SIPTA SIPTA Seminars

Coalitional game theory VS Imprecise probabilities: Two sides of the same coin

Ignacio Montes

University of Oviedo Asturias - Spain

My collaborations Other authors Coalitional games L.Shapley E.Miranda C.Embil P.Smets D.Dubois M.Grabisch Distortions models S.Destercke A.Bronevich R.Pelessoni L.Utkin T.Seidenfeld Approximations of lower probabilities

T.Augustin

B.Vantaggi

P.Vicig

A.Presa

D.Skulj

D.Petturiti

Overview

Lower probabilities

Coalitional games

Game solutions - Centroids

Lower previsions VS coalitional games

Conclusions

Lower probabilities

A lower probability is a function $\underline{P}: \mathcal{P}(\mathcal{X}) \to [0,1]$ satisfying

- Monotonicity: $\underline{P}(A) \leq \underline{P}(B)$ if $A \subseteq B$.
- Normalisation: $\underline{P}(\emptyset) = 0$, $\underline{P}(\mathcal{X}) = 1$.

Its conjugate upper probability $\overline{P}: \mathcal{P}(\mathcal{X}) \to [0,1]$ is defined by:

$$\overline{P}(A) = 1 - \underline{P}(A^c) \quad \forall A \subseteq \mathcal{X}.$$

Interpretations:

- ▶ Behavioural: supremum buying (P(A)) or infimum selling (P(A)) prices a bet on A.
- ► Epistemic: [P(A), P(A)] gives bounds for the unkown value of P₀(A).
- Coalitional games.

The credal set associated with a lower probability is given by:

	$\{x_1\}$	$\{x_2\}$	$\{x_3\}$	$\{x_1, x_2\}$	$\{x_1, x_3\}$	$\{x_2, x_3\}$
<u>P</u>	0.1	0.3	0.2	0.5	0.3	0.6
\overline{P}	0.4	0.7	0.5	0.8	0.7	0.9

The credal set associated with a lower probability is given by:

	$\{x_1\}$	$\{x_2\}$	$\{x_3\}$	$\{x_1, x_2\}$	$\{x_1, x_3\}$	$\{x_2, x_3\}$
<u>P</u>	0.1	0.3	0.2	0.5	0.3	0.6
\overline{P}	0.4	0.7	0.5	0.8	0.7	0.9

The credal set associated with a lower probability is given by:

	$\{x_1\}$	$\{x_2\}$	$\{x_3\}$	$\{x_1, x_2\}$	$\{x_1, x_3\}$	$\{x_2, x_3\}$
<u>P</u>	0.1	0.3	0.2	0.5	0.3	0.6
\overline{P}	0.4	0.7	0.5	0.8	0.7	0.9

The credal set associated with a lower probability is given by:

	$\{x_1\}$	$\{x_2\}$	$\{x_3\}$	$\{x_1, x_2\}$	$\{x_1, x_3\}$	$\{x_2, x_3\}$
<u>P</u>	0.1	0.3	0.2	0.5	0.3	0.6
\overline{P}	0.4	0.7	0.5	0.8	0.7	0.9

The credal set associated with a lower probability is given by:

	$\{x_1\}$	$\{x_2\}$	$\{x_3\}$	$\{x_1, x_2\}$	$\{x_1, x_3\}$	$\{x_2, x_3\}$
<u>P</u>	0.1	0.3	0.2	0.5	0.3	0.6
\overline{P}	0.4	0.7	0.5	0.8	0.7	0.9

The credal set associated with a lower probability is given by:

	$\{x_1\}$	$\{x_2\}$	$\{x_3\}$	$\{x_1, x_2\}$	$\{x_1, x_3\}$	$\{x_2, x_3\}$
<u>P</u>	0.1	0.3	0.2	0.5	0.3	0.6
\overline{P}	0.4	0.7	0.5	0.8	0.7	0.9

Rationality conditions

A lower probability ...

... avoids sure loss if $\mathcal{M}(\underline{P}) \neq \emptyset$.

... is coherent if $\underline{P}(A) = \min\{P(A) \mid P \in \mathcal{M}(\underline{P})\} \ \forall A \subseteq \mathcal{X}.$

Rationality conditions

A lower probability ...

