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Expression trees

I Graphical representation
for expressions

I Edges show composition order
I Nodes show symbols

for values and functions

I Edges ‘carry’ partial expressions
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Computation graphs
I Graphical representation

for composite function computations
Need not be a tree; often an SDAG

I Edges show computation order
I Nodes show symbols

for component functions

I Edges ‘carry’ input/computed values
I Usually distinction made between

parameters and variables

I Also used for gradient backpropagation
I ‘Values’ can be multidimensional arrays
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Circuits

I Compact representation
of computation graph

I Input variables shown
to indicate input function arguments

I Parameters are ‘attached’ to functions

I For internal nodes classically only
products and (weighted) sums

I Recently also other functions

I Polynomial in input function values
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Probabilistic circuits (PCs)
I Circuits where

I Random variables considered
I input functions are

probability mass functions/densities
I weighted sums are convex mixtures
I products represent independence

I Output is ‘likelihood’ for represented
joint probability distribution
(normalization not always imposed)

I Scope of functions
I Important properties:

smoothness, decomposability
I Multilinear in input function values
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PCs are hierarchical mixture models
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Latent variable interpretation for PCs

I Latent random variables
are associated to sum nodes

I Sum weights are interpreted
as probability values

I Sum node inputs are interpreted
as conditional probability values

I Sampling the PC:
I recursively sample the (latent)

distributions from root to leaves
I select single path at sum nodes
I follow all paths at product nodes
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Expectation circuits

I ‘Sum’ nodes compute expectations
of functions defined by
incoming edge values

I Replace input distributions by their
expectation operators; input changed
from variable values to functions

I Output is joint expectation

I Joint function must factorize
for single-pass computation

I Otherwise: use algorithm
with only factorizable functions
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PCs are often efficient
(Which is why they are popular)

I Class of PCs;
I each characterized by size

(number of edges)
I leaf computation assumed ‘efficient’

I Classes of queries:
I EVI: E(a(X1)b(X2)c(X3))
I MAR: E(a(X1)b(X2))
I CON: E(a(X1)b(X2)|X3 = x3)
I MAP: argmaxx1,2 E(a(x1)b(x2)|X3 = x3)
I . . .

A query class is tractable for
a model class if the computa-
tional cost of running such a
query on such a model is poly-
nomial in the model’s size.

I Tractability of PCs:
I EVI: 4(single pass, linear)
I MAR: 4(single pass, linear)
I CON: 4(double pass, linear)
I MAP: 8(≥ NP-hard)
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Credal PCs (aka credal sum-product networks)
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Credal PCs are defined as lower envelopes of PCs
EC(a(X1)b(X2)c(X3))
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Working with credal PCs

I Assumed that local credal sets are
I coherent (nonempty)
I ‘efficient’ to work with (linear-vacuous, 2-monotone, simple LP, etc.)

I Consequences of lower envelope definition:
I complete independence implicitly assumed
I EC is coherent
I Upper expectations follow from conjugacy (or use upper envelope)

I How to calculate the lower envelope?
I Gradient descent on PC parameters using backpropagation

(likely inefficient, to be combined with constrained optimization in local credal sets)
I Work directly with lower and upper expectations?
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Lower–upper expectation circuits

E˜C(a(X1)b(X2)c(X3)) := E˜1
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EC(a(X1)b(X2)c(X3))

Ẽ˜{5,6}

Propagation calculation rules

I Leaf expectation nodes
with incoming function d i :

E˜ i = Ei(d i) Ẽi = Ei(d i)

I Interior expectation nodes:

E˜ i = Ei(E˜ i ,Zi ) Ẽi = Ei(Ẽi ,Zi )

I Product nodes
(using interval arithmetic):

[E˜J , ẼJ ] :=
∏

j∈J [E˜ j , Ẽj ]
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I Interior expectation nodes:

E˜ i = Ei(E˜ i ,Zi ) Ẽi = Ei(Ẽi ,Zi )
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I Product nodes
(using interval arithmetic):

[E˜J , ẼJ ] :=
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Using propagation to compute credal PC lower expectations1

Exact inference
It sometimes holds that EC(f ) = E˜C(f ):
I For tree topologies, this holds for any factorizing f
I For SDAG topologies, this holds for any nonnegative factorizing f

Computational cost
A single propagation pass is linear in the size of the circuit, so for the cases above
I EVI: 4

I MAR: 4

Approximate inference: outer approximation
It always holds that E˜C(f ) ≤ EC(f ) for any factorizing f .

