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It allows the combination of independent and reliable pieces of
evidence.
This talk: extensions of Dempster’s rule allowing us to account for
various assumptions with respect to the reliability and
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▶ A general approach for the fusion of independent pieces of
evidence, which permits refined forms of the lack of reliability;

▶ A means to specify the dependence when combining reliable
pieces of evidence, in the particular yet important case where
they are elementary (i.e., represented by simple mass
functions).

▶ Some theoretical and practical interests of these extensions.
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Background

Mass function

A piece of evidence about a variable X taking values in a finite set
Θ = {θ1, . . . , θK} (frame of discernment) is represented by a mass
function m : 2Θ → [0,1] such that m(∅) = 0 and∑

A⊆Θ

m(A) = 1.

Mass m(A) represents the probability that the evidence supports
exactly the proposition X ∈ A.
Any A ⊆ Θ such that m(A) > 0 is a focal set of m.
m is said to be:

▶ non dogmatic if Θ is a focal set;
▶ vacuous if Θ is the only focal set (total ignorance);
▶ Bayesian if its focal sets are singletons (probability distribution);
▶ simple if it has two focal sets: Θ and A for some A ⊂ Θ.
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Background

Semantics
[Shafer, 1981]

Suppose we receive an encoded message about X .
The actual code used is unknown, but we know :

▶ it was one in a finite set Ω;
▶ the chance P(ω) of each code ω ∈ Ω being selected.

Furthermore, we know that the meaning of the message is
X ∈ Γ(ω), with Γ(ω) a nonempty subset of Θ, if code ω was used.
The tuple (Ω,P, Γ) represents then the available information.
The probability that the message means X ∈ A is:

m(A) := P({ω ∈ Ω : Γ(ω) = A}), ∀A ∈ 2Θ\{∅}.

→ A mass function is obtained by fitting a piece of evidence to such
message (Ω,P, Γ).

Remark: (Ω,P, Γ) is formally a random set.

F. Pichon (LGI2A) Reliability and Dependence SIPTA Seminar 6



Background

Semantics
[Shafer, 1981]

Suppose we receive an encoded message about X .
The actual code used is unknown, but we know :

▶ it was one in a finite set Ω;
▶ the chance P(ω) of each code ω ∈ Ω being selected.

Furthermore, we know that the meaning of the message is
X ∈ Γ(ω), with Γ(ω) a nonempty subset of Θ, if code ω was used.
The tuple (Ω,P, Γ) represents then the available information.
The probability that the message means X ∈ A is:

m(A) := P({ω ∈ Ω : Γ(ω) = A}), ∀A ∈ 2Θ\{∅}.

→ A mass function is obtained by fitting a piece of evidence to such
message (Ω,P, Γ).
Remark: (Ω,P, Γ) is formally a random set.

F. Pichon (LGI2A) Reliability and Dependence SIPTA Seminar 6



Background

Dempster’s rule

Let (Ω1,P1, Γ1) and (Ω2,P2, Γ2), with Γi : Ωi → 2Θ\{∅}, i = 1,2, be
two messages representing two pieces of evidence about X and
inducing mass functions m1 and m2, respectively.
Assume that these messages are independent, i.e., the chance
P12(ω1, ω2) that the pair of codes (ω1, ω2) ∈ Ω1 × Ω2 was chosen
is equal to P1(ω1) · P2(ω2).
Assume further that they are reliable: if the actual codes were ω1
and ω2, we know for sure that X ∈ Γ∩(ω1, ω2) := Γ1(ω1) ∩ Γ2(ω2)

▶ if Γ∩(ω1, ω2) = ∅, then we know that (ω1, ω2) could not be the pair of
codes actually used.

→ We must condition the chance distribution on the event
Θ∩ = {(ω1, ω2) ∈ Ω1 × Ω2 : Γ∩(ω1, ω2) ̸= ∅}.
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Background

Dempster’s rule (continued)
Let P∩ be the probability measure on Ω1 × Ω2 resulting from the
conditioning of P12 on the event Θ∩.
Under the assumptions that the pieces of evidence represented by
mass functions m1 and m2 are independent and reliable, our
knowledge about X is represented by the mass function denoted
m1 ⊕ m2, called the orthogonal sum of m1 and m2, and induced by
the random set (Ω1 × Ω2,P∩, Γ∩), i.e., the probability of knowing
that X ∈ A is

(m1 ⊕ m2)(A) := P∩({(ω1, ω2) ∈ Ω1 × Ω2 : Γ∩(ω1, ω2) = A}).

