
The wondrous world of credal and deep probabilistic circuits
SIPTA Seminar

Erik Quaeghebeur

Eindhoven University of Technology

22 January 2025, 15:00 CET



1 + (2 × 3)



Overview

Circuits, conceptually

Credal PCs

Probabilistic integral circuits



Overview

Circuits, conceptually
From expression trees to circuits
Probabilistic circuits

Credal PCs

Probabilistic integral circuits



Circuits, conceptually From expression trees to circuits 5 / 75

Expression trees

I Graphical representation
for expressions

I Edges show composition order
I Nodes show symbols

for values and functions

I Edges ‘carry’ partial expressions

1 + (2 × 3)

+

1 ×

2 3

2 × 3

g(x1, f (x2, x3))

g

x1 f

x2 x3

f (x2, x3)



Circuits, conceptually From expression trees to circuits 6 / 75

Expression trees

I Graphical representation
for expressions

I Edges show composition order
I Nodes show symbols

for values and functions

I Edges ‘carry’ partial expressions

1 + (2 × 3)

+

1 ×

2 3

2 × 3

g(x1, f (x2, x3))

g

x1 f

x2 x3

f (x2, x3)



Circuits, conceptually From expression trees to circuits 7 / 75

Expression trees

I Graphical representation
for expressions

I Edges show composition order
I Nodes show symbols

for values and functions

I Edges ‘carry’ partial expressions

1 + (2 × 3)

+

1 ×

2 3

2 × 3

g(x1, f (x2, x3))

g

x1 f

x2 x3

f (x2, x3)



Circuits, conceptually From expression trees to circuits 8 / 75

Computation graphs
I Graphical representation

for composite function computations
Need not be a tree; often an SDAG

I Edges show computation order
I Nodes show symbols

for component functions

I Edges ‘carry’ input/computed values
I Usually distinction made between

parameters and variables

I Also used for gradient backpropagation
I ‘Values’ can be multidimensional arrays

ln(α√x1 + βx1x2)

ln

+

×

α

yα
3 = y1

rα = r3 · yα
3

√

x1

y1

y3

y3
5 = 1

r3 = r5 · y3
5

×

×

x2

y2

β

y4

y5
r5 = 1

y5

r5

r



Circuits, conceptually From expression trees to circuits 9 / 75

Computation graphs
I Graphical representation

for composite function computations
Need not be a tree; often an SDAG

I Edges show computation order
I Nodes show symbols

for component functions

I Edges ‘carry’ input/computed values
I Usually distinction made between

parameters and variables

I Also used for gradient backpropagation
I ‘Values’ can be multidimensional arrays

ln(α√x1 + βx1x2)

ln

+

×

α

yα
3 = y1

rα = r3 · yα
3

√

x1

y1

y3

y3
5 = 1

r3 = r5 · y3
5

×

×

x2

y2

β

y4

y5
r5 = 1

y5

r5

r



Circuits, conceptually From expression trees to circuits 10 / 75

Computation graphs
I Graphical representation

for composite function computations
Need not be a tree; often an SDAG

I Edges show computation order
I Nodes show symbols

for component functions

I Edges ‘carry’ input/computed values
I Usually distinction made between

parameters and variables

I Also used for gradient backpropagation

I ‘Values’ can be multidimensional arrays

ln(α√x1 + βx1x2)

ln

+

×

α

yα
3 = y1

rα = r3 · yα
3

√

x1

y1

y3

y3
5 = 1

r3 = r5 · y3
5

×

×

x2

y2

β

y4

y5
r5 = 1

y5

r5

r



Circuits, conceptually From expression trees to circuits 11 / 75

Computation graphs
I Graphical representation

for composite function computations
Need not be a tree; often an SDAG

I Edges show computation order
I Nodes show symbols

for component functions

I Edges ‘carry’ input/computed values
I Usually distinction made between

parameters and variables

I Also used for gradient backpropagation

I ‘Values’ can be multidimensional arrays

ln(α√x1 + βx1x2)

ln

+

×

α

yα
3 = y1

rα = r3 · yα
3

√

x1

y1

y3

y3
5 = 1

r3 = r5 · y3
5

×

×

x2

y2

β

y4

y5
r5 = 1

y5

r5

r



Circuits, conceptually From expression trees to circuits 12 / 75

Computation graphs
I Graphical representation

for composite function computations
Need not be a tree; often an SDAG

I Edges show computation order
I Nodes show symbols

for component functions

I Edges ‘carry’ input/computed values
I Usually distinction made between

parameters and variables

I Also used for gradient backpropagation
I ‘Values’ can be multidimensional arrays

ln(α√x1 + βx1x2)

ln

+

×

α

yα
3 = y1

rα = r3 · yα
3

√

x1

y1

y3

y3
5 = 1

r3 = r5 · y3
5

×

×

x2

y2

β

y4

y5
r5 = 1

y5

r5

r



Circuits, conceptually From expression trees to circuits 13 / 75

Circuits

I Compact representation
of computation graph

I Input variables shown
to indicate input function arguments

I Parameters are ‘attached’ to functions

I For internal nodes classically only
products and (weighted) sums

I Recently also other functions

I Polynomial in input function values

λ1µ1gβ(x1)gγ(x2)fα(x3) + . . .

+

×

+

×
X1,2

gβ

x1

µ1

×

gγ

x2

µ2

fα
x3

λ1

+

×

gβ

x2

ν1

×

hδ

X1,3x1,3

X1,3

ν2

λ2



Circuits, conceptually From expression trees to circuits 14 / 75

Circuits

I Compact representation
of computation graph

I Input variables shown
to indicate input function arguments

I Parameters are ‘attached’ to functions

I For internal nodes classically only
products and (weighted) sums

I Recently also other functions

I Polynomial in input function values

λ1µ1gβ(x1)gγ(x2)fα(x3) + . . .

