
Engineering and Imprecise 
Probability
What's going on?

Alice Cicirello (TU Delft), Matthias Faes (TU Dortmund), Edoardo Patelli (Strathclyde University)

1



Who we are

2



Alice Cicirello

Data, 
Vibration, 
and Uncertainty 
Group

Associate Prof & Head of the Mechanics and 
Physics of Structure Section at TU Delft.

https://sites.google.com/view
/dvugroup/home



Matthias Faes

• Professor at TU Dortmund University
• Head of the Chair for Reliability Engineering 

Ph.D. in Mechanical Engineering from KU 
Leuven in 2017

• Research interests:
• numerical methods for uncertainty quantification
• reliability based design optimization
• uncertainties in structural dynamics
• non-deterministic model updating
• many more J

4 - 13 Jan 2023



Matthias Faes

The work in this presentation is a collaboration with Marcos Valdebenito, 
Xiukai Yuan, Chao Dang, Pengfei Wei, Marc Fina, David Moens and 
Michael Beer (among many others).

5 - 13 Jan 2023



Edoardo Patelli

Professor in Risk and Uncertainty Quantification

Head of Centre for Intelligent infrastructure,

Department of Civil and Environmental Engineering

University of Strathclyde
● Assessment of safety critical systems
● Resilient engineering
● Uncertainty quantification and advanced simulation 

techniques
● Machine learning and artificial intelligence
● Human reliability and interaction autonomous systems

6 - 13 Jan 2023



Edoardo Patelli

Most of the work presented is in collaboration with Caroline Morais, Ander 
Gray, Enrique Miralles-Dolz, Marco de Angelis, Adolphus Lye, and Scott 
Ferson 

7 - 13 Jan 2023



Introduction
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Numerical methods in engineering

Wendelstein 7-X fusion reactor
(Max Planck Institute)

Airflow around Boeing 737 body
(NASA / Boeing)

Topology optimised Airplane wing 
(Nature)

Car crash simulation
(Toyota Yaris)

Laser Metal Deposition
(FlowScience)

Dual torpedo impact
(Ansys)
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Why do we want to have these models?

• Numerical experimentation is usually cheaper than experimental work
• Optimization of complex products and systems
• Improve understanding of complicated processes
• Ensure mechanical reliability of products
• Risk analysis of critical infrastructure
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However…
• complex physics / systems require complicated simulation 

models
• these models require many inputs and settings to be 

defined:
• macro and micro scale inter- and intra-variability,
• loading is often insufficiently known or appears as inherently 

variable,
• underlying physics are often approximated,
• humans build and interpret the models and their results

With great power comes great responsibility.

- Voltaire, 1832
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Requirements and challenges

Data to identify threats and system performance but ….
data is incomplete/scarce, noise, missing or ambiguous, tampered

Models to predict system behavior but …

models are approximation of reality and/or computational expensive

Decision tools for optimal design/maintenance/recovery but…  
ignoring uncertainty, unjustified assumptions

Data analytics ← →  Physical modelling 
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Dealing with
Imprecision in 
Engineering
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The data problem
Data overflow and data shadowing

Data availability is expect to increase
Cheap sensors, tracking and logs, surveillance

Are the data relevant?
Are we measuring the right thing?

Machine learning and AI should support uncertainty characterisation

Data robustness and trustfulness 
Data tampering and malicious injection of false data 
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Nuclear power plant 

Methodologies, licensing, and regulation of "matured" engineering systems 
are well established
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Risk analysis
Independence (of events) is often assumed it 
can have dramatic consequences.
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Miralles-Dolz, E., A.Gray, E.Patelli, S.Ferson. ‘Correlated Boolean Operators for Uncertainty Logic’. In Information Processing and 
Management of Uncertainty in Knowledge-Based Systems, 798–811. Communications in Computer and Information Science. Cham: 
Springer International Publishing, 2022. https://doi.org/10.1007/978-3-031-08971-8_64.
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Next generation nuclear (fusion) plant

HTGR demonstration programme 
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Design of DEMO Nuclear fusion reactor

It is essential considered the possible 
variability of the design parameters
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Miralles-Dolz, E., A.Pearce, J.Morris, E.Patelli. ‘Toward DEMO Power Plant Concept Selection Under Epistemic 
Uncertainty’. IEEE Transactions on Plasma Science, 2022, 1–6. https://doi.org/10.1109/TPS.2022.3180233.

https://doi.org/10.1109/TPS.2022.3180233
https://doi.org/10.1109/TPS.2022.3180233
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Assessment of Human reliability

● Human is the ultimate barrier for safety also a source of uncertainty and failure
● Need to quantify the performance of operators and personnel
● Often modelled by Bayesian Networks
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Assessment of Human reliability