The orthogonal sum is well defined if P12(Θ∩) > 0.
It is easy to show that

(m1 ⊕ m2)(A) =
∑

B∩C=A m1(B)m2(C)

1 −
∑

B∩C=∅ m1(B)m2(C)
, ∀A ∈ 2Θ\{∅}.

The binary operation ⊕ is called Dempster’s rule.
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Reliability Forms of unreliability for a piece of evidence

Reliability

The reliability of a piece of evidence is classically understood in
terms of relevance, i.e., it is reliable if it provides useful information
regarding the variable of interest.
Examples:

▶ A broken watch is useless to try and find the time it is since there is
no way to know whether the supplied information is correct or not: it
is not reliable for the time;

▶ My ten-year-old son is ignorant about the name of the latest Nobel
Peace Prize laureate: he is not reliable for this question (in contrast
to nobelprize.org).

Basic idea : a piece of evidence is valid if it is reliable, whereas it
is useless if it is unreliable.
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Reliability Forms of unreliability for a piece of evidence

Formalization

Assume a piece of evidence corresponding to a message whose
meaning is X ∈ A ⊆ Θ.

▶ If it is unreliable, we replace X ∈ A by X ∈ Θ
▶ If it is reliable, we keep X ∈ A

Let R be the variable denoting its reliability, defined on
R = {rel ,unrel}.
The interpretation of the message according to the reliability may
be modeled by ΠA : R → 2Θ such that

ΠA(rel) = A,
ΠA(unrel) = Θ.
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Reliability Forms of unreliability for a piece of evidence

Uncertain reliability

Let (Ω,P, Γ) be a message representing a piece of evidence
about X and inducing mass function m.
Assume this message to be unreliable with probability
PR(unrel) = α.
What can then be inferred about X?
If the actual code was ω ∈ Ω and

▶ the message is reliable, we know that X ∈ ΠΓ(ω)(rel)
▶ the message is unreliable, we know that X ∈ ΠΓ(ω)(unrel) = Θ

Hence, the probability to know X ∈ A ⊂ Θ is

αm(A) := PR(rel) ·
∑

ω:ΠΓ(ω)(rel)=A

P(ω)

= (1 − α) · m(A).
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Reliability Forms of unreliability for a piece of evidence

Uncertain reliability (continued)

The random set
(Ω×R,P × PR, ΓR)

with
ΓR(ω, r) := ΠΓ(ω)(r)

for all (ω, r) ∈ Ω×R, represents all the available information and
the knowledge it induces about X is represented by αm.
αm is nothing but the result of Shafer’s discounting with discount
rate α of mass function m.

Unreliability can be refined into contextual unreliability, leading to
a more general model that includes also the contextual
discounting of [Mercier et al., 2008].
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Reliability Forms of unreliability for a piece of evidence

Truthfulness

Reliability includes another dimension besides the relevance: the
truthfulness.
Being truthful means actually supplying the information
possessed.
Lack of truthfulness can take several forms, and can be intentional
or not.
For instance, a sensor that has a systematic bias is a kind of
unintentional lack of truthfulness.
We consider here the crudest form, where non truthful means
telling the contrary of what is known.
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Reliability Forms of unreliability for a piece of evidence

Formalization
Assume a piece of evidence corresponding to a message whose
meaning is X ∈ A ⊆ Θ.

▶ If it is not relevant, we replace X ∈ A by X ∈ Θ.
▶ If it is relevant,

⋆ either it is truthful, in which case we keep X ∈ A.
⋆ or it lies, in which case we replace X ∈ A by X ∈ A.

Relevance R defined on R = {rel ,¬rel}.
Truthfulness T defined on T = {tru,¬tru}.
Let RT := R× T .
The interpretation of the message according to the relevance and
truthfulness may be modeled by ΠT

A : RT → 2Θ such that

ΠT
A (rel , tru) = A, ΠT

A (rel ,¬tru) = A,

ΠT
A (¬rel , tru) = ΠT

A (¬rel ,¬tru) = Θ.

Uncertainty can be considered, leading to a generalization of
discounting.
Contextual non truthfulness can also be considered.
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Reliability Partially reliable pieces of evidence

Uncertain reliability
Let (Ω1,P1, Γ1) and (Ω2,P2, Γ2) be two messages representing
two pieces of evidence about X and inducing mass functions m1
and m2, respectively.
Assume that these messages are independent, i.e.,

P12(ω1, ω2) = P1(ω1)P2(ω2), ∀(ω1, ω2) ∈ Ω1 × Ω2.