... avoids sure loss if $\mathcal{M}(\underline{P}) \neq \emptyset$.

... is coherent if $\underline{P}(A) = \min\{P(A) \mid P \in \mathcal{M}(\underline{P})\} \ \forall A \subseteq \mathcal{X}.$

	$\{x_1\}$	$\{x_2\}$	$\{x_3\}$	$\{x_1, x_2\}$	$\{x_1, x_3\}$	$\{x_2, x_3\}$
<u>P</u>	0.1	0.3	0.2	0.5	0.3	0.6
\overline{P}	0.4	0.7	0.5	0.8	0.7	0.9

Rationality conditions

A lower probability ...

... avoids sure loss if $\mathcal{M}(\underline{P}) \neq \emptyset$.

... is coherent if $\underline{P}(A) = \min\{P(A) \mid P \in \mathcal{M}(\underline{P})\} \ \forall A \subseteq \mathcal{X}.$

	$\{x_1\}$	$\{x_2\}$	$\{x_3\}$	$\{x_1, x_2\}$	$\{x_1, x_3\}$	$\{x_2, x_3\}$
<u>P</u>	0.1	0.3	0.2	0.5	0.2	0.6
\overline{P}	0.4	0.8	0.5	0.8	0.7	0.9

2-monotonicity

A lower probability \underline{P} is 2-monotone if:

 $\underline{P}(A\cup B)+\underline{P}(A\cap B)\geq \underline{P}(A)+\underline{P}(B)\quad \forall A,B\subseteq\mathcal{X}.$

2-monotonicity

A lower probability \underline{P} is 2-monotone if:

 $\underline{P}(A\cup B)+\underline{P}(A\cap B)\geq \underline{P}(A)+\underline{P}(B)\quad \forall A,B\subseteq \mathcal{X}.$

Properties:

- \underline{P} has a unique extension of gambles \rightarrow Choquet integral.
- Characterisation through the Möbius inverse.
- Conditioning.
- Formula for the extreme points.

The *linear vacuous* model (LV) induced by the probability measure P_0 and $\delta \in (0, 1)$ is defined by:

 $\underline{P}_{LV}(A) = (1 - \delta)P_0(A) \quad \forall A \subset \mathcal{X}.$

The *linear vacuous* model (LV) induced by the probability measure P_0 and $\delta \in (0, 1)$ is defined by:

 $\underline{P}_{LV}(A) = (1 - \delta)P_0(A) \quad \forall A \subset \mathcal{X}.$

The *linear vacuous* model (LV) induced by the probability measure P_0 and $\delta \in (0, 1)$ is defined by:

$$\underline{P}_{LV}(A) = (1 - \delta)P_0(A) \quad \forall A \subset \mathcal{X}.$$

The *Pari Mutuel* model (PMM) induced by the probability measure P_0 and $\delta > 0$ is defined by:

 $\underline{P}_{PMM}(A) = \max\{(1+\delta)P_0(A) - \delta, 0\} \quad \forall A \subseteq \mathcal{X}.$

The *linear vacuous* model (LV) induced by the probability measure P_0 and $\delta \in (0, 1)$ is defined by:

$$\underline{P}_{LV}(A) = (1 - \delta)P_0(A) \quad \forall A \subset \mathcal{X}.$$

The *Pari Mutuel* model (PMM) induced by the probability measure P_0 and $\delta > 0$ is defined by:

 $\underline{P}_{PMM}(A) = \max\{(1+\delta)P_0(A) - \delta, 0\} \quad \forall A \subseteq \mathcal{X}.$

Overview

Lower probabilities

Coalitional games

Game solutions - Centroids

Lower previsions VS coalitional games

Conclusions

Coalitional games

Basic concepts:

- Set of players: $\mathcal{X} = \{x_1, \ldots, x_n\}.$
- Coalition of players: $A \subseteq \mathcal{X}$.
- Game: $\nu : \mathcal{P}(\mathcal{X}) \to [0, \infty).$
- $\nu(A)$: minimum reward guaranteed by coalition A.
- \blacktriangleright $\nu(\mathcal{X})$: total reward.

We impose the following conditions:

•
$$\nu(\emptyset) = 0$$
 and $\nu(\mathcal{X}) = 1$.

