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Lack of uncertainty-awareness of ML systems

Predictions by state-of-the-art neural network (Jia et al., 2020): For the left image,
the network predicts “umbrella” with confidence 97%, for the right image “skirt”
with confidence 96%.
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Uncertainty representation and levels of uncertainty-awareness

Y = {y1, y2, y3}, e.g. {win, loss, tie}
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Aleatoric versus epistemic uncertainty

Aleatoric (statistical) uncertainty

▶ refers to the notion of randomness, that is, the variability in the
outcome which is due to inherently random effects,

▶ is a property of the data-generating process,

▶ and as such irreducible.

Epistemic (systematic) uncertainty

▶ refers to uncertainty caused by a lack of knowledge, i.e.,

▶ to the epistemic state of the agent (e.g., learning algorithm),

▶ can in principle be reduced on the basis of additional information.
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Aleatoric versus epistemic uncertainty in ML

Both types of uncertainty also play an important role in ML ...
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Aleatoric versus epistemic uncertainty in ML

Uncertainty also depends on the underlying model assumptions:

strong prior (linear model) weaker prior (nonlinear model)
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Predictive uncertainty

In the standard setting of supervised learning, we are mainly interested in
(per-instance) predictive uncertainty: Instead of a deterministic prediction

ŷ = h(x) ∈ Y

of the outcome for a query instance x , and also going beyond a (first-order)
probabilistic prediction

p̂ = h(x) ∈ P(Y) ,

we seek a second-order prediction

Q = H(x) ∈ Q(Y)

adequately representing the learner’s epistemic uncertainty about the prediction.
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Uncertainty representation and levels of uncertainty-awareness
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The Bayesian approach: posterior predictive distribution

Model uncertainty translates into predictive uncertainty:
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Direct second-order prediction (evidential deep learning)
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Direct second-order prediction

Given training data D =
{
(x i , yi )

}N

i=1
⊂ X ×Y, can we train a second-order predictor

H : X −→ Q(Y)

via (variants of) empirical risk minimisation (ERM), i.e., by minimising

Remp(H) =
N∑
i=1

LE
(
H(x i ), yi

)
,

with a suitable second-order (epistemic) loss function

LE : Q(Y)× Y −→ R ,

such that the predictor represents its epistemic uncertainty in a “faithful” way?
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The case of first-order predictions
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Proper scoring rules

Training a probabilistic predictor via empirical risk minimisation, i.e.,

h = argmin
g∈H

N∑
i=1

LA (g(x i ), yi ) ,

yields good (unbiased) predictors if LA is a (strictly) proper scoring rule, which
incentivises the learner to predict the true p(y | x).

Loss LA : P(Y)× Y −→ R is a strictly proper scoring rule if the expected loss
minimiser is unique and coincides with the true probability p:

p = argmin
p̂

EY∼p LA(p̂,Y )

Examples include cross-entropy and Brier score.
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Direct epistemic uncertainty prediction

Several authors proposed to penalise a second-order prediction Q in terms of the
expected first-order loss, lifting LA to the epistemic level as follows:

LE
(
Q, y

)
= Ep∼Q LA (p, y)

Besides, a regularised version has been proposed:

LE
(
Q, y

)
= Ep∼Q LA (p, y) + λ dKL (Q,Q0)︸ ︷︷ ︸

R(Q)

This leads to the empirical risk

Remp(H) =
N∑
i=1

Ep∼H(x i ) LA(p, yi ) + λR(H(x i ))︸ ︷︷ ︸
LE (H(x i ),yi )

. (⋆)
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Appropriate second-order losses: Uncertainty gradually decreases

18 / 34



Non-existence of second-order scoring rules

A second-order loss LE (such that LE (Q, ·) is Q(Y)-quasi-integrable for all
Q ∈ Q(Y)) is a proper second-order scoring rule if, for all Q̂,Q ∈ Q(Y),

Ep∼Q

[
EY∼p[ LE (Q,Y ) ]

]
︸ ︷︷ ︸

S2(Q,Q)

≤ Ep∼Q

[
EY∼p[ LE (Q̂,Y ) ]

]
︸ ︷︷ ︸

S2(Q̂,Q)

.

If the learner holds “second-order believe” Q, and is penalised according to LE , then
it should report Q̂ = Q as the (double-)expected loss-minimising prediction.

Theorem: There exists no second-order loss LE which is a proper second-order
scoring rule (Bengs et al., 2023).
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Degenerate second-order predictions

Theorem (Jürgens et al., 2024): Let LA : Y ×P(Y) −→ R be convex in its first
argument, and let the second-order hypothesis space have a universal approximation
property. Then the minimiser of the empirical risk (⋆) with λ = 0 is a second-order
predictor H such that

H(x i ) = δ(p(x i ))

for all i = 1, . . . ,N, where δ is the Dirac delta function.

