cup C$

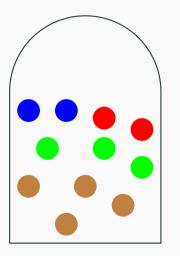
then $A \cup D \sim B \cup D$ whenever A, B, D are mutually disjoint.

Impartiality: An Example



- Blue or Red: £0. Green or Brown: £100.
- $\bullet \ Blue \sim Red$
- Green > Blue ~ Red, Brown > Blue ~ Red
- Blue or Green > Red or Green
 - Learning Blue or Green is better news than learning Red or Green

Impartiality: An Example



- Blue or Red: £0. Green or Brown: £100.
- $\bullet \ Blue \sim Red$
- Green > Blue ~ Red, Brown > Blue ~ Red
- Blue or Green \sim Red or Green
 - Learning Blue or Green, on the one hand, or Red or Green on the other—equally good news
 - Happens iff Blue and Red are equiprobable
- Blue or Brown \sim Red or Brown

Evidential Decision Theory

Jeffrey's Representation Theorem

If > satisfies the Jeffrey-Bolker axioms, then there is a probability measure *P* and signed measure *M* on \mathcal{F} with $M \gg P$ such that

$$A > B$$
 iff $\frac{M(A)}{P(A)} > \frac{M(B)}{P(B)}$

Letting U = M/P and noting $M(A) = \int_A u \, dP$ yields

$$A > B \text{ iff } U(A) > U(B) \text{ iff } \frac{\int_A u \, dP}{P(A)} > \frac{\int_B u \, dP}{P(B)}$$

Moreover U is unique up to fractional linear transformation $\frac{1}{12/29}$

Evidential Decision Theory

Decision Theory with a Human Face

Richard Bradley

- Jeffrey treats $A \neq B$ and $B \neq A$ as indifference
 - Completeness
- Bradley provides IP version of EDT
 - Bradley's RT: \geq full agrees with a set of $\langle P, M \rangle$ pairs.
 - Bradley's axiomatization assumes ≥ has a miniminal (preserves strict part) Jeffrey coherent extension ≥'
- Open questions
 - Satisfactory axiomatization of coherent partial evidential preference relations
 - Choice functions representable by sets of coherent partial evidential preference relations

EDT and Desirability

Let \mathcal{W} be a finite possibility space and $\mathcal{L}(\mathcal{W})$ be the set of gambles on Ω .

 $\mathcal{G} \subseteq \mathcal{L}(\mathcal{W})$ represents the gambles that are available to You.

Let $\Omega = \mathcal{W} \times \mathcal{G}$ and \mathcal{A} be the set of act events $E_q = \{ < \omega, f > \in \Omega \mid f = g \}$.

Let $\mathcal{L}(\Omega)$ be the set of bounded gambles on Ω .

Let $\rho_g(\omega, f) = g(\omega)$ if f = g, 0 otherwise.

Let $\mathcal{D} \subseteq \mathcal{L}(\Omega)$ be a coherent set of desirable gambles

Interval Dominance: f > g iff

•
$$\sup \{ \epsilon > 0 \mid \rho_f - \epsilon \in \mathcal{D}_{E_f} \} > \inf \{ \epsilon > 0 \mid \epsilon - \rho_g \in \mathcal{D}_{E_g} \}$$

• OR sup
$$\{ \epsilon > 0 \mid \rho_f - \epsilon \in \mathcal{D}_{E_f} \} = \inf \{ \epsilon > 0 \mid \epsilon - \rho_g \in \mathcal{D}_{E_g} \}$$
 and

$$\neg \left[\rho_{f} - \sup \left\{ \epsilon > 0 \mid \rho_{f} - \epsilon \in \mathcal{D}_{E_{f}} \right\} \in \mathcal{D}_{E_{f}} \text{ iff } \inf \left\{ \epsilon > 0 \mid \epsilon - \rho_{g} \in \mathcal{D}_{E_{g}} \right\} - \rho_{g} \in \mathcal{D}_{E_{g}} \Big]_{14/29}$$