+

×

+

×
X1,2

gβ

x1

µ1

×

gγ

x2

µ2

fα
x3

λ1

+

×

gβ

x2

ν1

×

hδ

X1,3x1,3

X1,3

ν2

λ2



Circuits, conceptually From expression trees to circuits 15 / 75

Circuits

I Compact representation
of computation graph

I Input variables shown
to indicate input function arguments

I Parameters are ‘attached’ to functions

I For internal nodes classically only
products and (weighted) sums

I Recently also other functions

I Polynomial in input function values

λ1µ1gβ(x1)gγ(x2)fα(x3) + . . .

+

×

+

×
X1,2

gβ

x1

µ1

×

gγ

x2

µ2

fα
x3

λ1

+

×

gβ

x2

ν1

×

hδ

X1,3x1,3

X1,3

ν2

λ2



Circuits, conceptually Probabilistic circuits 16 / 75

Probabilistic circuits (PCs)
I Circuits where

I Random variables considered
I input functions are

probability mass functions/densities
I weighted sums are convex mixtures
I products represent independence

I Output is ‘likelihood’ for represented
joint probability distribution
(normalization not always imposed)

I Scope of functions
I Important properties:

smoothness, decomposability
I Multilinear in input function values

· · · + λ2ν2gβ(X2)hδ(X1,3)

+
X1,2,3

×
X1,2,3

+
X1,2

×
X1,2

gβ

X1

X1

µ1

×
X1,2

gγ

X2

X2

µ2

fα
X3

X3

λ1

+
X1,2,3

×
X1,2,3

gβ

X2

X2

ν1

×
X1,2,3

hδ

X1,3

X1,3

ν2

λ2



Circuits, conceptually Probabilistic circuits 17 / 75

Probabilistic circuits (PCs)
I Circuits where

I Random variables considered
I input functions are

probability mass functions/densities
I weighted sums are convex mixtures
I products represent independence

I Output is ‘likelihood’ for represented
joint probability distribution
(normalization not always imposed)

I Scope of functions
I Important properties:

smoothness, decomposability

I Multilinear in input function values

· · · + λ2ν2gβ(X2)hδ(X1,3)

+
X1,2,3

×
X1,2,3

+
X1,2

×
X1,2

gβ

X1

X1

µ1

×
X1,2

gγ

X2

X2

µ2

fα
X3

X3

λ1

+
X1,2,3

×
X1,2,3

gβ

X2

X2

ν1

×
X1,2,3

hδ

X1,3

X1,3

ν2

λ2



Circuits, conceptually Probabilistic circuits 18 / 75

Probabilistic circuits (PCs)
I Circuits where

I Random variables considered
I input functions are

probability mass functions/densities
I weighted sums are convex mixtures
I products represent independence

I Output is ‘likelihood’ for represented
joint probability distribution
(normalization not always imposed)

I Scope of functions
I Important properties:

smoothness, decomposability
I Multilinear in input function values

· · · + λ2ν2gβ(X2)hδ(X1,3)

+
X1,2,3

×
X1,2,3

+
X1,2

×
X1,2

gβ

X1

X1

µ1

×
X1,2

gγ

X2

X2

µ2

fα
X3

X3

λ1

+
X1,2,3

×
X1,2,3

gβ

X2

X2

ν1

×
X1,2,3

hδ

X1,3

X1,3

ν2

λ2



Circuits, conceptually Probabilistic circuits 19 / 75

PCs are hierarchical mixture models

+

×

g2,1

X1

g2,2

X2

1
3

×

g4,3

X1

g4,1

X2

2
3

gµ,σ = 1√
2πσ

exp
(

−1
2

(x − µ

σ

)2)

x11 2 3 4 5 6 7

g2,1

g4,3

x2

1

2

3

4

5

6

7

g2,2

g4,1



Circuits, conceptually Probabilistic circuits 20 / 75

PCs are hierarchical mixture models

+

×

g2,1

X1

g2,2

X2

1
3

×

g4,3

X1

g4,1

X2

2
3

gµ,σ = 1√
2πσ

exp
(

−1
2

(x − µ

σ

)2) x11 2 3 4 5 6 7

g2,1

g4,3

x2

1

2

3

4

5

6

7

g2,2

g4,1



Circuits, conceptually Probabilistic circuits 21 / 75

PCs are hierarchical mixture models

+

×

g2,1

X1

g2,2

X2

1
3

×

g4,3

X1

g4,1

X2

2
3

gµ,σ = 1√
2πσ

exp
(

−1
2

(x − µ

σ

)2) x11 2 3 4 5 6 7

g2,1

g4,3

x2

1

2

3

4

5

6

7

g2,2

g4,1



Circuits, conceptually Probabilistic circuits 22 / 75

Latent variable interpretation for PCs

I Latent random variables
are associated to sum nodes

I Sum weights are interpreted
as probability values

I Sum node inputs are interpreted
as conditional probability values

I Sampling the PC:
I recursively sample the (latent)

distributions from root to leaves
I select single path at sum nodes
I follow all paths at product nodes

E(a(X1)b(X2)c(X3))

+
Z1

×

+
Z2

×

gβ

X1 = x1X1

p2(1)µ1

×

gγ

b(X2)X2

p2(2)µ2

fα
X3

p1(1)λ1

+
Z3

×

gβ

X2

p3(1)ν1

×

hδ

X1,3

p3(2)ν2

p1(2)λ2

q(X1,2,3|Z1 = 2)



Circuits, conceptually Probabilistic circuits 23 / 75

Latent variable interpretation for PCs

I Latent random variables
are associated to sum nodes

I Sum weights are interpreted
as probability values

I Sum node inputs are interpreted
as conditional probability values

I Sampling the PC:
I recursively sample the (latent)

distributions from root to leaves
I select single path at sum nodes
I follow all paths at product nodes

E(a(X1)b(X2)c(X3))

+
Z1

×

+
Z2

×

gβ

X1 = x1X1

p2(1)p2(1)