● Learn from real data - Multi-attribute Technological Accidents Dataset (MATA-D)
● Machine-learning classification for new accident report (continuously updated)
● Natural Language Processor for text analytics
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The data problem I (missing data)

Some events are never been observed (and this does not imply a 
null probability of the evens)

○ No observations is different than 0 (null) probability
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Approaches in Human Reliability Analysis 

● Assign equal probability for both states
Standard approach in Bayesian Network software (Genie) 

● Linear interpolation algorithms and Cain calculator
approximating CPD anchors with functions, interpolating amongst available CPDs to obtain full set of 
approximating functions, and discretizing them back to obtain the full set of CPTs
The Cain method directly exploits monotonicity to determine the proportion of change in the child states 
probabilities from parent nodes and missing relationships in CPTs

● Expert elicitation
● Noisy-OR (and extensions)
● ‘not applicable’ state 
● Artificial data

implies the generation of data with known properties by an algorithm rather than expert opinion. 
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https://www.sciencedirect.com/topics/engineering/monotonicity


Credal networks

Defining the intervals to replace missing data combinations
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Case study

Quantify the human reliability of operator during the storage tank depressurisation on static offshore oil & gas 
installations 

Hazards: under certain wind conditions the vapours released might reach a source of ignition (e.g., other 
equipment, operations and maintenance works) with the potential to cause fire, explosion or financial loss due to 
emergency production shutdown

The operators are the main barriers to prevent an incident event, with little or no support from automatic 
systems/technology. 
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https://www.sciencedirect.com/topics/engineering/depressurisation
https://www.sciencedirect.com/topics/engineering/offshore-oil


Identified Credal Network 

Nodes identified with critical 
task analysis
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Identified Credal Network 

Nodes identified with critical 
task analysis

Links defined with cause-
consequence idiom which 
resembles the logic of a bow-tie 
diagram
discrete nodes: rectangles 
(child nodes in green, root 
nodes in blue)

credal nodes: grey ellipses
28

https://www.sciencedirect.com/topics/engineering/root-node
https://www.sciencedirect.com/topics/engineering/root-node


Identified Credal Network 

Nodes identified with critical 
task analysis

Links defined with cause-
consequence idiom which 
resembles the logic of a bow-tie 
diagram
Discrete nodes: rectangles 
(child nodes in green, root 
nodes in blue)

Credal nodes: grey ellipses

Prior probabilities expressed in terms of k out of n trials

Lack of possible combinations events in MATA-D interpreted 
as missing data rather than impossible events

Incomplete combinations replaced by intervals [0,1]

Nodes merged by using CREAM method 
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https://www.sciencedirect.com/topics/engineering/root-node
https://www.sciencedirect.com/topics/engineering/root-node


Selected results

Node 3A|true - sensitivity to PSFs and 
subtasks 3.1A, 3.2A & 3A3 (model #1)Predictive analysis: Point and interval posterior probabilities 

for the cargo venting human reliability model #2
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Decision making and criteria selection 

Output of the CN are intervals
Comparison of two or more variables 
affected by imprecision?
Selecting a factor P(PSF1 = T) that reduce P(HE = T)

Different than reducing the imprecision of the 
conditional probability of the event, 
e.g., P(HE=T|PSF1=T). 

Define rules to select the most important 
factor under imprecision
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Decision making and criteria selection 

Output of the CN are intervals
Comparison of two of more 
variables affected by imprecision?
Selecting a factor P(PSF1 = T) that reduce P(HE = T)

Different than reducing the imprecision of the conditional 
probability of the event, e.g., P(HE=T|PSF1=T). 

Define rules to select the most 
important factor under imprecision
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The data problem II (small data)
● Small sample sizes
● Data disproportion
(ignores important information regarding the 
evenness of sample sizes)
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We need to understand if small sample sizes are “statistically significant”. 
Lack of transparency in Bayesian/Credal network to visualize the data 
disproportion issue.



