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Lower probabilities

A lower probability is a function P : P(X )→ [0, 1] satisfying

I Monotonicity: P (A) ≤ P (B) if A ⊆ B.

I Normalisation: P (∅) = 0, P (X ) = 1.

Its conjugate upper probability P : P(X )→ [0, 1] is defined by:

P (A) = 1− P (Ac) ∀A ⊆ X .

Interpretations:

I Behavioural: supremum buying (P (A)) or infimum selling (P (A))
prices a bet on A.

I Epistemic: [P (A), P (A)] gives bounds for the unkown value of
P0(A).

I Coalitional games.
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Credal set
The credal set associated with a lower probability is given by:

M(P ) = {P probability measures | P (A) ≥ P (A) ∀A ⊆ X}.

{x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3}
P 0.1 0.3 0.2 0.5 0.3 0.6

P 0.4 0.7 0.5 0.8 0.7 0.9

x2

x1

x3

M(P )
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Rationality conditions
A lower probability . . .

. . . avoids sure loss if M(P ) 6= ∅.

. . . is coherent if P (A) = min{P (A) | P ∈M(P )} ∀A ⊆ X .
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2-monotonicity
A lower probability P is 2-monotone if:

P (A ∪B) + P (A ∩B) ≥ P (A) + P (B) ∀A,B ⊆ X .

Properties:

I P has a unique extension of gambles → Choquet integral.

I Characterisation through the Möbius inverse.

I Conditioning.

I Formula for the extreme points.
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Example: distortion models
The linear vacuous model (LV) induced by the probability measure
P0 and δ ∈ (0, 1) is defined by:

PLV (A) = (1− δ)P0(A) ∀A ⊂ X .

The Pari Mutuel model (PMM) induced by the probability measure
P0 and δ > 0 is defined by:

PPMM (A) = max{(1 + δ)P0(A)− δ, 0} ∀A ⊆ X .

x2

x1

x3

BδLV (P0)

BδPMM (P0)

P0 = (0.3, 0.3, 0.4)
δ = 0.3
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Coalitional games

Basic concepts:

I Set of players: X = {x1, . . . , xn}.
I Coalition of players: A ⊆ X .

I Game: ν : P(X )→ [0,∞).

I ν(A): minimum reward guaranteed by coalition A.

I ν(X ): total reward.

We impose the following conditions:

I ν(∅) = 0 and ν(X ) = 1.

I ν(A) ≤ ν(B) when A ⊆ B.
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Coalitional games VS Lower probabilities

Coalitional
Lower probabilities

game theory
Lower probabilities

Normalised game (ν) Lower probability (P )

Conjugate (ν̄) Conjugate upper probability (P )

Balanced game Lower probability avoiding sure loss

Exact game Coherent lower probability

Core (core(ν)) Credal set (M(P ))

Convex game 2-monotone lower probability

Coalitional games VS Lower probabilities: Two sides of the same
coin...
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Extreme points

Theorem 5.13: The number

of extreme points of the credal

set associated with a coherent

lower probability is |X |!.

Corollary 4.6: The core of a n-

person exact game has at most

n! extreme points.
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Game solutions - Centroids

Solution of the game: a “fair” way of dividing the total reward.
Centroid: a representative of the credal set.

1. Shapley value

2. Average of the extreme points

3. Incenter

4. Contraction centroid

Technical assumptions:

I X is finite.

I P (A) ∈ (0, 1) if A 6= ∅,X .
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1.Shapley value

Φ
P
1 ({x}) =

∑
A|x/∈A

|A|!(n− |A| − 1)!

n!

(
P (A ∪ {x})− P (A)

)
.

Properties:

I If P is 2-monotone, Φ
P
1 ∈M(P ).

I If P is not 2-monotone, Φ
P
1 may not belong to M(P ).

I Axiomatic definition.
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1.Shapley value: example

A {x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3}
P (A) 0.5 0.1 0.1 0.65 0.75 0.2

x2

x1

x3

Φ
P
1
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2.Average of the extreme points

If P1, . . . , Pk are the extreme points of M(P ), the average of the
extreme points is given by:

Φ
P
2 ({x}) =

1

k

k∑
i=1

Pi({x}).

Properties:

I Φ
P
2 ∈M(P ).

I If P is 2-monotone andM(P ) has n! different extreme points,

Φ
P
1 = Φ

P
2 .
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2.Average of the extreme points: example

A {x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3}
P (A) 0.5 0.1 0.1 0.65 0.75 0.2

x2

x1

x3

Φ
P
2
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3.Incenter (w.r.t. TV-distance)

TV-distance:

dTV (P,Q) = max
A⊆X

|P (A)−Q(A)|.

