The wondrous world of credal and deep probabilistic circuits SIPTA Seminar

Erik Quaeghebeur

Eindhoven University of Technology

22 January 2025, 15:00 CET

 $1 + (2 \times 3)$

Circuits, conceptually

Credal PCs

Probabilistic integral circuits

Overview

Circuits, conceptually

From expression trees to circuits Probabilistic circuits

Credal PCs

Probabilistic integral circuits

Expression trees

- Graphical representation for *expressions*
- Edges show *composition* order
- Nodes show symbols for values and functions

Expression trees

- Graphical representation for *expressions*
- Edges show *composition* order
- Nodes show symbols for values and functions

Expression trees

- Graphical representation for *expressions*
- Edges show composition order
- Nodes show symbols for values and functions
- Edges 'carry' partial *expressions*

- Graphical representation for composite function computations Need not be a tree; often an SDAG
- Edges show computation order
- Nodes show symbols for component functions

- Graphical representation for composite function computations Need not be a tree; often an SDAG
- Edges show computation order
- Nodes show symbols for component functions
- Edges 'carry' input/computed values
- Usually distinction made between parameters and variables

- Graphical representation for composite function computations Need not be a tree; often an SDAG
- Edges show computation order
- Nodes show symbols for component functions
- Edges 'carry' input/computed values
- Usually distinction made between parameters and variables

Also used for gradient backpropagation

- Graphical representation for composite function computations Need not be a tree; often an SDAG
- Edges show computation order
- Nodes show symbols for component functions
- Edges 'carry' input/computed values
- Usually distinction made between parameters and variables

Also used for gradient backpropagation

- Graphical representation for composite function computations Need not be a tree; often an SDAG
- Edges show computation order
- Nodes show symbols for component functions
- Edges 'carry' input/computed values
- Usually distinction made between parameters and variables
- Also used for gradient backpropagation
- 'Values' can be multidimensional arrays

Circuits

- Compact representation of computation graph
- Input variables shown to indicate input function arguments
- Parameters are 'attached' to functions

Circuits

- Compact representation of computation graph
- Input variables shown to indicate input function arguments
- Parameters are 'attached' to functions
- For internal nodes classically only products and (weighted) sums
- Recently also other functions

Circuits

- Compact representation of computation graph
- Input variables shown to indicate input function arguments
- Parameters are 'attached' to functions
- For internal nodes classically only products and (weighted) sums
- Recently also other functions
- Polynomial in input function values

Probabilistic circuits (PCs)

- Circuits where
 - Random variables considered
 - input functions are probability mass functions/densities
 - weighted sums are convex mixtures
 - products represent independence
- Output is 'likelihood' for represented joint probability distribution (normalization not always imposed)

Probabilistic circuits (PCs)

- Circuits where
 - Random variables considered
 - input functions are probability mass functions/densities
 - weighted sums are convex mixtures
 - products represent independence
- Output is 'likelihood' for represented joint probability distribution (normalization not always imposed)
- Scope of functions
- Important properties: smoothness, decomposability

Probabilistic circuits (PCs)

- Circuits where
 - Random variables considered
 - input functions are probability mass functions/densities
 - weighted sums are convex mixtures
 - products represent independence
- Output is 'likelihood' for represented joint probability distribution (normalization not always imposed)
- Scope of functions
- Important properties: smoothness, decomposability
- Multilinear in input function values

PCs are hierarchical mixture models

PCs are hierarchical mixture models

PCs are hierarchical mixture models

 Latent random variables are associated to sum nodes

- Latent random variables are associated to sum nodes
- Sum weights are interpreted as probability values

- Latent random variables are associated to sum nodes
- Sum weights are interpreted as probability values
- Sum node inputs are interpreted as conditional probability values

- Latent random variables are associated to sum nodes
- Sum weights are interpreted as probability values
- Sum node inputs are interpreted as conditional probability values

- Latent random variables are associated to sum nodes
- Sum weights are interpreted as probability values
- Sum node inputs are interpreted as conditional probability values
- Sampling the PC:
 - recursively sample the (latent) distributions from root to leaves
 - select single path at sum nodes
 - follow all paths at product nodes

Expectation circuits

- 'Sum' nodes compute *expectations* of functions defined by incoming edge values
- Replace input distributions by their expectation operators; input changed from variable values to functions
- Output is joint expectation

Expectation circuits

- 'Sum' nodes compute *expectations* of functions defined by incoming edge values
- Replace input distributions by their expectation operators; input changed from variable values to functions
- Output is joint expectation
- Joint function must *factorize* for single-pass computation
- Otherwise: use algorithm with only factorizable functions

PCs are often efficient

(Which is why they are popular)

Class of PCs;

- each characterized by size (number of edges)
- leaf computation assumed 'efficient'

Classes of queries:

▶ ...

