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| Polya's Urn
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| Polya's Urn

E[f] = i # I|m u[f t], for any sequence

The ensemble average (%) is not representative of any individual trajectory.

No individual urn represents the “typical” behavior
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| Discounting Repeated Gambles

A SIMPLE GAMBLE f

Heads: increase your stake x by 50%
Tails: decrease your stake x by 40%

Gregory Wheeler - 6



| Discounting Repeated Gambles
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| Discounting Repeated Gambles
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| Discounting Repeated Gambles

—-= [, Expectation Value
4

-== [ Average Time Value

A SIMPLE GAMBLE f

Heads: increase your stake x by 50%
Tails: decrease your stake x by 40%

ot { flom ) = X(t

1) +0.5x(t-1)
f(w'r, t) X(

1) —0.4x(t—1)
Ifp=-

I and x=1at to, then E,[f] = 1.05
Should you stake €1 0n 30 tosses?

Ey[f] ~ €4.12, after 30 tosses

expectation value

E¢[f] ~ €0.22, after 30 tosses

most probable value
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| Discounting Repeated Gambles

—-= [, Expectation Value
-== [ Average Time Value

UpsHOT

Expectation values do not always reflect
what happens over time:

time average growth # expected rate of change
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| Discounting Repeated Gambles

—-= [, Expectation Value X
--=- [E Average Time Value k4

30

BIRKHOF'S EQUALITY

lim ju[f(eo, ] = E[f)]

Describes the conditions under which the
expectation value of a repeated gamble is
equivalent to long-term time average of a
single sequence of gambles.

The dogma of ergodicity does not
question whether this equality holds.

Gregory Wheeler - 6



2 3
Pla N Varieties of Function

Discounting Coherence




| Rationality Wars

It seems impossible to reach any definitive conclusions concerning human rationality in
the absence of a detailed analysis of the sensitivity of the criterion and the cost involved
in evaluating the alternatives. When the difficulty (or the costs) of the evaluations and
the consistency (or the error) of the judgments are taken into account, a [transitivity-
violating method] may prove superior.
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| Rationality Wars

It seems impossible to reach any definitive conclusions concerning human rationality in
the absence of a detailed analysis of the sensitivity of the criterion and the cost involved
in evaluating the alternatives. When the difficulty (or the costs) of the evaluations and
the consistency (or the error) of the judgments are taken into account, a [transitivity-
violating method] may prove superior.

(Tversky 1969)
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Preference Reversals in the Wild

Canadian Jay

Option A: 1 raisin (28cm distance)
Option B: 2 raisins (42cm distance)
Option C: 3 raisins (56cm distance)

A>B*>C
yet

C~A

(Waite 2001)



Preference Reversals in the Wild

Honeybees

Option A
Option B
Option C

A>B*>C
yet

C~A



Preference Reversals in the Wild

Slime Mold

Option A
Option B
Option C

A>B*>C
yet

C~A



Preference Reversals in the Wild

Humans

Exponential Discounting

present_value x e "

- Discount rate constant over time
- Never produces preference reversals

Hyperbolic Discounting
present _value /(1 + kt)

- Discount rate decreases as time-delay increases
- Regularly produces preference reversals



Preference Reversals in the Wild

Hyperbolic Discounting

Scenario 1: Choose
v  A) $100 today

B) $110 tomorrow

Scenario 2: Choose

A) $100in 30 days
v/ B) $110in 31 days




Preference Reversals in the Wild

Hyperbolic Discounting

Scenario 1: Choose
v~ A) $100 today

B) $110 tomorrow

Scenario 2: Choose

A) $100in 30 days
v/ B) $110in 31 days

Humans

Average Americans live ~4 years longer with hyperbolic discounting
compared to exponential discounting

(Strulik & Schiinemann 2018)



Varieties of Discounting

Hyperbolic
Quasi-Hyperbolic

Generalized Hyperbolic

Scale-Dependent
State-Dependent

Hybrid

1
Do(t)={1ift=0, B&"ift > 0}
1

Dg(t,z) = D(t)"®)
Dy (t,z) = e ")

Dhyb(t) = )\Dl(t) + (1 — )\)Dg(t),

A€ [0,1]
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| Desirable Gambles