×

gγ

b(X2)X2

p2(2)p2(2)
fα
X3

p1(1)p1(1)

+
Z3

×

gβ

X2

p3(1)p3(1)

×

hδ

X1,3

p3(2)p3(2)

p1(2)p1(2)

q(X1,2,3|Z1 = 2)



Circuits, conceptually Probabilistic circuits 24 / 75

Latent variable interpretation for PCs

I Latent random variables
are associated to sum nodes

I Sum weights are interpreted
as probability values

I Sum node inputs are interpreted
as conditional probability values

I Sampling the PC:
I recursively sample the (latent)

distributions from root to leaves
I select single path at sum nodes
I follow all paths at product nodes

E(a(X1)b(X2)c(X3))

+
Z1

×

+
Z2

×

gβ

X1 = x1X1

p2(1)p2(1)

×

gγ

b(X2)X2

p2(2)p2(2)
fα
X3

p1(1)p1(1)

+
Z3

×

gβ

X2

p3(1)p3(1)

×

hδ

X1,3

p3(2)p3(2)

p1(2)p1(2)

q(X1,2,3|Z1 = 2)



Circuits, conceptually Probabilistic circuits 25 / 75

Latent variable interpretation for PCs

I Latent random variables
are associated to sum nodes

I Sum weights are interpreted
as probability values

I Sum node inputs are interpreted
as conditional probability values

I Sampling the PC:
I recursively sample the (latent)

distributions from root to leaves
I select single path at sum nodes
I follow all paths at product nodes

E(a(X1)b(X2)c(X3))

+p1

Z1×

+p2

Z2
×

gβ

X1 = x1X1

×

gγ

b(X2)X2

fα
X3

+p3

Z3
×

gβ

X2

×

hδ

X1,3

q(X1,2,3|Z1 = 2)



Circuits, conceptually Probabilistic circuits 26 / 75

Latent variable interpretation for PCs

I Latent random variables
are associated to sum nodes

I Sum weights are interpreted
as probability values

I Sum node inputs are interpreted
as conditional probability values

I Sampling the PC:
I recursively sample the (latent)

distributions from root to leaves
I select single path at sum nodes
I follow all paths at product nodes

E(a(X1)b(X2)c(X3))

+p1

Z1×

+p2

Z2
×

gβ

X1 = x1X1 = x1

×

gγ

b(X2)X2

fα
X3 = x3

+p3

Z3
×

gβ

X2 = x2

×

hδ

X1,3

q(X1,2,3|Z1 = 2)
Z1 = 1

Z2 = 2



Circuits, conceptually Probabilistic circuits 27 / 75

Expectation circuits

I ‘Sum’ nodes compute expectations
of functions defined by
incoming edge values

I Replace input distributions by their
expectation operators; input changed
from variable values to functions

I Output is joint expectation

I Joint function must factorize
for single-pass computation

I Otherwise: use algorithm
with only factorizable functions

E(a(X1)b(X2)c(X3))

Ep1

Z1×

Ep2

Z2
×

Egβ

X1 = x1X1

×

Egγ

b(X2)X2

Efα

X3
Ep3

Z3
×

Egβ

X2

×

Ehδ

X1,3

q(X1,2,3|Z1 = 2)



Circuits, conceptually Probabilistic circuits 28 / 75

Expectation circuits

I ‘Sum’ nodes compute expectations
of functions defined by
incoming edge values

I Replace input distributions by their
expectation operators; input changed
from variable values to functions

I Output is joint expectation

I Joint function must factorize
for single-pass computation

I Otherwise: use algorithm
with only factorizable functions

E(a(X1)b(X2)c(X3))

Ep1

Z1×

Ep2

Z2
×

Egβ

X1 = x1a(X1)

×

Egγ

b(X2)b(X2)

Efα

c(X3)
Ep3

Z3
×

Egβ

b(X2)

×

Ehδ

a(X1)c(X3)

q(X1,2,3|Z1 = 2)



Circuits, conceptually Probabilistic circuits 29 / 75

PCs are often efficient
(Which is why they are popular)

I Class of PCs;
I each characterized by size

(number of edges)
I leaf computation assumed ‘efficient’

I Classes of queries:
I EVI: E(a(X1)b(X2)c(X3))
I MAR: E(a(X1)b(X2))
I CON: E(a(X1)b(X2)|X3 = x3)
I MAP: argmaxx1,2 E(a(x1)b(x2)|X3 = x3)
I . . .

A query class is tractable for
a model class if the computa-
tional cost of running such a
query on such a model is poly-
nomial in the model’s size.

I Tractability of PCs:
I EVI: 4(single pass, linear)
I MAR: 4(single pass, linear)
I CON: 4(double pass, linear)
I MAP: 8(≥ NP-hard)



Circuits, conceptually Probabilistic circuits 30 / 75

PCs are often efficient
(Which is why they are popular)

I Class of PCs;
I each characterized by size

(number of edges)
I leaf computation assumed ‘efficient’

I Classes of queries:
I EVI: E(a(X1)b(X2)c(X3))
I MAR: E(a(X1)b(X2))
I CON: E(a(X1)b(X2)|X3 = x3)
I MAP: argmaxx1,2 E(a(x1)b(x2)|X3 = x3)
I . . .

A query class is tractable for
a model class if the computa-
tional cost of running such a
query on such a model is poly-
nomial in the model’s size.