Let Ri defined on Ri = {reli ,unreli} denote the reliability of
message i , i = 1,2, and let R := R1 ×R2.
Assume uncertainty PR on their reliabilities.
Our knowledge about X may then be defined as the mass function
Rm induced by the random set

(Ω1 × Ω2 ×R,PR, ΓR)

where
▶ ΓR(ω1, ω2, r) := ΓR1 (ω1, r1) ∩ ΓR2 (ω2, r2) for all r = (r1, r2) ∈ R
▶ PR: probability measure P12 × PR conditioned on

ΘR = {(ω1, ω2, r) ∈ Ω1 × Ω2 ×R : ΓR(ω1, ω2, r) ̸= ∅}
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Reliability Partially reliable pieces of evidence

Particular cases

Rm reduces to
m1 ⊕ m2 if PR(rel1, rel2) = 1, i.e., the messages are reliable

→ Dempster’s rule
α1m1 ⊕ α2m2 if PR = PR1 × PR2 , with PRi (unreli) = αi , i.e., the
messages have independent reliabilities

→ Discount and combine
αm1 + (1 − α)m2 if PR(rel1,unrel2) = α,PR(unrel1, rel2) = 1 − α,
i.e., the messages have dependent reliabilities such that R2 = ¬R1

→ Weighted average
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Reliability Partially reliable pieces of evidence

Imprecise reliability
Assume the reliability is known in the form of R ⊆ R.
Then we obtain the mass function Rm about X induced by the
random set

(Ω1 × Ω2,PR, ΓR)

where
▶ ΓR(ω1, ω2) := ∪r∈R ΓR(ω1, ω2, r)
▶ PR : P12 conditioned on ΘR = {(ω1, ω2) ∈ Ω1 × Ω2 : ΓR(ω1, ω2) ̸= ∅}

Particular cases:
▶ m1 ∪⃝m2 for R = {(rel1, rel2), (rel1,unrel2), (unrel1, rel2)}.

→ Disjunctive rule
▶ R = “N − Q out of the N messages are reliable”.

→ Q-relaxation rule

Remark: Both imprecision and uncertainty about the reliability can
be taken into account by considering a mass function on R,
leading to a general model subsuming the previous ones.
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Reliability Partially reliable pieces of evidence

Relevance and truthfulness
Assume two pieces of evidence corresponding to two messages
X ∈ A1 and X ∈ A2, respectively.
Let Ri defined on RT

i := Ri × Ti denote the relevance and
truthfulness of message i and let RT := RT

1 ×RT
2 .

For any assumption r = (r1, r2) ∈ RT , we deduce

X ∈ Π(r) := ΠT
A1
(r1) ∩ ΠT

A2
(r2)

and, for an imprecise assumption R ⊆ RT , we know

X ∈ Π(R) = ∪r∈RΠ(r)

Example: R = {(rel1, tru1, rel2,¬tru2), (rel1,¬tru1, rel2, tru2)}
Π(R) = Π(rel1, tru1, rel2,¬tru2) ∪ Π(rel1,¬tru1, rel2, tru2)

= (A1 ∩ A2) ∪ (A1 ∩ A2)

= A1∆A2 (exclusive or)
→ All connectives of Boolean logic can be reinterpreted in terms of

assumptions wrt the relevance and truthfulness
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Reliability Partially reliable pieces of evidence

General case

Consider a mass function mRT
representing uncertain and

imprecise knowledge about the relevance and truthfulness of two
independent messages (Ω1,P1, Γ1) and (Ω2,P2, Γ2).
Let B be the set of binary Boolean connectives.
Any focal set R of mRT

yields a connective b ∈ B.
A connective b ∈ B may be retrieved for different R ⊆ RT .

→ mRT
actually induces a probability distribution PB over the

connectives to be used to combine the messages.
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Reliability Partially reliable pieces of evidence

General case (continued)
Our knowledge about X given mRT

may then be defined as the
mass function Bm induced by the random set

(Ω1 × Ω2 × B,PB, Γ
B)

where
▶ ΓB(ω1, ω2,b) := Γ1(ω1)⊗b Γ2(ω2) with ⊗b the set-theoretic

connective associated to b.
▶ PB: probability measure P12 × PB conditioned on

ΘB = {(ω1, ω2,b) ∈ Ω1 × Ω2 × B : ΓB(ω1, ω2,b) ̸= ∅}.