D is a coherent set of desirable gambles (Williams 1975; Walley 2000) iff:

Al Iff<O,thenf¢ D (Avoid partial losses)
A2. Iff>0,thenfe D (Accept partial gains)
A3. Iffe D, then \fe D (A= 0) (Positive scale invariance)
Ad. IffeDandge D, thenf+ ge D (Combination)

Thm: If D is coherent, then there is a E(f) (Vfe D)

Gregory Wheeler - 12
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D is a coherent set of desirable gambles (Williams 1975; Walley 2000) iff:

Al Iff<O,thenf¢ D (Avoid partial losses)
A2. Iff> 0,thenfe D (Accept partial gains)
A3. Iffe D, then \fe D AN=0) (Positive scale invariance)
A4. IffeDandge D, thenf+geD (Combination)

E(A) = AE(f) and E(f+9g) = E(f) + E(9)
E(\) = AE(f) and E(f+g)=E(f) +E
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| Desirable Gambles

IDEA

Desire satisfaction is concave.

But “desirability’ is linear:
- scale invariance
- additive

Gregory Wheeler - 14



| Desirable Gambles

COHERENCE AXIOMS
D is a coherent set of desirable gambles iff:

Al
A2.
A3.
A4,

Iff<0,thenf¢ D (avoid losses)
Iff>0,thenfe D (accept gains)
Iffe D, thenA\fe D (A = 0) (scaling)

)

Iffe D, ge D, thenf+ ge D (combination

IDEA

Desire satisfaction is concave.

But “desirability’ is linear:
- scale invariance
- additive

Gregory Wheeler - 14



| Desirable Gambles

COHERENCE AXIOMS

D is a coherent set of desirable gambles iff:
Al. Iff<0,thenf¢ D (avoid losses)
A2. Iff>0,thenfe D (accept gains)
A3. Iffe D, thenAXfe D (A= 0) (scaling)
Ad. IffeD,ge D, thenf+ ge D (combination)

Bernoulli (1738) utility of wealth
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| Desirable Gambles

COHERENCE AXIOMS

D is a coherent set of desirable gambles iff:

Al
A2.
A3.
A4,

Iff<0,thenf¢ D (avoid losses)
Iff>0,thenfeD (accept gains)
Iffe D, thenXfeD (A= 0) (scaling)
Iffe D geD,thenf+geD (combination)

Price Impact

Square-root Law of Market Impact

100 Price Impact « VQ

80
60

40

0 2000 4000 6000 8000 10000
Total Volume Traded (Q)
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Classical Coherence

Linear Operations
on Gambles

Representation by
Linear Functional

'
E(f)

~ Nosure loss
« Monotonicity
v’ Cardinal utility
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U Coherence

Linear Operations
on Gambles

\

Apply transformation
u(x, o)

a>0

Representation by
Linear Functional

Representation by
Sub-Linear Functional

'
E(f)

v No sure loss
v Monotonicity
v Cardinal utility

b
E(f)

v No sure loss
v Monotonicity
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| Function-Coherent Gambles

COHERENCE AXIOMS FUNCTION-COHERENCE

D is a coherent set of desirable gambles iff: D is function-coherent iff:
Al Iff<0,thenf¢ D (Avoid partial losses) Fl. Iff < O,thenf¢ D (Avoid partial losses)
A2. Iff>0,thenfeD (Accept partial gains) F2. Iff > gandge D,thenfe D (Monotonicity)
A3. Iffe D, then\fe D (Pos. scale invariance) F3. Forf,ge Dandnonnegative A, u where
A4. Iffe Dandge D, thenf+ g€ D (combination) h=u"" () + pu(g))

is defined, h € D. (u-Convexity)

Gregory Wheeler - 16



Function-Coherent Gambles

FUNCTION-COHERENCE

D < Xis function-coherent iff:

Fl. Iff< 0,thenf¢ D (Avoid partial losses)
F2. Iff>gandge D,thenfe D  (Monotonicity)
F3. Forf, g e Dandnonnegative A, u where

h= v~ (Au(f) + uu(g))

is defined, h € D. (u-Convexity)
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Function-Coherent Gambles

FUNCTION-COHERENCE

D < Xis function-coherent iff:
Fl. Iff< 0,thenf¢ D (Avoid partial losses)
F2. Iff>gandge D,thenfe D  (Monotonicity)
F3. Forf, g e Dandnonnegative A, u where

h= v~ (Au(f) + pu(g))

is defined, h € D. (u-Convexity)

The utility function u : X — R s strictly increasing and
continuous with normalization u(0) = 0.