- $\blacktriangleright \text{ EVI: } \mathbb{E}(a(X_1)b(X_2)c(X_3))$
- $\blacktriangleright MAR: \mathbb{E}(a(X_1)b(X_2))$
- $\blacktriangleright \text{ CON: } \mathbb{E}(a(X_1)b(X_2)|X_3=x_3)$
- MAP: $\operatorname{argmax}_{x_{1,2}} \mathbb{E}(a(x_1)b(x_2)|X_3 = x_3)$

PCs are often efficient

(Which is why they are popular)

Class of PCs;

- each characterized by size (number of edges)
- leaf computation assumed 'efficient'

Classes of queries:

...

- $\blacktriangleright \text{ EVI: } \mathbb{E}(a(X_1)b(X_2)c(X_3))$
- $\blacktriangleright MAR: \mathbb{E}(a(X_1)b(X_2))$
- $\blacktriangleright \text{ CON: } \mathbb{E}(a(X_1)b(X_2)|X_3=x_3)$
- MAP: $\operatorname{argmax}_{\mathbf{x}_{1,2}} \mathbb{E}(a(x_1)b(x_2)|X_3 = x_3)$

A query class is **tractable** for a model class if the computational cost of running such a query on such a model is polynomial in the model's size.

- Tractability of PCs:
 - ► EVI: ✔(single pass, linear)
 - ► MAR: ✔(single pass, linear)
 - ► CON: ✔(double pass, linear)
 - ► MAP: X(≥ NP-hard)

Overview

Circuits, conceptually

Credal PCs

Definition Propagation Opportunities

Probabilistic integral circuits

Credal PCs (aka credal sum-product networks)

Credal PCs (aka credal sum-product networks)

Credal PCs are defined as lower envelopes of PCs

Working with credal PCs

- Assumed that local credal sets are
 - coherent (nonempty)
 - 'efficient' to work with (linear-vacuous, 2-monotone, simple LP, etc.)

Working with credal PCs

- Assumed that local credal sets are
 - coherent (nonempty)
 - 'efficient' to work with (linear-vacuous, 2-monotone, simple LP, etc.)
- Consequences of lower envelope definition:
 - complete independence implicitly assumed
 - \blacktriangleright $\mathbb{E}_{\mathcal{C}}$ is coherent
 - Upper expectations follow from conjugacy (or use upper envelope)
Working with credal PCs

- Assumed that local credal sets are
 - coherent (nonempty)
 - 'efficient' to work with (linear-vacuous, 2-monotone, simple LP, etc.)
- Consequences of lower envelope definition:
 - complete independence implicitly assumed
 - \blacktriangleright $\mathbb{E}_{\mathcal{C}}$ is coherent
 - Upper expectations follow from conjugacy (or use upper envelope)
- How to calculate the lower envelope?
 - Gradient descent on PC parameters using backpropagation (likely inefficient, to be combined with constrained optimization in local credal sets)
 - Work directly with lower and upper expectations?

Propagation calculation rules

Leaf expectation nodes with incoming function dⁱ:

 $\underline{\mathbb{E}}^{i} = \underline{\mathbb{E}}^{i}(d^{i}) \qquad \widetilde{\mathbb{E}}^{i} = \overline{\mathbb{E}}^{i}(d^{i})$

Propagation calculation rules

 Leaf expectation nodes with incoming function dⁱ:

 $\underline{\mathbb{E}}^{i} = \underline{\mathbb{E}}^{i}(d^{i}) \qquad \widetilde{\mathbb{E}}^{i} = \overline{\mathbb{E}}^{i}(d^{i})$

Interior expectation nodes:

$$\underline{\mathbb{E}}^{i} = \underline{\mathbb{E}}^{i}(\underline{\mathbb{E}}^{i,Z_{i}}) \qquad \widetilde{\mathbb{E}}^{i} = \overline{\mathbb{E}}^{i}(\widetilde{\mathbb{E}}^{i,Z_{i}})$$

Propagation calculation rules

 Leaf expectation nodes with incoming function dⁱ:

 $\underline{\mathbb{E}}^{i} = \underline{\mathbb{E}}^{i}(d^{i}) \qquad \widetilde{\mathbb{E}}^{i} = \overline{\mathbb{E}}^{i}(d^{i})$

Interior expectation nodes:

 $\underline{\mathbb{E}}^{i} = \underline{\mathbb{E}}^{i}(\underline{\mathbb{E}}^{i,Z_{i}}) \qquad \widetilde{\mathbb{E}}^{i} = \overline{\mathbb{E}}^{i}(\widetilde{\mathbb{E}}^{i,Z_{i}})$

Product nodes (using interval arithmetic):

 $[\underline{\mathbb{E}}^J, \underline{\widetilde{\mathbb{E}}}^J] := \prod_{j \in J} [\underline{\mathbb{E}}^j, \underline{\widetilde{\mathbb{E}}}^j]$

Propagation calculation rules

 Leaf expectation nodes with incoming function dⁱ:

 $\underline{\mathbb{E}}^{i} = \underline{\mathbb{E}}^{i}(d^{i}) \qquad \widetilde{\mathbb{E}}^{i} = \overline{\mathbb{E}}^{i}(d^{i})$

Interior expectation nodes:

 $\underline{\mathbb{E}}^{i} = \underline{\mathbb{E}}^{i}(\underline{\mathbb{E}}^{i,Z_{i}}) \qquad \widetilde{\mathbb{E}}^{i} = \overline{\mathbb{E}}^{i}(\widetilde{\mathbb{E}}^{i,Z_{i}})$

Product nodes (using interval arithmetic):

 $[\underline{\mathbb{E}}^J, \widetilde{\mathbb{E}}^J] := \prod_{j \in J} [\underline{\mathbb{E}}^j, \widetilde{\mathbb{E}}^j]$

Using propagation to compute credal PC lower expectations¹

Exact inference

It sometimes holds that $\underline{\mathbb{E}}_{\mathcal{C}}(f) = \underline{\mathbb{E}}_{\mathcal{C}}(f)$:

- ▶ For *tree* topologies, this holds for *any factorizing f*
- ▶ For SDAG topologies, this holds for any nonnegative factorizing f

¹All credal PC results from Montalvan, Centen, Krak, Quaeghebeur & De Campos's "Beyond tree-shaped credal probabilistic circuits", *IJAR* 171:109047 (2024).

Using propagation to compute credal PC lower expectations¹

Exact inference

It sometimes holds that $\underline{\mathbb{E}}_{\mathcal{C}}(f) = \underline{\mathbb{E}}_{\mathcal{C}}(f)$:

- ▶ For *tree* topologies, this holds for *any factorizing f*
- ▶ For SDAG topologies, this holds for any nonnegative factorizing f

Computational cost

A single propagation pass is linear in the size of the circuit, so for the cases above

- 🕨 EVI: 🖌
- 🕨 MAR: 🖌

¹All credal PC results from Montalvan, Centen, Krak, Quaeghebeur & De Campos's "Beyond tree-shaped credal probabilistic circuits", *IJAR* 171:109047 (2024).

Using propagation to compute credal PC lower expectations¹

Exact inference

It sometimes holds that $\underline{\mathbb{E}}_{\mathcal{C}}(f) = \underline{\mathbb{E}}_{\mathcal{C}}(f)$:

- ▶ For *tree* topologies, this holds for *any factorizing f*
- ▶ For SDAG topologies, this holds for any nonnegative factorizing f

Computational cost

A single propagation pass is linear in the size of the circuit, so for the cases above

- 🕨 EVI: 🖌
- 🕨 MAR: 🖌

Approximate inference: outer approximation

It always holds that $\mathbb{E}_{\mathcal{C}}(f) \leq \mathbb{E}_{\mathcal{C}}(f)$ for any factorizing f.

¹All credal PC results from Montalvan, Centen, Krak, Quaeghebeur & De Campos's "Beyond tree-shaped credal probabilistic circuits", *IJAR* 171:109047 (2024).