▶
$$\nu(A) \le \nu(B)$$
 when $A \subseteq B$.

Coalitional games VS Lower probabilities

Coalitional game theory	Lower probabilities		
Normalised game (u)	Lower probability (\underline{P})		
Conjugate $(ar{ u})$	Conjugate upper probability (\overline{P})		
Balanced game	Lower probability avoiding sure loss		
Exact game	Coherent lower probability		
Core $(core(\nu))$	$Credal set \big(\mathcal{M}(\underline{P}) \big)$		
Convex game	2-monotone lower probability		

Coalitional games VS Lower probabilities: Two sides of the same coin...

Extreme points

ELSEVIER Available online at www.sciencedirect.com ScienceDirect International Journal of Approximate Reasoning 44 (2007) 339-357 www.cbevier.com/locate/jar	Theorem 5.13: The number of extreme points of the credal
Extreme points of coherent probabilities in finite spaces Anton Wallner	set associated with a coherent lower probability is $ \mathcal{X} !.$

Chapters in Game Theory pp 83–97 Cite as	
Springer Link	Corollary 4.6: The core of a n -
On the Number of Extreme Points of the Core of a	person exact game has at most
Transferable Utility Game	n! extreme points.
Jean Derks & Jeroen Kuipers	
Chapter	
Part of the Theory and Decision Library C: book series (TDLC,volume 31)	

Overview

Lower probabilities

Coalitional games

Game solutions - Centroids

Lower previsions VS coalitional games

Conclusions

Game solutions - Centroids

Solution of the game: a "fair" way of dividing the total reward. **Centroid:** a representative of the credal set.

- 1. Shapley value
- 2. Average of the extreme points
- 3. Incenter
- 4. Contraction centroid

Technical assumptions:

- X is finite.
- $\underline{P}(A) \in (0,1)$ if $A \neq \emptyset, \mathcal{X}$.

1.Shapley value

$$\Phi_1^{\underline{P}}(\{x\}) = \sum_{A|x \notin A} \frac{|A|!(n-|A|-1)!}{n!} \big(\underline{P}(A \cup \{x\}) - \underline{P}(A)\big).$$

Properties:

- ▶ If \underline{P} is 2-monotone, $\Phi_{\underline{1}}^{\underline{P}} \in \mathcal{M}(\underline{P})$.
- ▶ If \underline{P} is not 2-monotone, $\Phi_{\underline{1}}^{\underline{P}}$ may not belong to $\mathcal{M}(\underline{P})$.

Axiomatic definition.

A VALUE FOR n-PERSON GAMES

L. S. Shapley

P-295

18 March 1952

1.Shapley value: example

2. Average of the extreme points

If P_1, \ldots, P_k are the extreme points of $\mathcal{M}(\underline{P})$, the average of the extreme points is given by:

$$\Phi_2^{\underline{P}}(\{x\}) = \frac{1}{k} \sum_{i=1}^k P_i(\{x\}).$$

Properties:

$$\blacktriangleright \ \Phi_2^{\underline{P}} \in \mathcal{M}(\underline{P}).$$

▶ If \underline{P} is 2-monotone and $\mathcal{M}(\underline{P})$ has n! different extreme points, $\Phi_1^{\underline{P}} = \Phi_2^{\underline{P}}$.

2. Average of the extreme points: example

3.Incenter (w.r.t. TV-distance)

TV-distance:

$$d_{TV}(P,Q) = \max_{A \subseteq \mathcal{X}} |P(A) - Q(A)|.$$

Incenter radius:

 $\alpha_{I} = \sup \left\{ \alpha \mid \exists P_{0} \in \mathcal{M}(\underline{P}) \text{ satisfying } B_{o}^{\alpha}(P_{0}) \subseteq \mathcal{M}(\underline{P}) \right\}.$ Incenter: any $\Phi_{3}^{\underline{P}}$ satisfying $B_{o}^{\alpha_{I}}(\Phi_{3}^{\underline{P}}) \subseteq \mathcal{M}(\underline{P}).$

Properties:

- ▶ An incenter always exists (whenever $\mathcal{M}(\underline{P})$ has a non-empty interior).
- The incenter may not be unique.
- Any incenter belongs to $\mathcal{M}(\underline{P})$.