	ω_1	ωz
f : Buy Protection	-410	-10
g : Don't Buy Protection	-400	0

- $\mathcal{G} = \{f, g\}$
- $\Omega = \{ < \omega_1, f >, < \omega_2, f >, < \omega_1, g >, < \omega_2, g > \}$
- $\ensuremath{\mathcal{D}}$ is the coherent set of desirable gambles based on

$$\mathcal{M} = \left\{ m = < m_1, m_2, m_3, m_4 > \mid \frac{m_2}{m_1 + m_2} \ge \frac{9}{10}, \frac{m_3}{m_3 + m_4} \ge \frac{9}{10} \right\}$$

• sup $\left\{ \epsilon > 0 \mid \rho_f - \epsilon \in \mathcal{D}_{E_f} \right\} = -50 > -360 = \inf \left\{ \epsilon > 0 \mid \epsilon - \rho_g \in \mathcal{D}_{E_g} \right\} \implies f > g$

EDT and Partial Preferences on Gambles

Let \mathcal{W} be a finite possibility space and $\mathcal{L}(\mathcal{W})$ be the set of gambles on Ω .

 $\mathcal{G} \subseteq \mathcal{L}(\mathcal{W})$ represents the gambles that are available to You.

Let $\Omega = \mathcal{W} \times \mathcal{G}$ and \mathcal{A} be the set of act events $E_q = \{ < \omega, f > \in \Omega \mid f = g \}$.

Let $\mathcal{L}(\Omega)$ be the set of bounded gambles on Ω .

Let $\rho_g(\omega, f) = g(\omega)$ if f = g, 0 otherwise.

Let \mathcal{L}^+ be the linear space of partial gambles generated by \mathcal{A} (*i.e.*, $\gamma \mid A$ in \mathcal{L}^+ for all $\gamma \in \mathcal{L}(\Omega)$, $A \in \mathcal{A}$; \mathcal{L}^+ closed under function addition and scaling).

f > g iff $\rho_f \mid E_f > \rho_g \mid E_g$.

Open Question: Axiomatize coherent partial preference relations on \mathcal{L}^+ (Suppes and Zanotti 1982).

EDT and Probability Filters

- $\mathcal{L}(\Omega)$ is the set of bounded gambles on $\Omega = \mathcal{W} \times \mathcal{G}$.
- *P* is the set of coherent linear previsions on *L*(Ω) and 𝔅(*P*) is the power set of *P*
- $\mathcal{F} \subseteq \mathfrak{P}(\mathcal{P})$ is coherent iff it is a proper filter:
 - F1. $\mathcal{F} \neq \emptyset$ F2. $P, Q \in \mathcal{F}$ implies $P \cap Q \in \mathcal{F}$ F3. $P \in \mathcal{F}$ and $P \subseteq Q$ implies $Q \in \mathcal{F}$ F4. $\emptyset \notin \mathcal{F}$
- **Rejection**: $R : \operatorname{Fin}(\mathcal{G}) \to \operatorname{Fin}(\mathcal{G})$
- **E-Admissibility**: $g \in R(A)$ iff $\left\{ p \mid (\exists f \in A) p(\rho_f \mid E_f) > p(\rho_g \mid E_g) \right\} \in \mathcal{F}$
- Maximality: $g \in R(A)$ iff $(\exists f \in A) \{ p \mid p(\rho_f \mid E_f) > p(\rho_g \mid E_g) \} \in \mathcal{F}$

f : Buy Protection	-410	-10
g : Don't Buy Protection	-400	0

Choosing *f* causes your windshield to remain unsmashed

Causal vs. Evidential Decision Theory: Twin Prisoner's Dilemma

EDT: Silent, CDT: Rat

Causal Decision Theory

> is a relation on $\mathfrak{P}(\Omega) \times C$ where $C \subseteq \mathfrak{P}(\Omega)$ is a set of "conditions" which include the available acts

Joyce's Representation Theorem

If > satisfies Joyce's axioms, then there is a unique supposition function $P : \mathfrak{P}(\Omega) \times C \rightarrow [0, 1]$ and utility function $u : \Omega \rightarrow \mathbb{R}$ such that A > B iff

$$U(A) = \sum_{\omega \in \Omega} P(\{\omega\} \parallel A) u(\omega) > \sum_{\omega \in \Omega} P(\{\omega\} \parallel A) u(\omega) = U(B)$$

Moreover *u* is unique up to positive affine transformation.