In other words, the second-order predictor pretends zero (epistemic) uncertainty
and effectively reduces to a first-order predictor.

Deviation from this behavior requires λ > 0 and is then solely due to the regulariser,
which makes the representation of (epistemic) uncertainty largely arbitrary.

20 / 34



Inner loss minimisation

An alternative approach, more commonly used in (count) regression analysis, is to
take the expectation inside (rather than outside) the first-order loss:

Remp(H) =
N∑
i=1

LA

(
Ep∼H(x i ) p(x i )︸ ︷︷ ︸

p̄(x i )

, yi

)
+ λR

(
H(x i )

)
(⋆⋆)

Essentially, first- and second-order spaces are now combined into a single hypothesis
space: each combination of p ∈ P ⊂ P(Y) and Q ∈ Q ⊂ Q(Y) gives rise to a
(predictive) distribution p̄ ∈ P̄ ⊂ P(Y) defined as

p̄ : x 7→ Ep∼Q p .

Leads to similar problems of non-identifiability and/or non-uniqueness (Jürgens et
al., 2024).
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Uncertainty quantification

Uncertainty quantification (UQ) seeks to measure the amount of total, aleatoric,
and epistemic uncertainty of a prediction Q in terms of numerical measures,
axiomatically justified, and ideally such that

TU(Q) = AU(Q) + EU(Q) .
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Uncertainty quantification

Common approach for second-order predictions Q = H(x) ∈ P(P(Y)), treating
first-order predictions p ∈ P(Y) as random variables distributed according to Q:

Y ∼ p ∼ Q

▶ TU = Shannon entropy of the probabilistic prediction Y ∼ p̄, where p̄ is the predictive
distribution (averaged over models):

TU = ENT(Y ) = ENT(p̄) = ENT

(∫
p dQ(p)

)
▶ AU = conditional entropy (of prediction given model):

AU = ENT(Y |P) =
∫

ENT(p) dQ(p)

▶ EU = mutual information I (Y ,P) = ENT(Y )− ENT(Y |P).
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Second-order uncertainty quantification

Recently criticised by Wimmer et al. (2023) ...

Sale et al. (2024) proposed an alternative approach based on the notion of
(Wasserstein) distance: How much transport is needed to turn a second-order
distribution into a distribution representing

(i) no epistemic and
(ii) no aleatoric uncertainty?

Another proposal by Hofman et al. (2024) is loss-based, namely, based on the
decomposition of proper scoring rules ϕ into a divergence (from ground-truth q)
and an entropy term:

s(p, q) = EY∼q ϕ(p,Y ) = DIVϕ(p, q)︸ ︷︷ ︸
epistemic

+ENTϕ(q, q)︸ ︷︷ ︸
aleatoric
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Alternative formalisms: credal sets

A credal set Q captures both aleatoric and
epistemic uncertainty, also called conflict and
nonspecificity, respectively.

How to learn credal predictors (producing credal
sets as predictions)?

How to quantify the total uncertainty represented
by a credal set, and how to disaggregate it into
aleatoric and epistemic uncertainty?

TU(Q) = AU(Q) + EU(Q)

See e.g. Klir (2005) or more recent work by H. et
al. (2022) and Sale et al. (2023).
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Measures of total, aleatoric, and epistemic uncertainty

A well-founded generalisation of entropy and natural measure of total uncertainty is
the upper entropy:

S∗(Q) ..= max
q∈Q

S(q)

A well-founded measure of epistemic uncertainty is the generalised Hartley
measure

GH(Q) ..=
∑
A⊆Y

mQ(A) log(|A|) ,

which extends the Hartley measure H(A) ..= log(|A|) from sets to graded sets.

Although an equally well-justified measure of aleatoric uncertainty (conflict) in the
form of an extension of Shannon entropy has not been found so far (Klir, 2005), the
lower entropy is a natural measure of irreducible uncertainty:

S∗(Q) ..= min
q∈Q

S(q)
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Disaggregation

There is no additive decomposition

TU(Q) = AU(Q) + EU(Q)

such that all three measures behave well.

Idea: Fix two “good” measures and derive the third one in terms of the difference.