I Tractability of PCs:
I EVI: 4(single pass, linear)
I MAR: 4(single pass, linear)
I CON: 4(double pass, linear)
I MAP: 8(≥ NP-hard)



Overview

Circuits, conceptually

Credal PCs
Definition
Propagation
Opportunities

Probabilistic integral circuits



Credal PCs Definition 32 / 75

Credal PCs (aka credal sum-product networks)
EC(a(X1)b(X2)c(X3))

C1
λ

Z1×

C2
µ

Z2
×

C5
β

a(X1)

×

C6
γ

b(X2)

C4
α

c(X3)
C3

ν

Z3
×

C7
β

b(X2)

×

C8
δ

a(X1)c(X3)

Ep(a(X1)b(X2)c(X3))

Ep1

Z1×

Ep2

Z2
×

Ep5

a(X1)

×

Ep6

b(X2)

Ep4

c(X3)
Ep3

Z3
×

Ep7

b(X2)

×

Ep8

a(X1)c(X3)



Credal PCs Definition 33 / 75

Credal PCs (aka credal sum-product networks)
EC(a(X1)b(X2)c(X3))

C1
λ

Z1×

C2
µ

Z2
×

C5
β

a(X1)

×

C6
γ

b(X2)

C4
α

c(X3)
C3

ν

Z3
×

C7
β

b(X2)

×

C8
δ

a(X1)c(X3)

Ep(a(X1)b(X2)c(X3))

Ep1

Z1×

Ep2

Z2
×

Ep5

a(X1)

×

Ep6

b(X2)

Ep4

c(X3)
Ep3

Z3
×

Ep7

b(X2)

×

Ep8

a(X1)c(X3)

p ∈ C



Credal PCs Definition 34 / 75

Credal PCs are defined as lower envelopes of PCs
EC(a(X1)b(X2)c(X3))

C1
λ

Z1×

C2
µ

Z2
×

C5
β

a(X1)

×

C6
γ

b(X2)

C4
α

c(X3)
C3

ν

Z3
×

C7
β

b(X2)

×

C8
δ

a(X1)c(X3)

Ep(a(X1)b(X2)c(X3))

Ep1

Z1×

Ep2

Z2
×

Ep5

a(X1)

×

Ep6

b(X2)

Ep4

c(X3)
Ep3

Z3
×

Ep7

b(X2)

×

Ep8

a(X1)c(X3)

p ∈ C

infp∈C



Credal PCs Definition 35 / 75

Working with credal PCs

I Assumed that local credal sets are
I coherent (nonempty)
I ‘efficient’ to work with (linear-vacuous, 2-monotone, simple LP, etc.)

I Consequences of lower envelope definition:
I complete independence implicitly assumed
I EC is coherent
I Upper expectations follow from conjugacy (or use upper envelope)

I How to calculate the lower envelope?
I Gradient descent on PC parameters using backpropagation

(likely inefficient, to be combined with constrained optimization in local credal sets)
I Work directly with lower and upper expectations?



Credal PCs Definition 36 / 75

Working with credal PCs

I Assumed that local credal sets are
I coherent (nonempty)
I ‘efficient’ to work with (linear-vacuous, 2-monotone, simple LP, etc.)

I Consequences of lower envelope definition:
I complete independence implicitly assumed
I EC is coherent
I Upper expectations follow from conjugacy (or use upper envelope)

I How to calculate the lower envelope?
I Gradient descent on PC parameters using backpropagation

(likely inefficient, to be combined with constrained optimization in local credal sets)
I Work directly with lower and upper expectations?



Credal PCs Definition 37 / 75

Working with credal PCs

I Assumed that local credal sets are
I coherent (nonempty)
I ‘efficient’ to work with (linear-vacuous, 2-monotone, simple LP, etc.)

I Consequences of lower envelope definition:
I complete independence implicitly assumed
I EC is coherent
I Upper expectations follow from conjugacy (or use upper envelope)

I How to calculate the lower envelope?
I Gradient descent on PC parameters using backpropagation

(likely inefficient, to be combined with constrained optimization in local credal sets)
I Work directly with lower and upper expectations?



Credal PCs Propagation 38 / 75

Lower–upper expectation circuits

E˜C(a(X1)b(X2)c(X3)) := E˜1

C1
λ

Z1×

C2
µ

Z2
×

C5
β

a(X1)

×

C6
γ

b(X2)

C4
α

c(X3)
C3

ν

Z3
×

C7
β

b(X2)

×

C8
δ

a(X1)c(X3)

EC(a(X1)b(X2)c(X3))

Ẽ˜{5,6}

Propagation calculation rules

I Leaf expectation nodes
with incoming function d i :

E˜ i = Ei(d i) Ẽi = Ei(d i)

I Interior expectation nodes:

E˜ i = Ei(E˜ i ,Zi ) Ẽi = Ei(Ẽi ,Zi )

I Product nodes
(using interval arithmetic):

[E˜J , ẼJ ] :=
∏

j∈J [E˜ j , Ẽj ]



Credal PCs Propagation 39 / 75

Lower–upper expectation circuits

E˜C(a(X1)b(X2)c(X3)) := E˜1

E1
λ

Z1×

E2
µ

Z2
×

E5
β

a(X1)

×

E6
γ

b(X2)

E4
α

c(X3)
E3

ν

Z3
×

E7
β

b(X2)

×

E8
δ

a(X1)c(X3)

Ẽ˜{5,6}

Propagation calculation rules

I Leaf expectation nodes
with incoming function d i :

E˜ i = Ei(d i) Ẽi = Ei(d i)

I Interior expectation nodes:

E˜ i = Ei(E˜ i ,Zi ) Ẽi = Ei(Ẽi ,Zi )

I Product nodes
(using interval arithmetic):

[E˜J , ẼJ ] :=
∏

j∈J [E˜ j , Ẽj ]



Credal PCs Propagation 40 / 75

Lower–upper expectation circuits

E˜C(a(X1)b(X2)c(X3)) := E˜1

E1
λ

Z1×

E2
µ

Z2
×

E5
β

a(X1)

×

E6
γ

b(X2)

E4
α

c(X3)
E3

ν

Z3
×

E7
β

b(X2)

×

E8
δ

a(X1)c(X3)

Ẽ˜8

Ẽ˜{5,6}

Propagation calculation rules
I Leaf expectation nodes

with incoming function d i :

E˜ i = Ei(d i) Ẽi = Ei(d i)

I Interior expectation nodes:

E˜ i = Ei(E˜ i ,Zi ) Ẽi = Ei(Ẽi ,Zi )

I Product nodes
(using interval arithmetic):

[E˜J , ẼJ ] :=
∏

j∈J [E˜ j , Ẽj ]



Credal PCs Propagation 41 / 75

Lower–upper expectation circuits

E˜C(a(X1)b(X2)c(X3)) := E˜1

E1
λ

Z1×

E2
µ

Z2
×

E5
β

a(X1)

×

E6
γ

b(X2)

E4
α

c(X3)
E3

ν

Z3
×

E7
β

b(X2)

×

E8
δ

a(X1)c(X3)

Ẽ˜8

Ẽ˜3

Ẽ˜3,1 Ẽ˜3,2Ẽ˜{5,6}

Propagation calculation rules
I Leaf expectation nodes

with incoming function d i :

E˜ i = Ei(d i) Ẽi = Ei(d i)

I Interior expectation nodes:

E˜ i = Ei(E˜ i ,Zi ) Ẽi = Ei(Ẽi ,Zi )

I Product nodes
(using interval arithmetic):

[E˜J , ẼJ ] :=
∏

j∈J [E˜ j , Ẽj ]



Credal PCs Propagation 42 / 75

Lower–upper expectation circuits

E˜C(a(X1)b(X2)c(X3)) := E˜1

E1
λ

Z1×

E2
µ

Z2
×

E5
β

a(X1)

×

E6
γ

b(X2)

E4
α

c(X3)
E3

ν

Z3
×

E7
β

b(X2)

×

E8
δ

a(X1)c(X3)

Ẽ˜8

Ẽ˜3

Ẽ˜3,1 Ẽ˜3,2Ẽ˜{5,6}Ẽ˜{5,6}

Propagation calculation rules
I Leaf expectation nodes

with incoming function d i :

E˜ i = Ei(d i) Ẽi = Ei(d i)

I Interior expectation nodes:

E˜ i = Ei(E˜ i ,Zi ) Ẽi = Ei(Ẽi ,Zi )

I Product nodes
(using interval arithmetic):

[E˜J , ẼJ ] :=
∏

j∈J [E˜ j , Ẽj ]



Credal PCs Propagation 43 / 75

Lower–upper expectation circuits

E˜C(a(X1)b(X2)c(X3)) := E˜1

E1
λ

Z1×

E2
µ

Z2
×

E5
β

a(X1)

×

E6
γ

b(X2)

E4
α

c(X3)
E3

ν

Z3
×

E7
β

b(X2)

×

E8
δ

a(X1)c(X3)

Ẽ˜8

Ẽ˜3

Ẽ˜3,1 Ẽ˜3,2Ẽ˜{5,6}Ẽ˜{5,6}

E˜C(a(X1)b(X2)c(X3)) := E˜1 Propagation calculation rules
I Leaf expectation nodes

with incoming function d i :

E˜ i = Ei(d i) Ẽi = Ei(d i)

I Interior expectation nodes:

E˜ i = Ei(E˜ i ,Zi ) Ẽi = Ei(Ẽi ,Zi )

I Product nodes
(using interval arithmetic):

[E˜J , ẼJ ] :=
∏

j∈J [E˜ j , Ẽj ]



Credal PCs Propagation 44 / 75

Using propagation to compute credal PC lower expectations1

Exact inference
It sometimes holds that EC(f ) = E˜C(f ):
I For tree topologies, this holds for any factorizing f
I For SDAG topologies, this holds for any nonnegative factorizing f

Computational cost
A single propagation pass is linear in the size of the circuit, so for the cases above
I EVI: 4

I MAR: 4

Approximate inference: outer approximation
It always holds that E˜C(f ) ≤ EC(f ) for any factorizing f .

1All credal PC results from Montalvan, Centen, Krak, Quaeghebeur & De Campos’s “Beyond
tree-shaped credal probabilistic circuits”, IJAR 171:109047 (2024).

https://doi.org/10.1016/j.ijar.2023.109047
https://doi.org/10.1016/j.ijar.2023.109047


Credal PCs Propagation 45 / 75

Using propagation to compute credal PC lower expectations1

Exact inference
It sometimes holds that EC(f ) = E˜C(f ):
I For tree topologies, this holds for any factorizing f
I For SDAG topologies, this holds for any nonnegative factorizing f

Computational cost
A single propagation pass is linear in the size of the circuit, so for the cases above
I EVI: 4

I MAR: 4

Approximate inference: outer approximation
It always holds that E˜C(f ) ≤ EC(f ) for any factorizing f .

1All credal PC results from Montalvan, Centen, Krak, Quaeghebeur & De Campos’s “Beyond
tree-shaped credal probabilistic circuits”, IJAR 171:109047 (2024).

https://doi.org/10.1016/j.ijar.2023.109047
https://doi.org/10.1016/j.ijar.2023.109047


Credal PCs Propagation 46 / 75

Using propagation to compute credal PC lower expectations1

Exact inference
It sometimes holds that EC(f ) = E˜C(f ):
I For tree topologies, this holds for any factorizing f
I For SDAG topologies, this holds for any nonnegative factorizing f

Computational cost
A single propagation pass is linear in the size of the circuit, so for the cases above
I EVI: 4

I MAR: 4

Approximate inference: outer approximation
It always holds that E˜C(f ) ≤ EC(f ) for any factorizing f .