1All credal PC results from Montalvan, Centen, Krak, Quaeghebeur & De Campos’s “Beyond
tree-shaped credal probabilistic circuits”, IJAR 171:109047 (2024).

https://doi.org/10.1016/j.ijar.2023.109047
https://doi.org/10.1016/j.ijar.2023.109047
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SDAGs designed for tractable inference
Setup
I General focused query function:

f (X) = g(Xq)h(X 6=q), with
I g any function
I h nonnegative factorizing

I Xq-queried structure:
no path between the root and any
input node with scope Xq contains
edges that are part of a cycle

C1

×
C2

Xq

. . .
×

C3

Xq

. . .

Results

I In this setup EC(f ) = E˜C(f )
I Also EC

(
g(Xq)

∣∣Xe = xe
)

with
Xe ⊆ X¬q can be computed exactly
by propagation, as the solution ζ of

EC
(
Ixe(Xe)(g(Xq) − ζ)

)
= 0

I Determining credal dominance between
decision options ô and ǒ is a special
case if this, as it requires investigating

EC
(
Iô(Xq) − Iǒ(Xq)

∣∣∣Xe = xe
)

> 0
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decision options ô and ǒ is a special
case if this, as it requires investigating

EC
(
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Opportunities in the area of imprecise-probabilistic PCs

I Embracing lower–upper expectation circuits fully
by considering SDAGs as a compact notation for trees?

I Other ‘product’ operators?

I Learning from data beyond adding ‘imprecision’ to sum nodes?



Overview

Circuits, conceptually

Credal PCs

Probabilistic integral circuits
From deep PCs to PICs
Training PICs
Opportunities
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Evolution and characteristics of deep PCs

I Great increase in size over time (now in the billions of parameters)

I Choice of structures expands
I Data-based, mostly trees (e.g., Learn-SPN and derivatives)
I Random SDAGs (e.g., RAT-SPN)
I Application-based (e.g., PD, QG, QT for images)

I Tendency to overparameterize and tensorize structures
(making it well-adapted to deep-learning implementation)

I Cycles seem to have a positive effect on expressiveness
(reuse of components)

I Training seems harder than in neural-based deep learning models
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Probabilistic integral circuits (PICs)2

Observation Other classes of deep generative models are easier to
train (VAEs, Flows)

Hypothesis Their intertwined use of continuous latent variables
and neural networks play an important role in this

Objective Add continuous latent variables and neural networks
to improve training and scaling

Key addition Integration nodes that replace sum nodes

2Results and material from
I Gala, De Campos, Peharz, Vergari & Quaeghebeur’s “Probabilistic integral circuits”, AISTATS

2024, PMLR 238:2143–2151 (2024).
I Gala, De Campos, Vergari & Quaeghebeur’s “Scaling continuous latent variable models as

probabilistic integral circuits”, NeurIPS 2024 (2024).
Various slide elements gracefully provided by Gennaro Gala.

https://proceedings.mlr.press/v238/gala24a
https://proceedings.mlr.press/v238/gala24a
https://openreview.net/forum?id=Ke40kfOT2E
https://openreview.net/forum?id=Ke40kfOT2E
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PICs are ‘symbolic’ circuits

I Integral node:
I integrates out

latent variables
I leaves unaffected

non-latent variables
I introduces

new latent variable
I parameterized with

a neural network

I Edges carry functions,
not values!

I Generally not tractable as
such
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Approximating PICs with PCs by numerical quadrature
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Approximating PICs with PCs by numerical quadrature

I tensorization and overparameterization is applied
I locally dense
I folding to exploit parallel computation
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Training a PIC via its QPC

I Training QPC:
I use gradient ascent to maximize likelihood
I calculate gradients using backpropagation
I use random batches of data
I take maximizing step for sum weights per batch
I repeat with many batches until convergence

I Training PIC:
I as above, but
I propagate gradients to neural network parameters
I take maximizing step for neural network parameters

per batch
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Making training practical using neural functional sharing
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Takeaway & opportunities in the area of deep PCs

I State-of-the-art deep PCs (PICs) combine ideas from various fields and require ML
engineering to design.

I Methods to directly train PICs without generating QPCs?

I Create imprecise-probabilistic PIC variants?
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