3.Incenter: example

3.Incenter: example

3.Incenter: example

4. Contraction centroid: motivation

4. Contraction centroid: motivation

4. Contraction centroid: motivation

4. Contraction centroid: motivation

4. Contraction centroid: motivation

4. Contraction centroid

 $\mathcal{M}(\underline{P})$ can be expressed as:

$$\mathcal{M}(\underline{P}) = \left\{ P \mid P(A) = \underline{P}(A) \ \forall A \in \mathcal{L}^{=}, \ P(A) \ge \underline{P}(A) \ \forall A \in \mathcal{L}^{>} \right\}$$

where:

$$\underline{P}(A) = \overline{P}(A) \qquad \underline{P}(A) < \overline{P}(A) \\ \text{if } A \in \mathcal{L}^{=} \qquad \text{if } A \in \mathcal{L}^{>}$$

We define:

 $\mathcal{M}(\underline{P})_{\alpha} = \left\{ P \mid P(A) = \underline{P}(A) \ \forall A \in \mathcal{L}^{=}, \ P(A) \ge \underline{P}(A) + \alpha \ \forall A \in \mathcal{L}^{>} \right\}$ $\alpha_{1} = \sup\{\alpha \mid \mathcal{M}(\underline{P})_{\alpha} \neq \emptyset \}$

determining a coherent lower probability as

$$\underline{P}_1(A) = \min\{P(A) \mid P \in \mathcal{M}(\underline{P})_{\alpha_1}\}.$$

4. Contraction centroid

Iterating the procedure, after a finite number of steps we get:

$$\mathcal{M}(\underline{P}) \supset \mathcal{M}(\underline{P})_{\alpha_1} \supset \mathcal{M}(\underline{P}_1)_{\alpha_2} \supset \ldots \supset \{\Phi_4^{\underline{P}}\}.$$

 $\Phi_4^{\underline{P}}$ is called the contraction centroid.

- "Well defined".
- *M*(<u>P</u>)_{α1} coincides with the set of incenters (whenever the interior of *M*(<u>P</u>) is non-empty).
- Simple expression when <u>P</u> is 2-monotone.

4. Contraction centroid: example

A	$ \{x_1\}$	$\{x_2\}$	$\{x_3\}$	$\{x_1, x_2\}$	$\{x_1, x_3\}$	$\{x_2, x_3\}$
$\underline{P}(A)$	0.5	0.1	0.1	0.65	0.75	0.2
$\overline{P}(A)$	0.8	0.25	0.35	0.9	0.9	0.5
$\underline{P}(A) + \alpha$	$0.5 + \alpha$	$0.1 + \alpha$	$0.1 + \alpha$	$0.65 + \alpha$	$0.75 + \alpha$	$0.2 + \alpha$

4. Contraction centroid: example

A	$ \{x_1\}$	$\{x_2\}$	$\{x_3\}$	$\{x_1, x_2\}$	$\{x_1, x_3\}$	$\{x_2, x_3\}$
$\underline{P}(A)$	0.5	0.1	0.1	0.65	0.75	0.2
$\overline{P}(A)$	0.8	0.25	0.35	0.9	0.9	0.5
$\underline{P}(A) + \alpha$	$0.5 + \alpha$	$0.1 + \alpha$	$0.1 + \alpha$	$0.65 + \alpha$	$0.75 + \alpha$	$0.2 + \alpha$

4. Contraction centroid: example

A	$ \{x_1\}$	$\{x_2\}$	$\{x_3\}$	$\{x_1, x_2\}$	$\{x_1, x_3\}$	$\{x_2, x_3\}$
$\underline{P}(A)$	0.5	0.1	0.1	0.65	0.75	0.2
$\overline{P}(A)$	0.8	0.25	0.35	0.9	0.9	0.5
$\underline{P}(A) + \alpha$	$0.5 + \alpha$	$0.1 + \alpha$	$0.1 + \alpha$	$0.65 + \alpha$	$0.75 + \alpha$	$0.2 + \alpha$

Summary

Shapley Set of incenters Average of extreme points Contraction centroid

Open Question 1

OQ1: Centroids as game solutions?

- Interpretation of the centroids from the viewpoint of games?
- Axiomatic definition?