Distortion model
Criticism to interval analysis  ([0,1] interval for missing data):
• the lack of robustness (one observation may change from 

being the [0,1] interval to an exact relative frequency); 
• a very conservative approach in some nodes and a precise 

approach in others,
• the use of the vacuous model [0,1] is equivalent to applying 

natural extension in the imprecise probability literature

Po estimated from the available data 
δ related to the proportion of noisy data (probability that any 
other probability measure is possible)

credal set

Estimated HEP (Faulty Diagnosis (FD), Wrong Reasoning (WR), Observation Missed (OM) and 
Inadequate Plan (IP)) using the approach from (Morais et al., 2019a, Morais et al., 2019b) (in 
red), the linear vacuous model (in blue) and the total variation model (in green). 
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https://www.sciencedirect.com/science/article/pii/S0925753522002545
https://www.sciencedirect.com/science/article/pii/S0925753522002545


Confidence boxes (c-boxes)
Generalisations of statistical confidence distributions 
Encode confidence intervals at every confidence level

The bases for c-boxes are the classical notions of 
confidence (Neyman, 1937), confidence distributions 
(Cox, 1958), imprecise probability concepts (Walley, 
1991) and probability boxes (Ferson et al., 2003). 
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Redrawn from https://sites.google.com/site/confidenceboxes/



Credal network with c-boxes

No additional parameters required
● imprecision arising from small data 

sets can be propagated through 
the model with c-boxes 

● Return the results in terms of 
(desired) confidence interval
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P(D|F)
C.Morais, S.Ferson, R.Moura, S.Tolo, M.Beer, E.Patelli. 2021 ‘Handling the Uncertainty with Confidence in 
Human Reliability Analysis’. In Proceedings of the 31st European Safety and Reliability Conference. 
Angers, France: Research Publishing, Singapore. https://doi.org/10.3850/978-981-18-2016-8 357-cd.

https://doi.org/10.3850/978-981-18-2016-8%20357-cd


NASA UQ 
Challenge problem

2019
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Computational challenges 

● Patelli, E., Alvarez, D.A., Broggi, M., de Angelis, M., 2015. Uncertainty management in multidisciplinary design of critical safety 
systems. J. of Aerospace Information Systems 12, 140–169 https://doi.org/10.2514/1.I010273

● Lye, A., Broggi, M., Kitahara, M., Patelli, E. 2022. Robust optimization of a dynamic Black-box system under severe uncertainty: A 
distribution-free framework, Mechanical Systems and Signal Processing 167A, https://doi.org/10.1016/j.ymssp.2021.108522

Propagate and characterize uncertainty and incertitude of a black-box
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https://doi.org/10.2514/1.I010273
https://www.sciencedirect.com/journal/mechanical-systems-and-signal-processing
https://doi.org/10.1016/j.ymssp.2021.108522


Model updating subproblem (Task A)

5 aleatory inputs a∼fa
• Distribution family is unknown a priori
• Support domain is given: a∈[0, 2]5

4 epistemic inputs e∼E
• Support domain is given: e∈[0, 2]4

100 sets of observations:
• y=y(a, e, t), 
• z=z(a, e, θ, t)
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Challenges (adapted from Matteo Broggi)

Model updating under hybrid uncertainties
§

• Hypotheses on the distribution families of aleatory inputs;
• Dependence structure among aleatory inputs;
• Updating dynamic systems: very high dimensional observations.

Enhancement of subjective assumption-free framework
• How to calibrate the PDF of aleatory inputs whose distribution families are unknown?
• How to calibrate the correlated joint PDF?
• How to incorporate the time dependent observations to update the dynamic systems?

40 - 13 Jan 2023



Our solution for Task A 

Bayesian model updating approach

• Aleatory variables modelled as a staircase density functions
• Bhattacharyya distance-based

• Approximate Bayesian Computation,

• Comparing the time series through a moving window procedure
• Totally 4+5×4=24 epistemic parameters are updated

41
Distributional overlap 
distance



Staircase Random Variable 
(adapted from Matteo Broggi)
Proposed by Crespo et al 2018 https://doi.org/10.1016/j.apm.2018.07.029

Univariate random variable having:
• Bounded support set: Ωx and first four moments: θ

§

Staircase density function
• Piecewise constant function:
• nb – number of bins

Examples
Ø

• Ωx= [0, 2], θ=[1.0, 0.33, 0, 1.8] Uniform distribution
• Ωx= [0, 2], θ=[0.57, 0.10, 0.59, 2.86] Beta distribution (left skewed)
• Ωx= [0, 2], θ=[1.0, 0.42 0.42, 1.37] Bi-modal distribution

Characterize aleatory inputs whose distribution families are unknown

42

https://doi.org/10.1016/j.apm.2018.07.029


Staircase Random Variable 
(adapted from Matteo Broggi)
Optimization problem on moment matching constraints:

J(l) – cost function, e.g., maximum entropy; 
Θ – θ feasible domain, gi(θ)≤0, i=1,...,13
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Selected results (Task A)
Blue: Distribution-based approach (Beta distributions)
Green: Distribution-free approach
Red: Experimental data

Realization of the uncertainty model y

Posterior distributions of a

samples of e
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Lessons learned* 

From Crespo and Kenny

“The quantification of aleatory uncertainty was poor overall, whereas
the quantification of the epistemic uncertainty was generally acceptable.” 