Incenter radius:

αI = sup
{
α | ∃P0 ∈M(P ) satisfying Bα

o (P0) ⊆M(P )
}
.

Incenter: any Φ
P
3 satisfying BαI

o

(
Φ
P
3

)
⊆M(P ).

Properties:

I An incenter always exists (wheneverM(P ) has a non-empty interior).

I The incenter may not be unique.

I Any incenter belongs to M(P ).
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3.Incenter: example

A {x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3}
P (A) 0.5 0.1 0.1 0.65 0.75 0.2

x2

x1

x3

Φ
P
3
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4.Contraction centroid: motivation

x2

x1

x3

Step 1: P + 0.01, P − 0.01

Step 2: P + 0.02, P − 0.02

Step 3: P + 0.05, P − 0.05

Step 4: P + 0.075, P − 0.075

Φ
P
4
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4.Contraction centroid

M(P ) can be expressed as:

M(P ) =
{
P | P (A) = P (A) ∀A ∈ L= , P (A) ≥ P (A) ∀A ∈ L>

}
where:

P (A) = P (A) P (A) < P (A)
if A ∈ L= if A ∈ L>

We define:

M(P )α =
{
P | P (A) = P (A) ∀A ∈ L= , P (A) ≥ P (A) + α ∀A ∈ L>

}
α1 = sup{α | M(P )α 6= ∅}

determining a coherent lower probability as

P 1(A) = min{P (A) | P ∈M(P )α1}.
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4.Contraction centroid

Iterating the procedure, after a finite number of steps we get:

M(P ) ⊃M(P )α1 ⊃M(P 1)α2 ⊃ . . . ⊃ {Φ
P
4 }.

Φ
P
4 is called the contraction centroid.

Properties:

I “Well defined”.

I M(P )α1 coincides with the set of incenters (whenever the interior

ofM(P ) is non-empty).

I Simple expression when P is 2-monotone.
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4.Contraction centroid: example

A {x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3}
P (A) 0.5 0.1 0.1 0.65 0.75 0.2

P (A) 0.8 0.25 0.35 0.9 0.9 0.5
P (A) + α 0.5 + α 0.1 + α 0.1 + α 0.65 + α 0.75 + α 0.2 + α

x2

x1

x3
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Summary

x2

x1

x3

x2

x1

x3

Shapley Average of extreme points
Set of incenters Contraction centroid
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Open Question 1

OQ1: Centroids as game solutions?

I Interpretation of the centroids from
the viewpoint of games?

I Axiomatic definition?
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Inner approximations

P ′ is an inner approximation of P if:

P ′ ≥ P ⇔M(P ′) ⊆M(P ).

P ′ is a non-dominating inner approximation in C if there is not
another inner approximation P ′′ ∈ C satisfying P ′  P ′′ ≥ P .
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LV-Incenters

We look for a PLV determined by (P0, δ) inner approximating P .

LV-Incenter radius:

δLV = sup
{
δ | ∃P0 ∈M(P ) satisfying BδLV (P0) ⊆M(P )

}
.

LV-Incenter: any P0 such that BδLV
LV (P0) ⊆M(P ).

Properties:

I It exists iff P (A) < P (A)
for every A 6= ∅,X .

I It may not be unique.

I Simple expression under 2-
monotonicity.

x2

x1

x3

δLV = 0.15P0 = (0.65, 0.12, 0.23)

P0 = (0.76, 0.12, 0.12)
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PMM-Incenters

We look for a PPMM determined by (P0, δ) inner approximating P .

PMM-Incenter radius:

δPMM = sup
{
δ | ∃P0 ∈M(P ) satisfying BδPMM (P0) ⊆M(P )

}
.

PMM-Incenter: any P0 such that BδPMM
PMM (P0) ⊆M(P ).

Properties:

I It exists iff P (A) < P (A)
for every A 6= ∅,X .

I It may not be unique.

I Simple expression under 2-
monotonicity.

x2

x1

x3

δPMM = 0.15

P0 = (0.56, 0.22, 0.22)
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Open Question 2

OQ2: LV-PMM game solutions?

I Do they make sense from the view-
point of games?

I Axiomatic definition?
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SIPTA Seminars

Coalitional game theory VS Imprecise probabilities:
Two sides of the same coin. . . or not?
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Example

Consider a game with 3 player X = {x1, x2, x3}. Opinions of the
coalitions:

Condition 1 Player 1 wants, at least, 10% of the reward.