 \underline{P}' is an *inner approximation* of \underline{P} if:

$$\underline{P'} \geq \underline{P} \Leftrightarrow \mathcal{M}(\underline{P'}) \subseteq \mathcal{M}(\underline{P}).$$

 \underline{P}' is a *non-dominating* inner approximation in C if there is not another inner approximation $\underline{P}'' \in C$ satisfying $\underline{P}' \ge \underline{P}'' \ge \underline{P}$.

LV-Incenters

We look for a \underline{P}_{LV} determined by (P_0, δ) inner approximating \underline{P} . LV-Incenter radius:

 $\delta_{LV} = \sup \left\{ \delta \mid \exists P_0 \in \mathcal{M}(\underline{P}) \text{ satisfying } B^{\delta}_{LV}(P_0) \subseteq \mathcal{M}(\underline{P}) \right\}.$

LV-Incenter: any P_0 such that $B_{LV}^{\delta_{LV}}(P_0) \subseteq \mathcal{M}(\underline{P})$.

- It exists iff $\underline{P}(A) < \overline{P}(A)$ for every $A \neq \emptyset, \mathcal{X}$.
- It may not be unique.
- Simple expression under 2monotonicity.

LV-Incenters

We look for a \underline{P}_{LV} determined by (P_0, δ) inner approximating \underline{P} . LV-Incenter radius:

 $\delta_{LV} = \sup \left\{ \delta \mid \exists P_0 \in \mathcal{M}(\underline{P}) \text{ satisfying } B^{\delta}_{LV}(P_0) \subseteq \mathcal{M}(\underline{P}) \right\}.$

LV-Incenter: any P_0 such that $B_{LV}^{\delta_{LV}}(P_0) \subseteq \mathcal{M}(\underline{P})$.

- It exists iff $\underline{P}(A) < \overline{P}(A)$ for every $A \neq \emptyset, \mathcal{X}$.
- It may not be unique.
- Simple expression under 2monotonicity.

LV-Incenters

We look for a \underline{P}_{LV} determined by (P_0, δ) inner approximating \underline{P} . LV-Incenter radius:

 $\delta_{LV} = \sup \left\{ \delta \mid \exists P_0 \in \mathcal{M}(\underline{P}) \text{ satisfying } B^{\delta}_{LV}(P_0) \subseteq \mathcal{M}(\underline{P}) \right\}.$

LV-Incenter: any P_0 such that $B_{LV}^{\delta_{LV}}(P_0) \subseteq \mathcal{M}(\underline{P})$.

- It exists iff $\underline{P}(A) < \overline{P}(A)$ for every $A \neq \emptyset, \mathcal{X}$.
- It may not be unique.
- Simple expression under 2monotonicity.

PMM-Incenters

We look for a \underline{P}_{PMM} determined by (P_0, δ) inner approximating \underline{P} . **PMM-Incenter radius:**

 $\delta_{PMM} = \sup \left\{ \delta \mid \exists P_0 \in \mathcal{M}(\underline{P}) \text{ satisfying } B^{\delta}_{PMM}(P_0) \subseteq \mathcal{M}(\underline{P}) \right\}.$

PMM-Incenter: any P_0 such that $B_{PMM}^{\delta_{PMM}}(P_0) \subseteq \mathcal{M}(\underline{P})$.

- It exists iff $\underline{P}(A) < \overline{P}(A)$ for every $A \neq \emptyset, \mathcal{X}$.
- It may not be unique.
- Simple expression under 2monotonicity.

PMM-Incenters

We look for a \underline{P}_{PMM} determined by (P_0, δ) inner approximating \underline{P} . **PMM-Incenter radius:**

 $\delta_{PMM} = \sup \left\{ \delta \mid \exists P_0 \in \mathcal{M}(\underline{P}) \text{ satisfying } B^{\delta}_{PMM}(P_0) \subseteq \mathcal{M}(\underline{P}) \right\}.$

PMM-Incenter: any P_0 such that $B_{PMM}^{\delta_{PMM}}(P_0) \subseteq \mathcal{M}(\underline{P})$.

- It exists iff $\underline{P}(A) < \overline{P}(A)$ for every $A \neq \emptyset, \mathcal{X}$.
- It may not be unique.
- Simple expression under 2monotonicity.