Setup

- General focused query function: $f(\mathbf{X}) = g(X_q)h(\mathbf{X}_{\neq q})$, with
 - ▶ g any function
 - h nonnegative factorizing

X_q-queried structure: no path between the root and any input node with scope X_q contains edges that are part of a cycle

Setup

- General focused query function: $f(\mathbf{X}) = g(X_q)h(\mathbf{X}_{\neq q})$, with
 - g any function
 - h nonnegative factorizing

X_q-queried structure: no path between the root and any input node with scope X_q contains edges that are part of a cycle

Results

▶ In this setup $\underline{\mathbb{E}}_{\mathcal{C}}(f) = \underline{\mathbb{E}}_{\mathcal{C}}(f)$

Setup

- General focused query function: $f(\mathbf{X}) = g(X_q)h(\mathbf{X}_{\neq q})$, with
 - g any function
 - h nonnegative factorizing

► X_q-queried structure:

no path between the root and any input node with scope X_q contains edges that are part of a cycle

Results

- ▶ In this setup $\mathbb{E}_{\mathcal{C}}(f) = \mathbb{E}_{\mathcal{C}}(f)$
- Also $\mathbb{E}_{\mathcal{C}}(g(X_q)|\mathbf{X}_e = \mathbf{x}_e)$ with $\mathbf{X}_e \subseteq \mathbf{X}_{\neg q}$ can be computed exactly by propagation, as the solution ζ of

$$\underline{\mathbb{E}}_{\mathcal{C}} \Big(\mathbb{I}_{\mathbf{x}_{e}}(\mathbf{X}_{e})(g(X_{q}) - \zeta) \Big) = 0$$

Setup

- General focused query function: $f(\mathbf{X}) = g(X_q)h(\mathbf{X}_{\neq q})$, with
 - g any function
 h nonnegative factorizing

► X_q-queried structure:

no path between the root and any input node with scope X_q contains edges that are part of a cycle

Results

- ▶ In this setup $\mathbb{E}_{\mathcal{C}}(f) = \mathbb{E}_{\mathcal{C}}(f)$
- Also $\mathbb{E}_{\mathcal{C}}(g(X_q)|\mathbf{X}_e = \mathbf{x}_e)$ with $\mathbf{X}_e \subseteq \mathbf{X}_{\neg q}$ can be computed exactly by propagation, as the solution ζ of

$$\underline{\mathbb{E}}_{\mathcal{C}} \Big(\mathbb{I}_{\boldsymbol{x}_{\mathrm{e}}}(\boldsymbol{X}_{\mathrm{e}})(g(X_q) - \zeta) \Big) = 0$$

Determining credal dominance between decision options ô and ŏ is a special case if this, as it requires investigating

$$\mathbb{\underline{E}}_{\mathcal{C}} \Big(\mathbb{I}_{\hat{o}}(X_q) - \mathbb{I}_{\check{o}}(X_q) \Big| \boldsymbol{X}_{e} = \boldsymbol{x}_{e} \Big) > 0$$

Opportunities in the area of imprecise-probabilistic PCs

- Embracing lower-upper expectation circuits fully by considering SDAGs as a compact notation for trees?
- Other 'product' operators?
- Learning from data beyond adding 'imprecision' to sum nodes?

Overview

Circuits, conceptually

Credal PCs

Probabilistic integral circuits

From deep PCs to PICs Training PICs Opportunities

Evolution and characteristics of deep PCs

Great increase in size over time (now in the billions of parameters)

Evolution and characteristics of deep PCs

Great increase in size over time (now in the billions of parameters)

Choice of structures expands

- Data-based, mostly trees (e.g., Learn-SPN and derivatives)
- Random SDAGs (e.g., RAT-SPN)
- Application-based (e.g., PD, QG, QT for images)
- Tendency to overparameterize and tensorize structures (making it well-adapted to deep-learning implementation)

Evolution and characteristics of deep PCs

Great increase in size over time (now in the billions of parameters)

Choice of structures expands

- Data-based, mostly trees (e.g., Learn-SPN and derivatives)
- Random SDAGs (e.g., RAT-SPN)
- Application-based (e.g., PD, QG, QT for images)
- Tendency to overparameterize and tensorize structures (making it well-adapted to deep-learning implementation)
- Cycles seem to have a positive effect on expressiveness (reuse of components)
- Training seems harder than in neural-based deep learning models

Observation Other classes of deep generative models are easier to train (VAEs, Flows)

Hypothesis Their intertwined use of *continuous* latent variables and *neural networks* play an important role in this

²Results and material from

- Gala, De Campos, Peharz, Vergari & Quaeghebeur's "Probabilistic integral circuits", AISTATS 2024, PMLR 238:2143–2151 (2024).
- Gala, De Campos, Vergari & Quaeghebeur's "Scaling continuous latent variable models as probabilistic integral circuits", NeurIPS 2024 (2024).