Theorem

Bm(A) =
∑

b PB(b)
∑

B⊗bC=A m1(B)m2(C)

1−
∑

b PB(b)
∑

B⊗bC=∅ m1(B)m2(C)
, for all A ∈ 2Θ\{∅}.

→ Generalization of Dempster’s rule to all Boolean connectives,
interpretable in terms of reliability assumptions

→ Prism to understand and select alternatives to Dempster’s rule
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Reliability Partially reliable pieces of evidence

Applications

Alternatives offer some flexibility for combining pieces of evidence
that can be useful in practice.
Examples from the literature:

▶ Discount and combine: evidential k -nearest neighbor (EkNN)
classification rule [Denœux, 1995]

▶ Weighted average: tree ensembles [Zhang et al., 2023]
▶ Contextual discounting: fusion of deep neural networks [Huang et

al., 2025]
▶ Q-relaxation rule: robustness to outliers [Pellicanò et al., 2018]
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Dependence

Beyond independence
m1 ⊕ m2 relies on m1 and m2 being induced by independent
messages (Ω1,P1, Γ1) and (Ω2,P2, Γ2), i.e., P12 = P1 × P2

In principle, any dependence structure, and thus any P12 having
P1 and P2 as marginals, can be selected.
Example [Shafer, 1986]: Ωi = {0,1}

▶ Γ1(0) = A, Γ1(1) = Θ and P1(1) = 0.2
▶ Γ2(0) = A, Γ2(1) = Θ and P2(1) = 0.01
▶ Let Si be the random variable, with state space Ωi , representing the

interpretation for the i-th message. Dependence specified by
P12(S1 = 1|S2 = 1) = 0.9.

▶ We have P12 ̸= P1 × P2.

Remark: it is an example of non independence between
messages inducing simple mass functions.

→ Focus on the combination of such dependent and elementary
pieces of evidence (assumed throughout to be reliable)
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Dependence

Why such focus?
Recall that a mass function is simple if it has two focal sets: Θ and
A for some A ⊂ Θ, which means it is of the form

m(A) = 1 − d ,m(Θ) = d ,

for some d ∈ [0,1].
▶ It represents a message that means X ∈ A with probability 1 − d ,

and that is useless, i.e., means X ∈ Θ, with probability d .
▶ Prototypical example: a sensor reporting X ∈ A and faulty with

probability d .
It is the simplest kind of evidence [Shafer, 1976].

▶ [Shafer, 1976] and [Smets, 1995] proposed solutions to view belief
functions as resulting (in part) from the combination of such
elementary pieces of evidence, assumed reliable and independent.

▶ In applications, belief functions often result from such combination.

→ Important both theoretically and in practice.
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Dependence Dependent elementary pieces of evidence

Setting
Let mi , i = 1, . . . ,N, be simple mass functions.
Mass function mi is induced by message (Ωi ,Pi , Γi) with
Ωi = {0,1},Pi(1) = di , and

Γi(0) = Ai ,

Γi(1) = Θ,

for some Ai ⊂ Θ and di ∈ [0,1].
Hence, mi is of the form mi(Ai) = 1 − di ,mi(Θ) = di , which may
be denoted Adi

i for short.
Let Si be the random variable, with state space Ωi , representing
the interpretation for the i-th message.
Assume the messages have some dependence structure,
described by a joint probability distribution P1...N for variables
S1, . . . ,SN , defined on Ω := ×N

i=1Ωi and having P1, . . . ,PN , as
marginals.
Assume these messages are reliable.
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Dependence Dependent elementary pieces of evidence

Resulting mass function
Under the preceding conditions, knowledge about X is
represented by mass function m1...N induced by the random set

(Ω,P∩, Γ∩)

where
▶ Γ∩(ω) :=

⋂N
i=1 Γi(ωi) for all ω = (ω1, . . . , ωN) ∈ Ω

▶ P∩ is P1...N conditioned on the event Θ∩ = {ω ∈ Ω : Γ∩(ω) ̸= ∅}.