PMM-Incenters

We look for a \underline{P}_{PMM} determined by (P_0, δ) inner approximating \underline{P} . **PMM-Incenter radius:**

 $\delta_{PMM} = \sup \left\{ \delta \mid \exists P_0 \in \mathcal{M}(\underline{P}) \text{ satisfying } B^{\delta}_{PMM}(P_0) \subseteq \mathcal{M}(\underline{P}) \right\}.$

PMM-Incenter: any P_0 such that $B_{PMM}^{\delta_{PMM}}(P_0) \subseteq \mathcal{M}(\underline{P})$.

- It exists iff $\underline{P}(A) < \overline{P}(A)$ for every $A \neq \emptyset, \mathcal{X}$.
- It may not be unique.
- Simple expression under 2monotonicity.

Open Question 2

OQ2: LV-PMM game solutions?

- Do they make sense from the viewpoint of games?
- Axiomatic definition?

Coalitional game theory VS Imprecise probabilities: Two sides of the same coin...or not?

Overview

Lower probabilities

Coalitional games

Game solutions - Centroids

Lower previsions VS coalitional games

Conclusions

Consider a game with 3 player $\mathcal{X} = \{x_1, x_2, x_3\}$. Opinions of the coalitions:

Condition 1 Player 1 wants, at least, 10% of the reward.

Condition 2 Player 2 wants, at least, 20% of the reward.

Condition 3 The coalition of players 1 and 2 wants, at least, 40% of the reward.

Condition 4 Player 3 wants, at least, as much as player 1.

	••••••
Condition 1:	$\nu(\{x_1\}) = 0.1$
Condition 2:	$\nu(\{x_2\}) = 0.2$
Condition 3:	$\nu(\{x_1, x_2\}) = 0.4$
Condition 4:	??

Game

Lower previsions

- ▶ Gamble: bounded function $f : \mathcal{X} \to \mathbb{R}$. Set of gambles: $\mathcal{L}(\mathcal{X})$.
- Lower prevision: a function $\underline{Q} : \mathcal{L}(\mathcal{X}) \to \mathbb{R}$.
- Conjugate upper prevision: $\overline{Q}(f) = -\underline{Q}(-f)$.
- Credal set:

$$\mathcal{M}(\underline{Q}) = \{ P \mid P(f) \ge \underline{Q}(f) \; \forall f \in \mathcal{L}(\mathcal{X}) \}.$$

- \underline{Q} avoids sure loss if $\mathcal{M}(\underline{Q}) \neq \emptyset$.
- Coherence: $\underline{Q}(f) = \min\{P(f) \mid P \in \mathcal{M}(\underline{Q})\}.$

Coherent lower previsions VS credal sets

Important: Different coherent lower previsions may induce the same coherent lower probability

Consider a game with 3 player $\mathcal{X} = \{x_1, x_2, x_3\}$. Opinions of the coalitions:

Condition 1 Player 1 wants, at least, 10% of the reward.

Condition 2 Player 2 wants, at least, 20% of the reward.

Condition 3 The coalition of players 1 and 2 wants, at least, 40% of the reward.

Condition 4 Player 3 wants, at least, as much as player 1.

	Game		Lower prevision
Condition 1:	$\nu(\{x_1\}) = 0.1$	\longrightarrow	$\underline{Q}(I_{\{x_1\}}) = 0.1$
Condition 2:	$\nu(\{x_2\}) = 0.2$	\longrightarrow	$\overline{Q}(I_{\{x_2\}}) = 0.2$
Condition 3:	$\nu(\{x_1, x_2\}) = 0.4$	\longrightarrow	$\overline{Q}(I_{\{x_1,x_2\}}) = 0.4$
Condition 4:	??	\longrightarrow	$\overline{\underline{Q}}(I_{\{x_3\}} - I_{\{x_1\}}) = 0$

1.Shapley value

1.Shapley value

1.Shapley value

Open Question 3

OQ3: Shapley with lower previsions

- Does it make sense?
- Alternative expression?
- Rewriting the axiomatic properties?