Causal Decision Theory

• $\sum_{\omega \in \Omega} P(\{\omega\} \parallel A) u(\omega)$ can be written as

$$\sum_{\omega \in \Omega} P(\{\omega\} \parallel \Omega) \sum_{\omega' \in \Omega} would_A(\omega, \omega') u(\omega')$$

- would_A is an imaging function
- $would_A(\omega, \cdot)$ is a pmf that puts all probability mass on A
- would_A(ω, ω') is roughly the probability, at ω, that ω' would result were you to make A true

Causal Decision Theory

CDT and Desirability:

- Ω is a finite possibility space
- $u: \Omega \to \mathbb{R}$ is a linear utility
- would_A is an imaging function
- $\mathcal{D} \subseteq \mathcal{L}(\Omega)$ is a coherent set of desirable gambles
- A > B iff $would_A \cdot u would_B \cdot u \in \mathcal{D}$

The Value of Incomparability

Let Ω be a finite possibility space.

Let $\operatorname{Fin}(\mathcal{L}(\Omega))$ be the space of all finite subsets of $\mathcal{L}(\Omega)$

Let C : Fin($\mathcal{L}(\Omega)$) \rightarrow Fin($\mathcal{L}(\Omega)$) be a choice function (so $C(A) \subseteq A$)

Let μ be a measure on $\operatorname{Fin}(\mathcal{L}(\Omega))$

Question: If we now know ω and μ , but not exactly which decision problems *C* was used to address, can we evaluate how well *C* did at guiding choice? (*cf.* Schervish [1989])

Pettigrew's Approach

- Guidance value in the face of incomparability
 - Pettigrew: Decision-makers randomize over their choice set
- If $C(A) = \{g_1, \dots, g_n\}$ then $p(A, C(A)) = \langle p_1, \dots, p_n \rangle$ is a pmf.
- Let $u_{\omega}(C(A)) = \langle g_1(\omega), \dots, g_n(\omega) \rangle$
- Let $\mathcal{E}_{\omega}(A, C(A)) = p(A, C(A)) \cdot u_{\omega}(C(A))$
 - Expected payout at ω if randomly picking from C(A) via p(A, C(A))
- Guidance Value:

$$g_{\omega}(C) = \int_{\operatorname{Fin}(\mathcal{L}(\Omega))} \mathcal{E}_{\omega}(A, C(A)) \,\mathrm{d}\mu$$

25/29

Pettigrew's Challenge

- No reasonable choice function is dominated in terms of guidance value (guaranteed to be worse than some other choice function)
- 2. Every imprecise C is dominated
- C. Every imprecise C is unreasonable

Suppose that for all $i \leq n$

$$g_{\omega}(C) = \int_{\operatorname{Fin}(\mathcal{L}(\Omega))} \mathcal{E}_{\omega}(A, C(A)) \, \mathrm{d}\mu$$

Suppose further that $\mu(X) > 0$ for any non-degenerate $X \subseteq Fin(\mathcal{L}(\Omega))$.

Then for any probability mass function $p : \Omega \to \mathbb{R}$ and any $C \neq C_p$

 $p \cdot g(C)$

unless $C \neq C_p$ on a set of measure zero.

g is a strictly C-proper.

Wald's Complete Class Theorem

Definition

C is **Bayes optimal relative to** *g* if and only if *C* maximizes expected guidance value relative to some pmf *p*.

Definition

C is **admissible relative to** *g* if and only if there is no *C*' such that $g(C) \prec g(C')$.

Wald's Complete Class Theorem

Under mild conditions, satisfied by strictly *C*-proper g, *C* is Bayes optimal (relative to g) if and only if *C* is admissible (relative to g).

Resolving Decision Problems with Incomparability

- De Bock & de Cooman 2014: If multiple candidate words are non-rejected, cross-check against a dictionary
- Proponents of IP must think systematically about how to resolve incomparability!

References

L. J. Savage. Elicitation of personal probabilities and expectations. <u>Journal of the</u> <u>American Statistical Association</u>, 66:783–801, 1971.

Mark Schervish. A general method for comparing probability assessors. <u>The</u> Annals of Statistics, 17(4):1856–1879, 1989.