For the well-definedness of u~!, we assume:

F3a. u: X — Visastrictly increasing and continuous
bijection onto its image, u(X) < V.

F3b. The image u(X) is convex. Specifically, for any
f,g € D and any non-negative scalars A, u, the
linear combination Au(f) + pu(g) is always in the
domain of ™!
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Function-Coherent Gambles

FUNCTION-COHERENCE

D < Xis function-coherent iff:
Fl. Iff< 0,thenf¢ D (Avoid partial losses)
F2. Iff>gandge D,thenfe D  (Monotonicity)
F3. Forf, g e Dandnonnegative A, u where

h= v~ (Au(f) + pu(g))

is defined, h € D. (u-Convexity)

The utility function u : X — R s strictly increasing and
continuous with normalization u(0) = 0.

For the well-definedness of u~', we assume:

F3a. u: X — Visastrictly increasing and continuous
bijection onto its image, u(X) < V.

F3b. The image u(X) is convex. Specifically, for any
f,g € D and any non-negative scalars A, u, the
linear combination Au(f) + pu(g) is always in the
domain of ™!

PROPERTIES

- Non-triviality:

- D is non-empty
- Every fwith u(f) = 0is acceptable

- Upward Closure: If f € D and g € X satisfies

g(s) = f(s) for all states s, then g € D.

- Transform Convexity: The u-transformed set

U(D) := {u(f) : fe D}

is a convex cone.

- Transform Invariance: For strictly increasing ¢

with ¢(0) = 0,if U = ¢ o uthen
{fe X:0(f) =0} = {fe X:u(f) = 0} =D.

Gregory Wheeler - 17



Function-Coherent Gambles

FUNCTION-COHERENCE REPRESENTATION
; R e - Regularity Assumptions:
D < Xis function-coherent iff: "D s non-empty
Fl. Iff< O,thenf¢ D (Avoid partial losses) - D possesses a non-empty interior

F2. Iff>gandge D,thenfe D  (Monotonicity)
F3. Forf, g e Dandnonnegative A, u where

h= v~ (Au(f) + uu(g))

is defined, h € D. (u-Convexity)

Gregory Wheeler - 18



Function-Coherent Gambles

FUNCTION-COHERENCE REPRESENTATION

; P e - Regularity Assumptions:
D < Xis function-coherent iff: ~D¥s non-empty

Fl. Iff< O,thenf¢ D (Avoid partial losses) - D possesses a non-empty interior
F2. Iff>gandge D,thenfe D  (Monotonicity)
F3. Forf, g e Dandnonnegative A, u where

h= v~ (Au(f) + pu(g))

is defined, h € D. (u-Convexity)

THM 1 (REPRESENTATION)
There exists a continuous linear functional £ : V — R,
unique up to positive scaling, such that

feD <= £(u(f)) =0.

THM 2 (CLOSURE UNDER LIMITS)
Suppose X is a topological vector space and the
utility function u : X — R is continuous.

An acceptance setisD = {fe X: u(f) = 0}. If {f,} is

a sequence in D that converges to some f € X, then
feD.

Gregory Wheeler - 18



Representation and Risk Measures

THREE IMPLICATIONS
- pis a generalized risk measure incorporating non-linear
utility
feD < ¢(u(f) =0 - Preference-belief Decomposition: The composition ¢ o u
cleanly separates:

Preferences encoded by utility v, and
Beliefs captured by aggregator /.

- Order invariance: relative preferences, not absolute risk
values, determine choice behavior.

Gregory Wheeler - 19



Function-coherent gambles

Gregory Wheeler!