2. Average of the extreme points

If $\mathcal{M}(\underline{Q})$ is a polytope, it has a finite number of extreme points P_1,\ldots,P_k :

$$\Phi_{\frac{Q}{2}}^{Q}(\{x\}) = \frac{1}{k} \sum_{i=1}^{k} P_{i}(\{x\}).$$

2. Average of the extreme points

If $\mathcal{M}(\underline{Q})$ is a polytope, it has a finite number of extreme points P_1,\ldots,P_k :

$$\Phi_2^Q(\{x\}) = \frac{1}{k} \sum_{i=1}^k P_i(\{x\}).$$

2. Average of the extreme points

If $\mathcal{M}(\underline{Q})$ is a polytope, it has a finite number of extreme points P_1,\ldots,P_k :

$$\Phi_{\underline{2}}^{\underline{Q}}(\{x\}) = \frac{1}{k} \sum_{i=1}^{k} P_i(\{x\}).$$

3.Incenter

Incenter radius:

$$\alpha_I = \sup \left\{ \alpha \mid \exists P_0 \in \mathcal{M}(\underline{Q}) \text{ satisfying } B_o^{\alpha}(P_0) \subseteq \mathcal{M}(\underline{Q}) \right\}.$$

Incenter: any $\Phi_3^{\underline{Q}}$ satisfying $B_o^{\alpha_I}(\Phi_3^{\underline{Q}}) \subseteq \mathcal{M}(\underline{Q}).$

3.Incenter

Incenter radius:

$$\alpha_I = \sup \left\{ \alpha \mid \exists P_0 \in \mathcal{M}(\underline{Q}) \text{ satisfying } B_o^{\alpha}(P_0) \subseteq \mathcal{M}(\underline{Q}) \right\}.$$

Incenter: any $\Phi_3^{\underline{Q}}$ satisfying $B_o^{\alpha_I}(\Phi_3^{\underline{Q}}) \subseteq \mathcal{M}(\underline{Q}).$

Summary

Shapley Set of incenters

Average of extreme points Contraction centroid

Open Question 4

OQ4: general credal sets

- What if $\mathcal{M}(Q)$ is not a polytope?
- Average of extreme points?
- Contraction centroid?

Overview

Lower probabilities

Coalitional games

Game solutions - Centroids

Lower previsions VS coalitional games

Conclusions

At a glance

Lower probabilities VS coalitional games: equivalent

Coalitional game theory	Lower probabilities
Normalised game (ν)	Lower probability (\underline{P})
Conjugate $(ar{ u})$	Conjugate upper probability (\overline{P})
Balanced game	Lower probability avoiding sure loss
Exact game	Coherent lower probability
Core (core(ν))	Credal set $(\mathcal{M}(\underline{P}))$
Convex game	2-monotone lower probability
Game solution	Centroid of the credal set

... but lower previsions are more informative!

Open Question 5

OQ5: IP models

Coalitional games and ...

-set of desirable gambles?
- ... choice functions?
- ▶ ...

References (I)

Shapley and Banzhaf values as probability transformations. E. Miranda, I. Montes, IJUFKS 2018.

International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems Vol. 26, No. 6 (2018) 917–947 © World Scientific Publishing Company DOI: 10.1142/S0218488518500411

Shapley and Banzhaf Values as Probability Transformations

Enrique Miranda^{*} and Ignacio Montes[†]

Centroids of the core of exact capacities: a comparative study. E. Miranda, I. Montes, Submitted.

Centroids of the core of exact capacities: a comparative study

Enrique Miranda^{1*} and Ignacio Montes^{1†}

^{1*}Department of Statistics and O.R., University of Oviedo, Federico García Lorca, Oviedo, 33007, Asturias, Spain.

References (II)

Unifying neighbourhood and distortion models: Parts I and II. I. Montes, E. Miranda, S. Destercke, JIGS 2020.

 Inner approximations of coherent lower probabilities.... E. Miranda, I. Montes, A. Presa, In preparation.

> Inner approximations of coherent lower probabilities and their application to decision making problems

Enrique Miranda^{1*†}, Ignacio Montes^{1†} and Andrés Presa^{1†}

ISIPTA 202W

ISIPTA 2023 - 13th International Symposium on Imprecise Probabilities: Theories and Applications Oviedo, July 11-14, 2023

https://isipta23.sipta.org/

@isipta2023

isipta2023@uniovi.es