S∗(Q) =
(
S∗(Q)− GH(Q)︸ ︷︷ ︸

GS(Q)

)
+ GH(Q)

S∗(Q) = S∗(Q) +
(
S∗(Q)− S∗(Q)

)
H. et al. (2022) provide a critical discussion of such decompositions (in an ML
context) and show that derived measures show poor empirical performance.
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Disaggregation

In the case of second-order distributions, EU = entropy− conditional entropy can be
interpreted as (expected) gain in terms of log-loss reduction (because
ENT(p) = EY∼p L(p,Y ) with L = log-loss).

We generalise this principle to credal sets and define EU as maximal gain:

EU(Q) = max
p,p′∈Q

DL(p, p
′) ,

with the L-divergence

DL(p, p
′) = EY∼p

{
L(p′,Y )− L(p,Y )

}
.

We further define aleatoric uncertainty in terms of lower and upper bounds on the
L-entropy HL(p) = EY∼p L(p,Y ):

AU(Q) = inf
p∈Q

HL(p) , AU(Q) = sup
p∈Q

HL(p) .
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Disaggregation

Losses and their decomposition into aleatoric and epistemic uncertainty:

Loss Aleatoric (upper\lower) Epistemic

log-loss sup
p∈Q

\ inf
p∈Q

S(p) max
p,p′∈Q

DKL(p
′ || p)

Brier sup
p∈Q

\ inf
p∈Q

1−
∑K

k=1 p
2
k max

p,p′∈Q

∑K
k=1(pk − p′k)

2

spherical sup
p∈Q

\ inf
p∈Q

1− ||p||2 max
p,p′∈Q

||p′||2 −
∑K

k=1 pkp
′
k/||p′||2

0/1 sup
p∈Q

\ inf
p∈Q

1−max pk max
p,p′∈Q

max p′k − p′k=arg max pk
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Disaggregation

Theorem: If L : ∆K × Y −→ R is continuous in p ∈ ∆K , the following holds:

(i) Continuity: EU as well as lower and upper bounds for AU and TU = EU+AU are
continuous functionals.

(ii) Monotonicity: for all credal sets C ,Q such that C ⊆ Q, we have EU(C ) ≤ EU(Q); the
same holds for AU and TU, respectively.

(iii) Precise probabilities: for all credal sets Q such that Q = {p}, we have EU(Q) = 0;
the lower and upper bounds for TU and AU, respectively, coincide.

Additionally, if L is a proper scoring rule, lower and upper bounds for TU, AU, and
EU are non-negative.
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Disaggregation

Different losses L allow one to distinguish between sorts of uncertainty:
▶ Uncertainty about the true probability p(· | x)
▶ Uncertainty about the true outcome Y ∼ p(· | x)
▶ Uncertainty about the best prediction
▶ Uncertainty about the loss of the prediction

Our measures show strong performance in downstream tasks (accuracy-rejection
curves, out-of-distribution data, active learning).
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Conclusion

Designing reliable, uncertainty-aware learners is an important task, but also
challenging, both conceptually and computationally.

Distinguishing aleatoric and epistemic uncertainty is useful, and several methods
have been proposed for that purpose— though it seems that second-order
uncertainty is hard to tackle.

In particular, we showed that direct epistemic uncertainty prediction (aka evidential
deep learning) via minimisation of a second-order loss function is theoretically
flawed—EU is controlled through regularisation in a rather arbitrary way.

It is clear that prior knowledge has an influence, and that there is no ground-truth
EU, but can one represent EU in a somewhat more objective manner?

What is the role of credal sets and IP in this regard?

33 / 34



References

V. Bengs, E. H., and W. Waegeman. On second-order scoring rules for epistemic uncertainty quantification. In Proc. ICML, 2023.

E. H. and W. Waegeman. Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and methods. Machine Learning, 110(3),
2021.

E. H., S. Destercke, and M.H. Shaker. Quantification of credal uncertainty in machine learning: A critical analysis and empirical comparison. In Proc. UAI,
38th Conference on Uncertainty in Artificial Intelligence, Eindhoven, Netherlands, 2022.

P. Hofman, Y. Sake, and E. H. Quantifying aleatoric and epistemic uncertainty with proper scoring rules. arXiv preprint arXiv:2404.12215, 2024.

M. Jia, M. Shi, M. Sirotenko, Y. Cui, C. Cardie, B. Hariharan, H. Adam, and S. Belongie. Fashionpedia: Ontology, segmentation, and an attribute
localization dataset, 2020.

M. Jürgens, V. Bengs, N. Meinert, E. H., and W. Waegeman. Is epistemic uncertainty faithfully represented by evidential deep learning methods?, 2024.
ICML 2024.

G.J. Klir. Uncertainty and Information: Foundations of Generalized Information Theory. Wiley, 2005.
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