IFrankfurt School of Finance & Management, Germany

ABSTRACT

The desirable gambles framework provides a foun-
dational approach to imprecise probability theory
but relies heavily on linear utility assumptions. This
paper introduces function-coherent gambles a gen-

surad fmnat e alene e Saasssasned awa w )

classification-theoretic formulations of non-linear de-
sirability, the approach in [25] and here maintains an
axiomatic foundations and connects non-linear utility to
representation via continuous functionals. In [25], two
routes were initially explored. The first preserves the
additive structure of the desirable gambles framework



| Function-Coherent Gambles

COHERENCE AXIOMS FUNCTION-COHERENCE

D is a coherent set of desirable gambles iff: D is function-coherent iff:
Al Iff<0,thenf¢ D (Avoid partial losses) Fl. Iff < O,thenf¢ D (Avoid partial losses)
A2. Iff>0,thenfeD (Accept partial gains) F2. Iff> gand ge D, thenfe D (Monotonicity)
A3. Iffe D, then\fe D (Pos. scale invariance) F3. Forf,ge Dandnonnegative A, u where
A4. Iffe Dandge D, thenf+ ge D (combination) h=u" (Au(f) + pu(g))

is defined, h € D. (u-Convexity)
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| Function-Coherent Gamble Dynamics

—-= [Fp Expectation Value
4

—--- [E¢Average Time Value

Updates wealth by a factor of 1 + f(w) in state w.
After nindependent repetitions, wealth evolves as

W= wﬁm + f(w)).
=1

FUNCTION-COHERENCE

D is function-coherent iff:
Fl. Iff< 0,thenf¢ D (Avoid partial losses)
F2. Iff>gandge D, thenfe D

(Monotonicity)
F3. Forf, g e D and nonnegative X, u where
h=u~" () + pu(g))
is defined, h € D.

(u-Convexity)

Gregory Wheeler - 23



| Function-Coherent Gamble Dynamics

NON-ADDITIVE SEQUENCE DYNAMICS FUNCTION-COHERENCE
Updates wealth by a factor of 1 + f(w) in state w. D is function-coherent iff:
After nindependent repetitions, wealth evolves as Fl. Iff <O, thenf¢ D (Avoid partial losses)
F2. Iff>gandge D,thenfe D (Monotonicity)
W = Wﬁﬂ 1 fw). F3. Forf,g e Dandnonnegative A, u where
- h=u™" (w(h) + pu(g))

) ) is defined, h € D. (u-Convexity)
The long-run performance is determined by the geo-
metric mean, or equivalently, by the time-average of
logarithmic returns:

% Z log (1+ f(w)).

i=1

Idea: Introduce a non-linear combination operator.

Gregory Wheeler - 23



Function-Coherent Gamble Dynamics

NON-LINEAR COMBINATION

(F4) Nonlinear Combination: If f € D and g € D, then their nonlinear
combination
=07 (0(fw) + ¢(g))

= (1 +f(W))(1+9( )) 1,

isalsoinD.

LOG-RETURN TRANSFORMATION
Define
L(f) := log(1+ f)
Then,
L(f® g) = L(f) + L(g)

Gregory Wheeler - 24



Function-Coherent Gamble Dynamics

NON-LINEAR COMBINATION

(F4) Nonlinear Combination: If f € D and g € D, then their nonlinear
combination

flw) ® glw) = 671 (8(fw)) + 6(9()))
= (1 fw)) (1 + glw)) 1,

isalsoinD.

Key idea: The @ operator converts multiplicative effects into an additive structure in the

log-domain.

LOG-RETURN TRANSFORMATION

Define

L(f) := log(1+ f)

Then,
L(f® g) = L(f) + L(9)

Gregory Wheeler - 24



Function-Coherent Gambles

FUNCTION-COHERENCE

D < Xis function-coherent iff:

F1.
F2.
F3.

F4.

Iff<0,thenf¢ D (Avoid partial losses)
Iff>gandge D,thenfe D  (Monotonicity)
For f, g € D and nonnegative A, i where

h= v~ (Au(f) + pu(g))

is defined, h € D. (u-Convexity)
If fe Dand g € D, then their nonlinear combina-

tion

() @ g(w) := 67" (8(f(w)) + 6 (9()))

isalsoinD. (Nonlinear combination)

Gregory Wheeler - 25



Function-Coherent Gambles

FUNCTION-COHERENCE

D < Xis function-coherent iff:

F1.
F2.
F3.

F4.