If P1...N = ×N
i=1Pi (independent messages), then

m1...N =
N⊕

i=1

Adi
i

and is thus separable1.
1A mass function is separable if it can be obtained as the combination by

Dempster’s rule of simple mass functions.
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Dependence Dependent elementary pieces of evidence

Characterization of the dependence structure
P1...N is a multivariate Bernoulli distribution
It is characterized by [Teugels, 1990]:

di = E[Si ]

σω := E

[
K∏

i=1

(Si − di)
ωi

]

for all ω = (ω1, . . . , ωN) ∈ Ω such that
∑N

i=1 ωi > 1
There are 2N − N − 1 central moments σω. They represent the
dependencies between any subset (of at least two) of all the Si .
Notation: σ vector whose elements are the dependencies σω

→ Any dependence structure between some messages
(Ωi = {0,1},Pi , Γi), i = 1, . . . ,N, is fully described by a vector σ of
central moments
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Dependence Dependent elementary pieces of evidence

σ-sum
Definition

Let (Ωi ,Pi , Γi) be messages representing reliable and elementary
pieces of evidence about X , inducing simple mass functions
mi = Adi

i , i = 1, . . . ,N.
Assume they have a dependence structure described by some σ.
The mass function m1...N is then induced by the random set
(Ω,P∩, Γ∩) with P∩ the probability distribution P1...N specified by σ
and conditioned on Θ∩.

Definition

Let Ad1
1 , . . . ,AdN

N be simple mass functions. Their σ-sum is the mass
function denoted ⊕σ(A

d1
1 , . . . ,AdN

N ) and defined as

⊕σ(A
d1
1 , . . . ,AdN

N ) := m1...N .

Remark: for σ = 0, we have P1...N = ×N
i=1Pi and thus ⊕σ reduces

to ⊕, i.e., the 0-sum is the orthogonal sum
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Dependence Dependent elementary pieces of evidence

σ-sum
Example

The pieces of evidence in [Shafer, 1986] are represented by
simple mass functions A0.2 and A

0.01
.

Their dependence is characterized by covariance

σ(1,1) = E [(S1 − d1)(S2 − d2)] = 0.007.

Knowledge about X is represented by mass function

⊕(0.007)(A0.2,A
0.01

)

We have (
⊕(0.007)(A0.2,A

0.01
)
)
(A) ≈ 0.005,(

⊕(0.007)(A0.2,A
0.01

)
) (

A
)

≈ 0.95,(
⊕(0.007)(A0.2,A

0.01
)
)
(Θ) ≈ 0.045.
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Dependence Canonical decomposition

Canonical decomposition

Theorem
Any mass function m on Θ = {θ1, . . . , θK} satisfies

m = ⊕σ({θ1}
d1
, . . . , {θK}

dK
)

with di , 1 ≤ i ≤ K , the means and σ the dependence vector of the
K -variate Bernoulli distribution P1...K such that

P1...K (S1 = ω1, . . . ,SK = ωK ) := m(Aω)

with Aω the subset of Θ such that θi ∈ Aω if ωi = 1 and θi ̸∈ Aω if
ωi = 0, for all ω = (ω1, . . . , ωK ) ∈ Ω.

Remark: di = pl(θi), 1 ≤ i ≤ K , with pl the contour function
associated to m such that pl(θi) =

∑
θi∈A m(A) for all θi ∈ Θ.
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Dependence Canonical decomposition

Example

Mass function m defined on Θ = {θ1, θ2, θ3} by

m({θ1, θ2}) = 0.5,
m({θ3}) = 0.2,

m({θ2, θ3}) = 0.3

Contour function: pl(θ1) = 0.5,pl(θ2) = 0.8,pl(θ3) = 0.5.
m satisfies

m = ⊕(0.1,−0.25,−0.1,0)

(
{θ1}

0.5
, {θ2}

0.8
, {θ3}

0.5)
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Dependence Canonical decomposition

Comparison with previous solutions

Alternative solution to that of [Shafer, 1976] and [Smets, 1995] for
recovering belief functions from (reliable) elementary pieces of
evidence.
Since it is not possible to recover all belief functions merely from
independent pieces of evidence (which leads only to the class of
separable belief functions), our approach is to consider that they
may be dependent.
A simple yet arguably natural approach.
More conventional than Smets’, involving “debt of belief”
represented by generalized simple mass functions, whose
masses may lie outside the unit interval.
Quite different from that of Shafer’s, involving coarsening and
limits, criticized by Smets.
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Dependence Dependence-aware evidential RBF network

Outline

1 Background

2 Reliability
Forms of unreliability for a piece of evidence
Partially reliable pieces of evidence

3 Dependence
Dependent elementary pieces of evidence
Canonical decomposition
Dependence-aware evidential RBF network

F. Pichon (LGI2A) Reliability and Dependence SIPTA Seminar 38



Dependence Dependence-aware evidential RBF network

Special case of only two elementary pieces of
evidence

Let (Ω1,P1, Γ1) and (Ω2,P2, Γ2) be two messages representing
reliable and elementary pieces of evidence about X , inducing
simple mass functions m1 = Ad1

1 and m2 = Ad2
2 , respectively.