“(system) knowledge basis is essential to deal with epistemic uncertainty” 
and “[...] uncertainty reduction in series rather than in parallel.”

“Parameter dependencies in the aleatory variables were grossly mischaracterized.” 

“Robust design optimization overcame the shortcomings of poor uncertainty modeling.”

“If the epistemic scenarios being ignored turn out to be infeasible, the performance improvements resulting from 
the risk-based design will be well justified. Otherwise, the possibly gross underestimation of the failure 
probability might render the UQ modeling and design optimization processes not only pointless but also liable”

“This outcome [of the challenge problem] highlights the need for developing and maturing the 
processes needed to effectively model and manage the effects of uncertainty in model predictions.”

* The comments are not referring to a specific solution or methodology
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ProbabilityBoundsAnalysis.jl

MomentArithmetic.jl

ZoneArithmetic.jl

(p-box arithmetic)

Probability Theory Interval Arithmetic

(moment arithmetic)

(Subintevalization)

Computational tools (Ander Gray)
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https://github.com/AnderGray/MomentArithmetic.jl
https://github.com/AnderGray/ZoneArithmetic.jl


Probability boxes
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Probability boxes
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Probability boxes
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Normal Uniform Beta

Lognormal

Gamma

Exponential Chi squared Cauchy

Distributions with imprecise parameters
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Binary 
operations
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Risk analysis

52

What if we do not have distributions?
Ander Gray Scott Ferson Vladik Kreinovich Edoardo Patelli



First order error propagation

• In probability theory called “Moment propagation”

• Propagates mean & variance through mathematical expressions

• Although widely used, requires a lot of assumptions, and does 
not inform about distribution shape
• Requires stochastic independence 
• Moments must be perfectly known
• Gives no information about tails without distribution assumption
• Only accurate for near-linear models

Bad for risk analysis

Pessimism from Cullen and Frey (1999)
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Moment arithmetic

54

Gray, Ander, Scott Ferson, Vladik Kreinovich, and Edoardo Patelli. ‘Distribution-Free Risk Analysis’. International Journal of Approximate 
Reasoning 146 (2022): 133–56. https://doi.org/10.1016/j.ijar.2022.04.001.

https://doi.org/10.1016/j.ijar.2022.04.001


Moment arithmetic 

Arithmetic with independence

Arithmetic without dependence assumptions (Fréchet)
Interval arithmetic

Rigorous formulas for least and 
greatest possible values
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Compute with missing information

Mean and 
variance bounded 
from ranges

Tighter variance 
when mean is 
given

Given mean is too 
wide

Inconsistent mean

Inconsistent 
variance

Mean and variance bounds can be estimated from range
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Bounds 
of CDF
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Arithmetic tables with intervals

58

● Even starting with point estimates from means and variances, moment arithments 
generally yields interval results

● EX, VX and bounds can be intervals as well

Repeated variables problem:
Can be addressed using significance arithmetic, affine arithmetic, Taylor models and relation arithmetic 

Simple numerical solution: Subintervalisation
Interval is split into n (usually linearly spaced) sub-intervals, and the expression is evaluated n times with each sub-interval. 

● nm interval calculations
● Feasible since only 2 variable are intervals 
● Generally 215 = 32768



Even if X and Y are non-dependent, 
Z and X are dependent

Y

X

Z

Dependent variables
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X

Y X

Z

Zone arithmetic
https://github.com/AnderGray/ZoneArithmetic.jl

60

https://github.com/AnderGray/ZoneArithmetic.jl


• Dependencies can be tracked 
in a graph

• The nodes are variables (intervals)

• The edges are dependencies 
(zones)

• When a new variable is 
calculated, it’s added and 
linked in the graph

A

B

C

D

E

Tracking dependencies
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Dependence tracking
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Dependence tracking with subintervals
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How do we make 
computations with imprecise 
probabilities in numerical 
models?64



Motivation – Deterministic Analysis

•

65

Input
Deterministic

Output

Model



Motivation – Reliability Analysis

•

66

Input
DeterministicReliability

Output

Model



Motivation – Interval Reliability Analysis

67

Input
DeterministicReliabilityInterval reliability

Output

Model



• What we would like: decoupling of the uncertainty

Decoupling approaches

• Coping with aleatoric and epistemic uncertainty: huge challenge!