1All credal PC results from Montalvan, Centen, Krak, Quaeghebeur & De Campos’s “Beyond
tree-shaped credal probabilistic circuits”, IJAR 171:109047 (2024).

https://doi.org/10.1016/j.ijar.2023.109047
https://doi.org/10.1016/j.ijar.2023.109047


Credal PCs Propagation 47 / 75

The problem with cycles (binary variables X1 and X2)
0

{pu}

×

{δ0}

2X2 − 1

Cvac

{δ0}

1 − X1

{δ1}

1 − X1

×

{δ1}

2X2 − 1

0

Epu

×

Eδ0

2X2 − 1
Ep

Eδ0

1 − X1

Eδ1

1 − X1

×

Eδ1

2X2 − 1

[−1
2 , 1

2 ]

Epu

×

Eδ0

2X2 − 1
Evac

Eδ0

1 − X1

Eδ1

1 − X1

×

Eδ1

2X2 − 1



Credal PCs Propagation 48 / 75

The problem with cycles (binary variables X1 and X2)
0

{pu}

×

{δ0}

2X2 − 1

Cvac

{δ0}

1 − X1

{δ1}

1 − X1

×

{δ1}

2X2 − 1

0

Epu

×

Eδ0

2X2 − 1
Ep

Eδ0

1 − X1

Eδ1

1 − X1

×

Eδ1

2X2 − 1

[−1
2 , 1

2 ]

Epu

×

Eδ0

2X2 − 1
Evac

Eδ0

1 − X1

Eδ1

1 − X1

×

Eδ1

2X2 − 1

p ∈ Cvac



Credal PCs Propagation 49 / 75

The problem with cycles (binary variables X1 and X2)
0

{pu}

×

{δ0}

2X2 − 1

Cvac

{δ0}

1 − X1

{δ1}

1 − X1

×

{δ1}

2X2 − 1

0

Epu

×

Eδ0

2X2 − 1
Ep

Eδ0

1 − X1

Eδ1

1 − X1

×

Eδ1

2X2 − 1
1 0

p−1 1

−p p

[−1
2 , 1

2 ]

Epu

×

Eδ0

2X2 − 1
Evac

Eδ0

1 − X1

Eδ1

1 − X1

×

Eδ1

2X2 − 1

p ∈ Cvac



Credal PCs Propagation 50 / 75

The problem with cycles (binary variables X1 and X2)
0

{pu}

×

{δ0}

2X2 − 1

Cvac

{δ0}

1 − X1

{δ1}

1 − X1

×

{δ1}

2X2 − 1

0

Epu

×

Eδ0

2X2 − 1
Ep

Eδ0

1 − X1

Eδ1

1 − X1

×

Eδ1

2X2 − 1
1 0

p−1 1

−p p

[−1
2 , 1

2 ]

Epu

×

Eδ0

2X2 − 1
Evac

Eδ0

1 − X1

Eδ1

1 − X1

×

Eδ1

2X2 − 1

p ∈ Cvac

infp∈Cvac or supp∈Cvac



Credal PCs Propagation 51 / 75

The problem with cycles (binary variables X1 and X2)
0

{pu}

×

{δ0}

2X2 − 1

Cvac

{δ0}

1 − X1

{δ1}

1 − X1

×

{δ1}

2X2 − 1

0

Epu

×

Eδ0

2X2 − 1
Ep

Eδ0

1 − X1

Eδ1

1 − X1

×

Eδ1

2X2 − 1
1 0

p−1 1

−p p

[−1
2 , 1

2 ]

Epu

×

Eδ0

2X2 − 1
Evac

Eδ0

1 − X1

Eδ1

1 − X1

×

Eδ1

2X2 − 1

p ∈ Cvac

infp∈Cvac or supp∈Cvac



Credal PCs Propagation 52 / 75

The problem with cycles (binary variables X1 and X2)
0

{pu}

×

{δ0}

2X2 − 1

Cvac

{δ0}

1 − X1

{δ1}

1 − X1

×

{δ1}

2X2 − 1

0

Epu

×

Eδ0

2X2 − 1
Ep

Eδ0

1 − X1

Eδ1

1 − X1

×

Eδ1

2X2 − 1
1 0

p−1 1

−p p

[−1
2 , 1

2 ]

Epu

×

Eδ0

2X2 − 1
Evac

Eδ0

1 − X1

Eδ1

1 − X1

×

Eδ1

2X2 − 1
1 0

[0, 1]
−1 1

[−1, 0] [0, 1]

p ∈ Cvac

infp∈Cvac or supp∈Cvac



Credal PCs Propagation 53 / 75

SDAGs designed for tractable inference
Setup
I General focused query function:

f (X) = g(Xq)h(X 6=q), with
I g any function
I h nonnegative factorizing

I Xq-queried structure:
no path between the root and any
input node with scope Xq contains
edges that are part of a cycle

C1

×
C2

Xq

. . .
×

C3

Xq

. . .

Results

I In this setup EC(f ) = E˜C(f )
I Also EC

(
g(Xq)

∣∣Xe = xe
)

with
Xe ⊆ X¬q can be computed exactly
by propagation, as the solution ζ of

EC
(
Ixe(Xe)(g(Xq) − ζ)

)
= 0

I Determining credal dominance between
decision options ô and ǒ is a special
case if this, as it requires investigating

EC
(
Iô(Xq) − Iǒ(Xq)

∣∣∣Xe = xe
)

> 0



Credal PCs Propagation 54 / 75

SDAGs designed for tractable inference
Setup
I General focused query function:

f (X) = g(Xq)h(X 6=q), with
I g any function
I h nonnegative factorizing

I Xq-queried structure:
no path between the root and any
input node with scope Xq contains
edges that are part of a cycle

C1

×
C2

Xq

. . .
×

C3

Xq

. . .

Results
I In this setup EC(f ) = E˜C(f )

I Also EC
(
g(Xq)

∣∣Xe = xe
)

with
Xe ⊆ X¬q can be computed exactly
by propagation, as the solution ζ of

EC
(
Ixe(Xe)(g(Xq) − ζ)

)
= 0

I Determining credal dominance between
decision options ô and ǒ is a special
case if this, as it requires investigating

EC
(
Iô(Xq) − Iǒ(Xq)

∣∣∣Xe = xe
)

> 0



Credal PCs Propagation 55 / 75

SDAGs designed for tractable inference
Setup
I General focused query function:

f (X) = g(Xq)h(X 6=q), with
I g any function
I h nonnegative factorizing

I Xq-queried structure:
no path between the root and any
input node with scope Xq contains
edges that are part of a cycle

C1

×
C2

Xq

. . .
×

C3

Xq

. . .