Iff<0,thenf¢ D (Avoid partial losses)
Iff>gandge D,thenfe D  (Monotonicity)
For f, g € D and nonnegative A, i where

h= v~ (Au(f) + pu(g))

is defined, h € D. (u-Convexity)

If fe Dand g € D, then their nonlinear combina-
tion

() @ g(w) := 67" (8(f(w)) + 6 (9()))

isalsoinD. (Nonlinear combination)

THM 3 (LOG-DOMAIN ADDITIVITY)

Let fand gbe gambles satisfying f(w), g(w) > —1for
allw. Then, for every state w € Q,

Iog(] + (f@g)(w)) = log (14 f(w)) + log (14 g(w)).

THM 4 (FUNCTION-COHERENCE PRESERV'TN)

Let X be a space of gambles on Q with f(w) > —1for
allf e Xandw € Q. Suppose the acceptance set
D < X satisfies (F1 to F3), the regularity conditions,
and (F4).

Then there exists a continuous linear functional n on
a suitable vector space V (of log-returns) such that for
every gamble fe X,

feD <« ¢(L(f)) = 0.

Gregory Wheeler - 25



| Some well-behaved utility functions

Several important classes of well-behaved utility functions emerge:

Uy (X) = {7’ =0

1. Power Utilities: For v # 0,

-, x<0
Leading to the combination operator:
f@u, 9= (F +9")"
2. Exponential Utilities: For o > 0, as studied by (Arrow 1965):
Ua(X) =1— e

With combination operator:

f®u, 9= —g log (e_‘” +e % — 1)

Gregory Wheeler - 26



| Some well-behaved utility functions

3. Logarithmic Utility: Our previous case from (Wheeler 2021):
u(x) = log(1+ x)
With combination operator:

feg=0+H1+g) —1

Gregory Wheeler - 27



] Risk Measurement and Dynamic Properties

Definition (Induced Risk Measure)
For a utility function u with well-behaved combination operator &,, the induced risk

measure is:

pu(f) := —€(u(f))

where /¢ is the linear functional.

Gregory Wheeler - 28



] Risk Measurement and Dynamic Properties

1. Power Utility Risk Measures (v € (0,1)):

pih=E| 7|

exhibits decreasing relative risk aversion. Under power utility, an agent's risk aversion
decreases as wealth increases (Merton 1971; Acerbi 2002).

Gregory Wheeler - 29



] Risk Measurement and Dynamic Properties

2. Exponential Risk Measures:

1 _
palf) = — logE[e™*]
(0%
exhibits constant absolute risk aversion, recovering the entropic risk measure. Under

exponential risk utility, an agent's risk aversion is absolute regardless of wealth (Féllmer and
Schied 2002).

Gregory Wheeler - 30



] Risk Measurement and Dynamic Properties

3. Logarithmic Risk Measures:

plog(f) = —E[Iog(1 + f)]

exhibits constant relative risk aversion and naturally captures multiplicative risks.

Like power utility, logarithmic risk aversion is proportional. Unlike power utility, logarithmic
risk captures proportional multiplicative risk (i.e., compounding), which is a property of
gambles rather than a psychological appetite for risk (Kelly 1956; Peters 2019; Wheeler 2018).

Gregory Wheeler - 31



Function-coherent gambles with non-additive sequential dynamics

Gregory Wheeler!

IFrankfurt School of Finance & Management, Germany

ABSTRACT

The desirable gambles framework provides a rig-
orous foundation for imprecise probability theory
but relies heavily on linear utility via its coher-
ence axioms. In our related work, we introduced
function-coherent gambles to accommodate non-
linear utility. However, when repeated gambles
are played over time—especially in intertemporal
choice where rewards compound multiplicatively—
the standard additive combination axiom fails to
capture the appropriate long-run evaluation. In this
paper we extend the framework by relaxing the ad-

essential rationality conditions [27]. A recent generaliza-
tion replaces the standard convexity closure with a more
abstract closure operator to model non-linearity directly
in the acceptance set [15]. In contrast, the present paper
develops a concrete and operationally motivated special-
ization of this approach. We introduce a novel combi-
nation operator that preserves coherence while accom-
modating non-linear utility, addressing a fundamental
limitation in the standard desirable gambles framework.
This operator, definedas f g = A+ f)(1+g — 1,
naturally captures the multiplicative dynamics of com-
pound growth while maintaining essential rationality
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