Condition 2 Player 2 wants, at least, 20% of the reward.

Condition 3 The coalition of players 1 and 2 wants, at least, 40%
of the reward.

Condition 4 Player 3 wants, at least, as much as player 1.

Game
Condition 1: ν({x1}) = 0.1
Condition 2: ν({x2}) = 0.2
Condition 3: ν({x1, x2}) = 0.4
Condition 4: ??
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Example

x2

x1

x3

ν({x1})) = 0.1

ν({x2}) = 0.2ν({x1, x2}) = 0.4Φ({x3}) ≥ Φ({x1})Incompatible with ν! core(ν)
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Example

x2

x1

x3

ν({x1})) = 0.1

ν({x2}) = 0.2

ν({x1, x2}) = 0.4Φ({x3}) ≥ Φ({x1})Incompatible with ν! core(ν)
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Example

x2
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Lower previsions

I Gamble: bounded function f : X → R. Set of gambles:
L(X ).

I Lower prevision: a function Q : L(X )→ R.

I Conjugate upper prevision: Q(f) = −Q(−f).

I Credal set:

M(Q) = {P | P (f) ≥ Q(f) ∀f ∈ L(X )}.

I Q avoids sure loss if M(Q) 6= ∅.
I Coherence: Q(f) = min{P (f) | P ∈M(Q)}.
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Coherent lower previsions VS credal sets

Coherent lower previsions Credal Sets

Q(f) = min{P (f) | P ∈M(Q)} M(Q) = {P | P (f) ≥ Q(f)}

P (A) = Q(IA) = min{P (A) | P ∈M(Q)}

Important: Different coherent lower previsions may induce the same
coherent lower probability
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Example

Consider a game with 3 player X = {x1, x2, x3}. Opinions of the
coalitions:

Condition 1 Player 1 wants, at least, 10% of the reward.

Condition 2 Player 2 wants, at least, 20% of the reward.

Condition 3 The coalition of players 1 and 2 wants, at least, 40%
of the reward.

Condition 4 Player 3 wants, at least, as much as player 1.

Game Lower prevision
Condition 1: ν({x1}) = 0.1 −→ Q

(
I{x1}

)
= 0.1

Condition 2: ν({x2}) = 0.2 −→ Q
(
I{x2}

)
= 0.2

Condition 3: ν({x1, x2}) = 0.4 −→ Q
(
I{x1,x2}

)
= 0.4

Condition 4: ?? −→ Q
(
I{x3} − I{x1}

)
= 0
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Example

x2

x1

x3

M(Q)
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1.Shapley value

M(Q) Q(f) P (A) := Q(IA) Φ
Q

1 := Φ
P
1

Coherent
lower prevision

Coherent
lower probability

Shapley

value

Credal
set

x2

x1

x3

M(Q)

M(P )

Φ
Q

1 = (0.216, 0.466, 0.316)
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Open Question 3

OQ3: Shapley with lower previsions

I Does it make sense?

I Alternative expression?

I Rewriting the axiomatic properties?
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2.Average of the extreme points

If M(Q) is a polytope, it has a finite number of extreme points
P1, . . . , Pk:

Φ
Q

2 ({x}) =
1

k

k∑
i=1

Pi({x}).

x2

x1

x3

M(Q)

Φ
Q

2
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3.Incenter
Incenter radius:

αI = sup
{
α | ∃P0 ∈M(Q) satisfying Bα

o (P0) ⊆M(Q)
}
.

Incenter: any Φ
Q

3 satisfying BαI
o

(
Φ
Q

3

)
⊆M(Q).

x2

x1

x3

M(Q)

Φ
Q

3 = (0.22, 0.32, 0.46)
αI = 0.12
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4.Contraction centroid
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Summary

x2

x1

x3

M(Q)

Shapley Average of extreme points
Set of incenters Contraction centroid
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Open Question 4

OQ4: general credal sets

I What if M(Q) is not a polytope?

I Average of extreme points?

I Contraction centroid?
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At a glance

Lower probabilities VS coalitional games: equivalent . . .

Coalitional
Lower probabilities

game theory
Lower probabilities

Normalised game (ν) Lower probability (P )

Conjugate (ν̄) Conjugate upper probability (P )

Balanced game Lower probability avoiding sure loss

Exact game Coherent lower probability

Core (core(ν)) Credal set (M(P ))

Convex game 2-monotone lower probability

Game solution Centroid of the credal set

. . . but lower previsions are more informative!
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Open Question 5

OQ5: IP models

Coalitional games and . . .

I . . . set of desirable gambles?

I . . . choice functions?

I . . .
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