68

Deterministic 
model

AleatoricEpistemic

Deterministic 
model

Epistemic Deterministic 
model

Aleatoric



Introduced approaches

• Decoupling of uncertainty
• additive relation between 𝑁!"#!$%&' and 𝑁#()*$#+),

• Three approaches developed recently:
• decoupling based on operator norm theory
• augmented space approaches
• Bayesian quadrature

• Savings in computational cost with several orders of magnitude
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Operator norm framework: scope

70

response system force

Imprecise PSDImprecise Random field

Correlation length increases



Operator Norm Theorem (1/2)

71

Input force Model

Response for 𝜽 𝟏

Response for 𝜽(𝟐)



Operator Norm Theorem (2/2)
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Deterministic modelOptimization
(epistemic 
parameters)

Deterministic modelReliability
(aleatory
Parameters)

• Proposed approach involves:
− Two deterministic optimization problems
− Two reliability problems

Proposed approach

73 - 13 Jan 2023



Example 1

• SDOF oscillator subject to stochastic ground acceleration
• Aleatoric ground acceleration modeled using Clough-Penzien model

• Aleatoric mass (lognormal)

• Epistemic stiffness

• Failure criterion: first excursion, involves maximum displacement and 
maximum acceleration
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Example 1

• SDOF oscillator subject to stochastic ground acceleration
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Example 1

• SDOF oscillator subject to stochastic ground acceleration
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Example 2: a six-story building

• 6 story building
• Reinforced concrete
• 9500 shell & beam elements

•QOI: interstory drift
• Load: earthquake
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Load acting on the building

• Earthquake is modelled as stochastic 
process:

• Gaussian stochastic process
• Autocorrelation governed by modulated Clough-

Penzien spectrum:
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Uncertainty model

•
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Example 2: results

• Optima in operator norm 
correspond to optima in failure 
probability
• Large reduction in 

computational cost:
• Double loop MCS: 

5.000.000 FE simulations
• Vertex analysis: 

4.096.000 FE simulations
• Operator norm: 

3500 FE simulations
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Extension of the method to nonlinear dynamics
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Example 1:
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Literature on the operator norm framework

• M. G. R. Faes and M. A. Valdebenito, ‘Fully decoupled reliability-based optimization of linear structures 
subject to Gaussian dynamic loading considering discrete design variables’, Mechanical Systems and 
Signal Processing, vol. 156, p. 107616, Jul. 2021, doi: 10.1016/j.ymssp.2021.107616.

• M. G. R. Faes, M. A. Valdebenito, D. Moens, and M. Beer, ‘Operator norm theory as an efficient tool to 
propagate hybrid uncertainties and calculate imprecise probabilities’, Mechanical Systems and Signal 
Processing, vol. 152, p. 107482, May 2021, doi: 10.1016/j.ymssp.2020.107482.

• M. G. R. Faes and M. A. Valdebenito, ‘Fully decoupled reliability-based design optimization of structural 
systems subject to uncertain loads’, Computer Methods in Applied Mechanics and Engineering, vol. 371, 
p. 113313, Nov. 2020, doi: 10.1016/j.cma.2020.113313.

• M. G. R. Faes, M. A. Valdebenito, D. Moens, and M. Beer, ‘Bounding the first excursion probability of 
linear structures subjected to imprecise stochastic loading’, Computers & Structures, vol. 239, p. 106320, 
Oct. 2020, doi: 10.1016/j.compstruc.2020.106320.

• P. Ni, D. J. Jerez, V. C. Fragkoulis, M. G. R. Faes, M. A. Valdebenito, and M. Beer, ‘Operator Norm-
Based Statistical Linearization to Bound the First Excursion Probability of Nonlinear Structures Subjected 
to Imprecise Stochastic Loading’, ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng., vol. 8, 
no. 1, p. 04021086, Mar. 2022, doi: 10.1061/AJRUA6.0001217.

83 - 13 Jan 2023

https://doi.org/10.1016/j.ymssp.2021.107616
https://doi.org/10.1016/j.ymssp.2020.107482
https://doi.org/10.1016/j.cma.2020.113313
https://doi.org/10.1016/j.compstruc.2020.106320
https://doi.org/10.1061/AJRUA6.0001217


interval probability

(interval)

Augmented space methods

• Imprecise probability

• Augmented reliability problem

classical probability

Augmented probability
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Application: Imprecise reliability in linear 
dynamics

Stochastic ground 
acceleration

Failure:
• Maximum displacement
• Maximum acceleration

Directional Importance 
Sampling (exploits linearity)
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Parallel Bayesian quadrature optimization

Dang, C., Wei, P., Faes, M. G., & Beer, M. (2022). Bayesian probabilistic propagation of hybrid uncertainties: Estimation of 
response expectation function, its variable importance and bounds. Computers & Structures, 270, 106860.
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Parallel Bayesian quadrature optimization

• Propagation of mixed uncertainties based on active Bayesian integration 
of a Gaussian Process prior over the model’s response

• Teaser:
• nonlinear oscillator with response: 
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Active Bayesian optimization: teaser results 

• More details and derivations in these papers:
• C. Dang, P. Wei, M. G. R. Faes, M. A. Valdebenito, and M. Beer, ‘Interval uncertainty 

propagation by a parallel Bayesian global optimization method’, Applied Mathematical 
Modelling, vol. 108, pp. 220–235, Aug. 2022, doi: 10.1016/j.apm.2022.03.031.