Given d1 and d2, the joint distribution P12 on Ω1 × Ω2, and thus
their dependence, can be specified by providing some σ(1,1).
Alternatively, P12 may be specified simply by providing

P12(S1 = 1,S2 = 1).

Choosing P12(S1 = 1,S2 = 1), given d1 = P1(S1 = 1) and
d2 = P2(S2 = 1), actually amounts to specifying the dependence
between events S1 = 1 and S2 = 1.
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Dependence Dependence-aware evidential RBF network

Correlation-based specification of the dependence

This dependence can be completely characterized by a scalar
r ∈ [−1,1] representing the correlation between the events.
A model of correlation between two events of probabilities p1 and
p2, with correlation r , is provided in [Ferson et al., 2004]: the
probability of their conjunction is equal to F (p1,p2, r) with

F (p1,p2, r) =


min(p1,p2) if r = 1,
p1 · p2 if r = 0,
max(0,p1 + p2 − 1) if r = −1,
logs[1 + (sp1 − 1)(sp2 − 1)/(s − 1)] otherwise,

where s = tan(π(1 − r)/4).
r = 0 corresponds to independence.

→ The dependence between two elementary pieces of evidence can
be characterized by a correlation r ∈ [−1,1].
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Dependence Dependence-aware evidential RBF network

r -sum

Let Pr
∩ be the result of conditioning P12, specified by

P12(S1 = 1,S2 = 1) := F (d1,d2, r) for some r ∈ [−1,1], on the
event Θ∩.
Then, knowledge about X given messages (Ω1,P1, Γ1) and
(Ω2,P2, Γ2) inducing m1 = Ad1

1 and m2 = Ad2
2 , assumed to be

reliable and with dependence characterized by r , is represented
by the mass function induced by the random set (Ω1 ×Ω2,Pr

∩, Γ∩).

This mass function is called the r -sum of Ad1
1 and Ad2

2 and denoted
Ad1

1 ⊕r Ad2
2 .

Binary operation ⊕r is a generalization of Dempster’s rule for the
combination of two simple mass functions (⊕ recovered for r = 0).
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Dependence Dependence-aware evidential RBF network

Dependent positive and negative evidence
Definition
Positive and negative pieces of evidence with respect to a proposition
X ∈ A are elementary pieces of evidence inducing (non dogmatic)
simple mass functions with focal set A and focal set A, respectively.

Our running example from [Shafer, 1986] is a case of (dependent)
positive and negative evidence with respect to a proposition.

Proposition

Let Ad1 and A
d2 such that di ∈ (0,1], i = 1,2. We have

(Ad1 ⊕r A
d2
)(A) = (d2 − F (d1,d2, r))/(d1 + d2 − F (d1,d2, r)),

(Ad1 ⊕r A
d2
)(A) = (d1 − F (d1,d2, r))/(d1 + d2 − F (d1,d2, r)),

(Ad1 ⊕r A
d2
)(Θ) = F (d1,d2, r)/(d1 + d2 − F (d1,d2, r)),

(Ad1 ⊕r A
d2
)(B) = 0, ∀B ∈ 2Θ\{A,A,Θ}.
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Dependence Dependence-aware evidential RBF network

Evidential RBF network

[Huang et al., 2022] introduced an alternative evidential classifier
to the prototype-based improvement [Denoeux, 2000] of the
EkNN, having similar properties.
Obtained by applying ideas developed in [Denoeux, 2019], to a
radial basis function network (RBFN) with a softmax output layer
(or a logistic output unit in the case of binary classification).