Results
I In this setup EC(f ) = E˜C(f )
I Also EC

(
g(Xq)

∣∣Xe = xe
)

with
Xe ⊆ X¬q can be computed exactly
by propagation, as the solution ζ of

EC
(
Ixe(Xe)(g(Xq) − ζ)

)
= 0

I Determining credal dominance between
decision options ô and ǒ is a special
case if this, as it requires investigating

EC
(
Iô(Xq) − Iǒ(Xq)

∣∣∣Xe = xe
)

> 0



Credal PCs Propagation 56 / 75

SDAGs designed for tractable inference
Setup
I General focused query function:

f (X) = g(Xq)h(X 6=q), with
I g any function
I h nonnegative factorizing

I Xq-queried structure:
no path between the root and any
input node with scope Xq contains
edges that are part of a cycle

C1

×
C2

Xq

. . .
×

C3

Xq

. . .

Results
I In this setup EC(f ) = E˜C(f )
I Also EC

(
g(Xq)

∣∣Xe = xe
)

with
Xe ⊆ X¬q can be computed exactly
by propagation, as the solution ζ of

EC
(
Ixe(Xe)(g(Xq) − ζ)

)
= 0

I Determining credal dominance between
decision options ô and ǒ is a special
case if this, as it requires investigating

EC
(
Iô(Xq) − Iǒ(Xq)

∣∣∣Xe = xe
)

> 0



Credal PCs Opportunities 57 / 75

Opportunities in the area of imprecise-probabilistic PCs

I Embracing lower–upper expectation circuits fully
by considering SDAGs as a compact notation for trees?

I Other ‘product’ operators?

I Learning from data beyond adding ‘imprecision’ to sum nodes?



Overview

Circuits, conceptually

Credal PCs

Probabilistic integral circuits
From deep PCs to PICs
Training PICs
Opportunities



Probabilistic integral circuits From deep PCs to PICs 59 / 75

Evolution and characteristics of deep PCs

I Great increase in size over time (now in the billions of parameters)

I Choice of structures expands
I Data-based, mostly trees (e.g., Learn-SPN and derivatives)
I Random SDAGs (e.g., RAT-SPN)
I Application-based (e.g., PD, QG, QT for images)

I Tendency to overparameterize and tensorize structures
(making it well-adapted to deep-learning implementation)

I Cycles seem to have a positive effect on expressiveness
(reuse of components)

I Training seems harder than in neural-based deep learning models



Probabilistic integral circuits From deep PCs to PICs 60 / 75

Evolution and characteristics of deep PCs

I Great increase in size over time (now in the billions of parameters)

I Choice of structures expands
I Data-based, mostly trees (e.g., Learn-SPN and derivatives)
I Random SDAGs (e.g., RAT-SPN)
I Application-based (e.g., PD, QG, QT for images)

I Tendency to overparameterize and tensorize structures
(making it well-adapted to deep-learning implementation)

I Cycles seem to have a positive effect on expressiveness
(reuse of components)

I Training seems harder than in neural-based deep learning models



Probabilistic integral circuits From deep PCs to PICs 61 / 75

Evolution and characteristics of deep PCs

I Great increase in size over time (now in the billions of parameters)

I Choice of structures expands
I Data-based, mostly trees (e.g., Learn-SPN and derivatives)
I Random SDAGs (e.g., RAT-SPN)
I Application-based (e.g., PD, QG, QT for images)

I Tendency to overparameterize and tensorize structures
(making it well-adapted to deep-learning implementation)

I Cycles seem to have a positive effect on expressiveness
(reuse of components)

I Training seems harder than in neural-based deep learning models



Probabilistic integral circuits From deep PCs to PICs 62 / 75

Probabilistic integral circuits (PICs)2

Observation Other classes of deep generative models are easier to
train (VAEs, Flows)

Hypothesis Their intertwined use of continuous latent variables
and neural networks play an important role in this

Objective Add continuous latent variables and neural networks
to improve training and scaling

Key addition Integration nodes that replace sum nodes

2Results and material from
I Gala, De Campos, Peharz, Vergari & Quaeghebeur’s “Probabilistic integral circuits”, AISTATS

2024, PMLR 238:2143–2151 (2024).
I Gala, De Campos, Vergari & Quaeghebeur’s “Scaling continuous latent variable models as

probabilistic integral circuits”, NeurIPS 2024 (2024).
Various slide elements gracefully provided by Gennaro Gala.

https://proceedings.mlr.press/v238/gala24a
https://proceedings.mlr.press/v238/gala24a
https://openreview.net/forum?id=Ke40kfOT2E
https://openreview.net/forum?id=Ke40kfOT2E


Probabilistic integral circuits From deep PCs to PICs 63 / 75

Probabilistic integral circuits (PICs)2

Observation Other classes of deep generative models are easier to
train (VAEs, Flows)

Hypothesis Their intertwined use of continuous latent variables
and neural networks play an important role in this

Objective Add continuous latent variables and neural networks
to improve training and scaling

Key addition Integration nodes that replace sum nodes
2Results and material from
I Gala, De Campos, Peharz, Vergari & Quaeghebeur’s “Probabilistic integral circuits”, AISTATS

2024, PMLR 238:2143–2151 (2024).
I Gala, De Campos, Vergari & Quaeghebeur’s “Scaling continuous latent variable models as

probabilistic integral circuits”, NeurIPS 2024 (2024).
Various slide elements gracefully provided by Gennaro Gala.

https://proceedings.mlr.press/v238/gala24a
https://proceedings.mlr.press/v238/gala24a
https://openreview.net/forum?id=Ke40kfOT2E
https://openreview.net/forum?id=Ke40kfOT2E