• C. Dang, P. Wei, M. G. R. Faes, M. A. Valdebenito, and M. Beer, ‘Parallel adaptive 
Bayesian quadrature for rare event estimation’, Reliability Engineering & System Safety, 
vol. 225, p. 108621, Sep. 2022, doi: 10.1016/j.ress.2022.108621.

• C. Dang, P. Wei, M. G. R. Faes, and M. Beer, ‘Bayesian probabilistic propagation of 
hybrid uncertainties: Estimation of response expectation function, its variable 
importance and bounds’, Computers & Structures, vol. 270, p. 106860, Oct. 2022, doi: 
10.1016/j.compstruc.2022.106860.

• C. Dang, M. A. Valdebenito, M. G. R. Faes, P. Wei, and M. Beer, ‘Structural reliability 
analysis: A Bayesian perspective’, Structural Safety, vol. 99, p. 102259, Nov. 2022, doi: 
10.1016/j.strusafe.2022.102259.
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Monitoring and modelling complex systems for 
remaining useful life assessment under 
uncertainty, nonlinearity and sparse noisy data.

1. Tracking the health 
status 

2. Making inference on 
future health conditions

3. Assessing Safe 
Residual Life (SRL)



Need of IP for Safe Residual Life assessment: 
- to use of unexploited information, measurements and models and integrate them!
- to quantify the uncertainty caused by the lack of knowledge 

Limited knowledge on the 
actual structural condition 
(e.g. cracks, degradation) 

Limited measurements (e.g. 
settlements/accelerations at 

specific locations) 

Uncertainty in operating 
and environmental 

conditions (time-varying)

Heterogeneous information (e.g. 
models of different fidelity focusing 

on phenomena occurring at different 
time-scales; inspection reports; local 

testing; experts’ opinions;  
measurements of different 

quality/time and space resolution)



Projects on IP in Safe Residual Life assessment

z

Statistical model updating strategies accounting 
for mixed and limited information. 

LiveQuay
Live Insight in Bridges 

and Quay Walls

Mr Jan Koune, PhD student 

Evolving probabilistic physics-informed machine 
learning model based on imprecise probability

Research Fellowship for 
Experienced Researchers



Example: Random vibration analysis of aircraft/spacecraft 
structural components under imprecise probability 

https://www.wired.com/wp-
content/uploads/images_blogs/a
utopia/2013/06/777assemblylin
e021-660x440.jpg

- Usually only the randomness in the excitation (of mechanical and acoustic nature) is of 
concern.

- Parameters of the structural components are assumed to be deterministic 
- The random vibration analysis of aircraft/spacecraft structural components (or secondary 

structures) is often performed with simplified techniques, such as Miles’ Equation (hp: 
dominant natural frequency with a with respect to the structural response)
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A structural component with a dominant natural frequency with respect 
to the structural response
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Typical information available in Engineering

 ( )jf x x= mean value

 ( ) 2
jf x x= second moment

 ( ) [ ],jf x b c= possible values that the uncertain variable may take
the constraints corresponds to the probability 
of finding x within those bounds

( ) ( ) ( ),min ,maxE d , 2,3,...,j j j j jv v f x f x p x x v j né ù£ = = £ =ë û ò



Example: information available on the 
spring stiffness

(i) the variable is positive  
(ii) the vertices of a convex region 
of the statistical expectations are 
as shown

( ) ( ) ( ),min ,maxE d , 2,3,...,j j j j jv v f x f x p x x v j né ù£ = = £ =ë û ò
Cicirello, A. and Langley, R.S.  Probabilistic assessment of performance under uncertain information using a generalised maximum entropy principle, Probabilistic Engineering Mechanics, 2018. 
https://doi.org/10.1016/j.probengmech.2017.07.006



From equalities to the Maximum entropy 
distribution

Maximum entropy principle:
- incorporating the current state of knowledge 
- subjective pdf

( ) ( ) ( ) ,maxE d , 2,3,...,j j j jv f x f x p x x v j né ù= = £ =ë û ò

 ( )1 1f x =  ( )1 1m =E 1f x =é ùë û
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From inequalities to a Generalised 
Maximum entropy distribution