Observation Other classes of deep generative models are easier to train (VAEs, Flows)

Hypothesis Their intertwined use of *continuous* latent variables and *neural networks* play an important role in this

Objective Add *continuous* latent variables and *neural networks* to improve training and scaling

Key addition Integration nodes that replace sum nodes

²Results and material from

- Gala, De Campos, Peharz, Vergari & Quaeghebeur's "Probabilistic integral circuits", AISTATS 2024, PMLR 238:2143–2151 (2024).
- Gala, De Campos, Vergari & Quaeghebeur's "Scaling continuous latent variable models as probabilistic integral circuits", NeurIPS 2024 (2024).

Observation Other classes of deep generative models are easier to train (VAEs, Flows)

Hypothesis Their intertwined use of *continuous* latent variables and *neural networks* play an important role in this

Objective Add *continuous* latent variables and *neural networks* to improve training and scaling

Key addition Integration nodes that replace sum nodes

²Results and material from

- Gala, De Campos, Peharz, Vergari & Quaeghebeur's "Probabilistic integral circuits", AISTATS 2024, PMLR 238:2143–2151 (2024).
- Gala, De Campos, Vergari & Quaeghebeur's "Scaling continuous latent variable models as probabilistic integral circuits", NeurIPS 2024 (2024).

Observation Other classes of deep generative models are easier to train (VAEs, Flows)

Hypothesis Their intertwined use of *continuous* latent variables and *neural networks* play an important role in this

Objective Add *continuous* latent variables and *neural networks* to improve training and scaling

Key addition Integration nodes that replace sum nodes

²Results and material from

- Gala, De Campos, Peharz, Vergari & Quaeghebeur's "Probabilistic integral circuits", AISTATS 2024, PMLR 238:2143–2151 (2024).
- Gala, De Campos, Vergari & Quaeghebeur's "Scaling continuous latent variable models as probabilistic integral circuits", NeurIPS 2024 (2024).

Observation Other classes of deep generative models are easier to train (VAEs, Flows)

Hypothesis Their intertwined use of *continuous* latent variables and *neural networks* play an important role in this

Objective Add *continuous* latent variables and *neural networks* to improve training and scaling

Key addition Integration nodes that replace sum nodes

²Results and material from

- Gala, De Campos, Peharz, Vergari & Quaeghebeur's "Probabilistic integral circuits", AISTATS 2024, PMLR 238:2143–2151 (2024).
- Gala, De Campos, Vergari & Quaeghebeur's "Scaling continuous latent variable models as probabilistic integral circuits", NeurIPS 2024 (2024).

PICs are 'symbolic' circuits

PICs are 'symbolic' circuits

- Integral node:
 - integrates out latent variables
 - leaves unaffected non-latent variables
 - introduces
 new latent variable
 - parameterized with a neural network

PICs are 'symbolic' circuits

- Integral node:
 - integrates out latent variables
 - leaves unaffected non-latent variables
 - introduces
 new latent variable
 - parameterized with a neural network
- Edges carry functions, not values!
- Generally not tractable as such

Approximating PICs with PCs by numerical quadrature

Approximating PICs with PCs by numerical quadrature

- tensorization and overparameterization is applied
- locally dense
- folding to exploit parallel computation

Training a PIC via its QPC

 $\begin{array}{l} \mbox{maximize} \\ \mbox{likelihood of } c(\mathbf{X}) \end{array}$

Training QPC:

- use gradient ascent to maximize likelihood
- calculate gradients using backpropagation
- use random batches of data
- take maximizing step for sum weights per batch
- repeat with many batches until convergence
Training a PIC via its QPC

maximize likelihood of $c(\mathbf{X})$

- Training QPC:
 - use gradient ascent to maximize likelihood
 - calculate gradients using backpropagation
 - use random batches of data
 - take maximizing step for sum weights per batch
 - repeat with many batches until convergence
- ► Training PIC:
 - as above, but
 - propagate gradients to neural network parameters
 - take maximizing step for neural network parameters per batch

Making training practical using neural functional sharing

Takeaway & opportunities in the area of deep PCs

- State-of-the-art deep PCs (PICs) combine ideas from various fields and require ML engineering to design.
- Methods to directly train PICs without generating QPCs?
- Create imprecise-probabilistic PIC variants?

The wondrous world of credal and deep probabilistic circuits SIPTA Seminar

Erik Quaeghebeur

Eindhoven University of Technology

22 January 2025, 15:00 CET