Probabilistic integral circuits From deep PCs to PICs 64 / 75

Probabilistic integral circuits (PICs)2

Observation Other classes of deep generative models are easier to
train (VAEs, Flows)

Hypothesis Their intertwined use of continuous latent variables
and neural networks play an important role in this

Objective Add continuous latent variables and neural networks
to improve training and scaling

Key addition Integration nodes that replace sum nodes
2Results and material from
I Gala, De Campos, Peharz, Vergari & Quaeghebeur’s “Probabilistic integral circuits”, AISTATS

2024, PMLR 238:2143–2151 (2024).
I Gala, De Campos, Vergari & Quaeghebeur’s “Scaling continuous latent variable models as

probabilistic integral circuits”, NeurIPS 2024 (2024).
Various slide elements gracefully provided by Gennaro Gala.

https://proceedings.mlr.press/v238/gala24a
https://proceedings.mlr.press/v238/gala24a
https://openreview.net/forum?id=Ke40kfOT2E
https://openreview.net/forum?id=Ke40kfOT2E


Probabilistic integral circuits From deep PCs to PICs 65 / 75

Probabilistic integral circuits (PICs)2

Observation Other classes of deep generative models are easier to
train (VAEs, Flows)

Hypothesis Their intertwined use of continuous latent variables
and neural networks play an important role in this

Objective Add continuous latent variables and neural networks
to improve training and scaling

Key addition Integration nodes that replace sum nodes
2Results and material from
I Gala, De Campos, Peharz, Vergari & Quaeghebeur’s “Probabilistic integral circuits”, AISTATS

2024, PMLR 238:2143–2151 (2024).
I Gala, De Campos, Vergari & Quaeghebeur’s “Scaling continuous latent variable models as

probabilistic integral circuits”, NeurIPS 2024 (2024).
Various slide elements gracefully provided by Gennaro Gala.

https://proceedings.mlr.press/v238/gala24a
https://proceedings.mlr.press/v238/gala24a
https://openreview.net/forum?id=Ke40kfOT2E
https://openreview.net/forum?id=Ke40kfOT2E


Probabilistic integral circuits From deep PCs to PICs 66 / 75

Probabilistic integral circuits (PICs)2

Observation Other classes of deep generative models are easier to
train (VAEs, Flows)

Hypothesis Their intertwined use of continuous latent variables
and neural networks play an important role in this

Objective Add continuous latent variables and neural networks
to improve training and scaling

Key addition Integration nodes that replace sum nodes
2Results and material from
I Gala, De Campos, Peharz, Vergari & Quaeghebeur’s “Probabilistic integral circuits”, AISTATS

2024, PMLR 238:2143–2151 (2024).
I Gala, De Campos, Vergari & Quaeghebeur’s “Scaling continuous latent variable models as

probabilistic integral circuits”, NeurIPS 2024 (2024).
Various slide elements gracefully provided by Gennaro Gala.

https://proceedings.mlr.press/v238/gala24a
https://proceedings.mlr.press/v238/gala24a
https://openreview.net/forum?id=Ke40kfOT2E
https://openreview.net/forum?id=Ke40kfOT2E


Probabilistic integral circuits From deep PCs to PICs 67 / 75

PICs are ‘symbolic’ circuits

I Integral node:
I integrates out

latent variables
I leaves unaffected

non-latent variables
I introduces

new latent variable
I parameterized with

a neural network

I Edges carry functions,
not values!

I Generally not tractable as
such



Probabilistic integral circuits From deep PCs to PICs 68 / 75

PICs are ‘symbolic’ circuits

I Integral node:
I integrates out

latent variables
I leaves unaffected

non-latent variables
I introduces

new latent variable
I parameterized with

a neural network

I Edges carry functions,
not values!

I Generally not tractable as
such



Probabilistic integral circuits From deep PCs to PICs 69 / 75

PICs are ‘symbolic’ circuits

I Integral node:
I integrates out

latent variables
I leaves unaffected

non-latent variables
I introduces

new latent variable
I parameterized with

a neural network

I Edges carry functions,
not values!

I Generally not tractable as
such



Probabilistic integral circuits From deep PCs to PICs 70 / 75

Approximating PICs with PCs by numerical quadrature



Probabilistic integral circuits From deep PCs to PICs 71 / 75

Approximating PICs with PCs by numerical quadrature

I tensorization and overparameterization is applied
I locally dense
I folding to exploit parallel computation



Probabilistic integral circuits Training PICs 72 / 75

Training a PIC via its QPC

I Training QPC:
I use gradient ascent to maximize likelihood
I calculate gradients using backpropagation
I use random batches of data
I take maximizing step for sum weights per batch
I repeat with many batches until convergence

I Training PIC:
I as above, but
I propagate gradients to neural network parameters
I take maximizing step for neural network parameters

per batch



Probabilistic integral circuits Training PICs 73 / 75

Training a PIC via its QPC

I Training QPC:
I use gradient ascent to maximize likelihood
I calculate gradients using backpropagation
I use random batches of data
I take maximizing step for sum weights per batch
I repeat with many batches until convergence

I Training PIC:
I as above, but
I propagate gradients to neural network parameters
I take maximizing step for neural network parameters

per batch



Probabilistic integral circuits Training PICs 74 / 75

Making training practical using neural functional sharing



Probabilistic integral circuits Opportunities 75 / 75

Takeaway & opportunities in the area of deep PCs

I State-of-the-art deep PCs (PICs) combine ideas from various fields and require ML
engineering to design.

I Methods to directly train PICs without generating QPCs?

I Create imprecise-probabilistic PIC variants?



The wondrous world of credal and deep probabilistic circuits
SIPTA Seminar

Erik Quaeghebeur

Eindhoven University of Technology

22 January 2025, 15:00 CET


	Circuits, conceptually
	From expression trees to circuits
	Probabilistic circuits

	Credal PCs
	Definition
	Propagation
	Opportunities

	Probabilistic integral circuits
	From deep PCs to PICs
	Training PICs
	Opportunities