( ) ( ) ( ) ,maxE d , 2,3,...,j j j jv f x f x p x x v j né ù= = £ =ë û ò
 ( )1 1f x =

Cicirello, A. and Langley, R.S.  Probabilistic assessment of performance under uncertain information using a generalised maximum entropy principle, Probabilistic Engineering Mechanics, 2018. 
https://doi.org/10.1016/j.probengmech.2017.07.006

 
( ) ( ) ( )

1
exp .

n

j j
j

p x R t x a f x
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é ù
Î = ê ú

ë û
åa ( ) 1t x =

A family of maximum entropy distributions defined over the set of basic variables  
The basic variables:
• substitute the Lagrange multipliers 
• can have any possible pdf within certain bounds, including the extreme case of 

a delta function at any point between the bounds



Mapping from the statistical bounds to 
the basic variables
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Family of pdfs

Mapping of 
each point

Solve non-linear equations for each point to be mapped
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Efficient procedure was 
developed!
See paper!

Cicirello, A. and Langley, R.S.  Probabilistic assessment of performance under uncertain information using a generalised maximum entropy principle, Probabilistic Engineering Mechanics, 2018. 
https://doi.org/10.1016/j.probengmech.2017.07.006
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Example: mapping on the a-domain 

( ) ( )[ ]1 2 3exp lnp x a a x a x= - -a ( ) ( )( )3 1
1 2 3ln 1aa a a-= - G -

Previous work: 
- Equally spaced grid of points
- 430 points in R à 430 Pf calculations 100

0.2126 0.4303fP£ £

point 10 0.2935fP =



Challenge in reliability applications: not known 
a-priori the pdf that will lead to max Pf!
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( )p x a

x

( )fP a

1a 2a

( )( )max fR
P

Îa
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( )( )min fR
P

Îa
a

R

MaxEnt
One pdf

( )( ) ( )( )min maxf f fR R
P P P

Î Î
£ £

a a
a a

( ) ( ) ( )df fP P x p x x= òa a a
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, df w
P x p w x x

+¥
= òa a



Bounds on the failure probability: 
robust reliability analysis
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The single value Pf obtained with the MaxEnt
pdf can be significantly lower than the UB

The UB and LB on the chosen reliability metric 
can be largely different. The designer can 
decided to 
• gain more information on the vaguely known 

pdf to reduce, if possible, the basic variable 
domain – would the Pf interval change a lot?

• investigate a different design solution which 
can be more robust (lowest probability 
interval) with respect to the uncertainty in 
the parameters of the distribution



Key steps: from parameterised pdf to 
bounds on Pf
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Step 1: Evaluate few initial values of 
.    

Step 2: Build a probabilistic surrogate model of  
.

Step 3: Actively select points in the a-domain to 
obtain bounds of Pf with very few full reliability 

analyses

( )fP a

( )fP a

( ) ( ) ( )df fP P x p x x= òa a a

( )( ) ( )( )min maxf f fR R
P P P

Î Î
£ £

a a
a a

Describing the uncertainty of not 
having carried out the reliability 
analyses at each point of R

Cicirello A. Propagation of Imprecise Probability descriptions via machine learning based optimization for robust reliability
analysis. In: International Symposium on Reliability Engineering and Risk Management 2022, Hannover, Germany, 2022.



• Discrete function at each aj point in R 

• Additional uncertainty caused by not having 
evaluated the model 

• Model each reliability result that has not been 
computed yet as a Gaussian random variable

• The collection of random variables is a 
Gaussian Process! 
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( ) ( ) ( )1 2, , ,f f f NP P Pé ù= ë ûfP a a a

[ ]0 *,=f f fP P P
( )( ){ }0 0, , 1:j f j tD P j N= =a a

( )* *f k f kP P= a

Noise-free observations: reliability 
analyses carried out

Function realizations we want to predict

Step 2: probabilistic description of ( )fP a
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Step 2: Predictive mean and variance

( ) ( ) ( )1
* 0 00 0 0j j jm m -= + -fa a Σ Σ P μ ( ) ( )2 1

* * 0 00 0,j j j j js k -= -a a a Σ Σ Σ

Noise-free observations

Function realizations we 
want to predict

00 0*0 0

*0 ***

~ ,N
æ öé ùæ ö é ù
ç ÷ç ÷ ê úê ú

è ø ë û ë ûè ø

f

f *

Σ ΣP μ
Σ ΣP μ

( ) ( )** * *1 * *, , nm mé ù= ë ûμ a a

( ) ( )00 0 01 0 0, , Nm mé ù= ë ûμ a a

( ) ( ) ( ) ( )0* 0 * 0 *,
Cov , ,f i f j i ji j

P P ké ù= =ë ûΣ a a a a

Kernel function: encodes smoothness of the response 
function. Return similarity between two points