→ Evidential RBFN (ERBFN).
Used to enhance the predictions of a UNet model for a task of
lymphoma segmentation from 3D PET-CT images.
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Dependence Dependence-aware evidential RBF network

Principle

The ERBFN reveals a predictive, so-called latent, mass function
mu underlying the probabilistic prediction Pu of a given (trained)
RBFN with a softmax output layer, with respect to the unknown
class X ∈ Θ of an instance with feature vector u.
mu underlies Pu in the sense that its approximation by a Bayesian
mass function using the plausibility transformation method [Cobb
and Shenoy, 2006] is exactly Pu.

Definition (Plausibility transformation method)
Let m be a mass function with contour function pl . Its approximation is
the Bayesian mass function pm defined as

pm({θk}) :=
pl(θk )∑K
ℓ=1 pl(θℓ)

, k = 1, . . . ,K .
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Dependence Dependence-aware evidential RBF network

Latent mass function mu
In a nutshell

mu is obtained by:
1 defining positive and negative pieces of evidence, denoted m+

k and
m−

k , for each class θk , based on the parameters of the RBFN and
on u;

2 pooling them by Dempster’s rule.

We have thus

mu :=
K⊕

k=1

(
m+

k ⊕ m−
k

)
.
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Dependence Dependence-aware evidential RBF network

(In)Dependence between positive and negative
evidence

In the ERBFN, positive and negative evidence for a given class
are considered independent.
However, they are obtained from the same set of values and
therefore the independence assumption may be questioned.

→ When pooling the positive and negative evidence for θk , it seems
safer to assume that there is some dependence between them.
Such a dependence can be characterized by a correlation
rk ∈ [−1,1].
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Dependence Dependence-aware evidential RBF network

Existence of a set of latent mass functions for a RBFN

Theorem
Let mu,r, for some r = (r1 . . . , rK ) ∈ [−1,1]K , be the mass function
defined as

mu,r :=
K⊕

k=1

(
m+

k ⊕rk m−
k

)
.

We have
pmu,r({θk}) = Pu(θk ), ∀θk ∈ Θ,

with pmu,r the approximation of mu,r

→ The independence assumption made in the ERBFN for each class
is actually inconsequential insofar as any possible dependence
structure yields a predictive latent mass function.
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Dependence Dependence-aware evidential RBF network

Identification of the correlations
Which r to select to compute the predictive latent mass function
for any given test instance?
Assume some learning data {ui , xi}n

i=1, where ui is the feature
vector of instance i and xi is its true class, are available.
We may fit r over this learning set, i.e., we can search for the
correlations r̂ that minimizes the loss over this learning data:

r̂ = arg min
r∈[−1,1]K

n∑
i=1

L(xi ,mui ,r).

for some loss L(x ,mu) of an evidential prediction mu for an
instance with feature vector u and whose true class is x .
Following [Denœux, 2024], an appropriate choice is the
generalized negative log-likelihood (GNLL) criterion:

L(x ,mu) = −1
2
lnBelu({x})− 1

2
lnPlu({x}).
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Dependence Dependence-aware evidential RBF network

Experiments
Protocol

Datasets: Pima (2 classes), Ionosphere (2 classes), Glass (6
classes), Vowel (6 classes).
For each dataset, the data were split randomly into training,
validation and test sets containing, respectively, 60%, 20% and
20% of the instances.
The training set was used to learn the RBFN, the validation set
was used to optimize r, and the test set was used to evaluate the
performance, according to the average GNLL, of r = r̂ as well as
of r = 0 (original proposal from [Huang et al., 2022]).
This process was repeated 50 times.
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Dependence Dependence-aware evidential RBF network

Experiments
Results, binary classification
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Dependence Dependence-aware evidential RBF network

Experiments
Results, multi-class classification

original optimized
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

r-ERBFN

G
N
L
L

Glass

original optimized
0.5

0.55

0.6

0.65

0.7

0.75

r-ERBFN
G
N
L
L

Vowel

F. Pichon (LGI2A) Reliability and Dependence SIPTA Seminar 51



Summary

Summary

Reliability and independence → Dempster’s rule.
A general approach for the fusion of partially reliable pieces of
evidence, allowing us:

▶ To account for various forms of the lack of reliability;
▶ To obtain an interpretation of Dempster’s rule generalized to all

logical connectives.
An approach for the fusion of dependent elementary pieces of
evidence, allowing us:

▶ To account for all possible dependence structures through some
dependence quantities;

▶ To obtain an interpretation of belief functions.

Usefulness of these extensions in applications.
Partially reliable and dependent pieces of evidence about
continuous variables in [Denœux, 2024].
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