By conditioning ( ) ( )( )1 1
* * 0 0 * *0 00 0 0 ** *0 00 0*, , ~ ,p N - -+ - -f f fP A A P μ Σ Σ P μ Σ Σ Σ Σ

Only the predictive marginal mean and variance are needed to quantify the predictive 
uncertainty at each test point

( )* *, fA P

( )0 0,D = fA P

Mean value at each test point Variance value at each test point
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Initial Training Dataset: 
few full reliability 

analyses carried out for   
points in R

GP regression
Model (using all 
available data) 

UB response 
estimation

Enhanced 
Training Dataset 

UB 

Stopping 
criteria

iteration for UB

Active learning: from training dataset to UB 
( )fP a

1a 2a

( )( )max fR
P

Îa
a

RtN

Selection of one 
point      in R for 
improving UB

Cicirello A. Propagation of Imprecise Probability descriptions via machine learning based optimization for robust reliability
analysis. In: International Symposium on Reliability Engineering and Risk Management 2022, Hannover, Germany, 2022.
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Stopping 
criteria

Active learning: next point selection and stopping

( ) ( ) ( ) ( )f0,max f0,maxif
0
f fP P P P

I + ì - >ï= í
ïî

a a
a[ ]f0,max 0maxP = fP

( ) ( )( ) ( ) ( )( )2
f0,max~ ,p I N m P s+ -a a a

Probability of Improvement

( ) ( )*
maxˆ argmax

R
EI +

Î

é ù= ë ûa
a a

( ) ( ) ( ) ( ) ( )( ) ( )
0

.EI I p I dI
¥+ + + += òa a

Expected Improvement

Improvement

- max number of full reliability analyses has been reached
- criterion satisfied on the Acquisition Function  

Selection of one 
point      in R for 
improving UB

( )0.0001D <
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UB and LB estimation: from the GP mean function

GP regression
Model (using all 
available data) 

UB response 
estimation

Enhanced 
Training Dataset 

UB 

Stopping 
criteria

iteration for UB, L

Selection of one 
point      in R for 
improving UB

Initial Training Dataset: 
few full reliability 

analyses carried out for   
points in R

tN

GP regression
Model (using all 
available data) 

Enhanced 
Training Dataset 

LB 

Stopping 
criteria

Separate iteration for LB, S

Selection of one 
point      in R for 

improving LB

LB response 
estimation

( )( ) ( )*
, f0,maxmax f UB LR

P Pµ
Î

» ³
a

a a

( )( ) ( )*
, f0,minmin f LB SR

P Pµ
Î

» £
a

a a
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Results of the proposed approach

One realization of the 5 randomly selected 
initial points

Stop criteria: - max 5 simulation per bound
- 0.0001D <

Squared exponential kernel

Total of 15 
at most for 
other 
starting 
points!



The predicted bounds wrt to current 
observations:
- Overpredict the UB
- Underpredict the LB

The bounds on the UB and LB 
embed explicitly uncertainty 
of not having evaluated all the 
possible simulations à will be 
used in the future!

Conclusions 
From statistical bounds to a Generalised Maximum Entropy distribution
A non-intrusive approach for propagating imprecise probability (as a parameterised pdf) to yield bounds of Pf:
- Drastically reducing the number of full reliability analyse to be carried out
- Embeds uncertainty in the response bounds estimates arising from having run few simulations
- For the case investigated: bounds obtained in 11 full reliability analyses, rather than 430!

Interpretable

Probabilistic model (GP) 
embedding both user 
knowledge (kernel) and 
noise-free observations 
(physics-based model + 
reliability model)

Selection of points in the basic 
variable domain justified in 
terms of the trade-off between 
exploration and exploitation

No modifications of the expensive-to-evaluate 
physics-based model and reliability model

Explainable



Why is IP not (yet!) widely 
used in Engineering?
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What is the biggest challenge 
in IP for Engineering?



Intervals analysis in engineering 

• Used when upper and lower bounds are known reliably
• Sometimes absolutely sure, sometimes just a judgment

• Intervals are easy to understand
• Calculations with them are easy
• They work with even the crappiest data
• Often sufficient for a decision
• Quicker than Monte Carlo 
• The computations are guaranteed to enclose the true results (so long as the 
inputs do)
• You can still be wrong, but the method won’t be the reason if you are

112 - 13 Jan 2023
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Summary
Imprecise probability allows to deal with  
lack of knowledge and imprecision 

Rigorous propagation of uncertainty exist 
(intrusive and non-intrusive)  and freely 
available libraries

Embedded feature in the digital twin and UQ 
a by-product


