Engineering and Imprecise
Probability

What's going on?

Alice Cicirello (TU Delft), Matthias Faes (TU Dortmund), Edoardo Patelli (Strathclyde University)

i ity of :

l ' technische universitat Universityof <&
I I nﬂlf ‘ dortmund Strathclyde

Glasgow



Who we are



Alice Cicirello

Associate Prof & Head of the Mechanics and
Physics of Structure Section at TU Delft.

X1

CEPARTMEN OF

ENGINEERING B

SCIENCE

Alexander T/’
von Humboldt
Stiftung/Foundation

Data,

Vibration,

and Uncertainty
Group

https://sites.google.com/view
/dvugroup/home

y
T1Nalf

Information

g experlments & ext/méon
| physics-based

Guiding decision
making at the design-
stageand in
operating conditions

to avoid unexpected
failures and/or
: performance issues

Learning from

measurements,
models and
data



technische universitat C Chair for Reliability
Engineering

dortmund

Matthias Faes

* Professor at TU Dortmund University

« Head of the Chair for Reliability Engineering
Ph.D. in Mechanical Engineering from KU
Leuven in 2017

« Research interests:
* numerical methods for uncertainty quantification
* reliability based design optimization
* uncertainties in structural dynamics
* non-deterministic model updating
* many more ©

4 -13 Jan 2023



technische universitat C Chair for Reliability
dortmund Engineering

Matthias Faes

The work in this presentation is a collaboration with Marcos Valdebenito,
Xiukai Yuan, Chao Dang, Pengfei Wei, Marc Fina, David Moens and
Michael Beer (among many others).

D R
=y ESaie ‘_Lh

8
L. '

ol N

5-13Jan 2023



Edoardo Patell

Professor in Risk and Uncertainty Quantification
Head of Centre for Intelligent infrastructure,
Department of Civil and Environmental Engineering

University of Strathclyde

e Assessment of safety critical systems

e Resilient engineering

e Uncertainty quantification and advanced simulation
techniques

e Machine learning and artificial intelligence

e Human reliability and interaction autonomous systems

6-13Jan 2023




Edoardo Patell

Most of the work presented is in collaboration with Caroline Morais, Ander
Gray, Enrique Miralles-Dolz, Marco de Angelis, Adolphus Lye, and Scott
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Introduction



Numerical methods in engineering

Topology optimised Airblane wing Airflow around Boeing 737 body Wendelstein 7-X fusion reactor
(Nature) (NASA / Boeing) (Max Planck Institute)

Time = 0.00 Solid Fraction

Temperature (deg-K)

]
300 1400 2500

mogéLisaTion

FLOW-3D

Car crash simulation Dual torpedo impact Laser Metal Deposition
(Toyota Yaris) (Ansys) (FlowScience)
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Why do we want to have these models?

* Numerical experimentation is usually cheaper than experimental work
* Optimization of complex products and systems
* Improve understanding of complicated processes
« Ensure mechanical reliability of products
« Risk analysis of critical infrastructure




However...

* complex physics / systems require complicated simulation
models

* these models require many inputs and settings to be L |
defined: 2= g |/ an
* macro and micro scale inter- and intra-variability,

* |oading is often insufficiently known or appears as inherently
variable,

* underlying physics are often approximated,
* humans build and interpret the models and their results
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Requirements and challenges

80

| Sea Level Projections |,

2388828
Sea Level Rise (cm)

Data to identify threats and system performance but ....

data is incomplete/scarce, noise, missing or ambiguous, tampered

Dataset (3)
R=04
+ +

Models to predict system behavior but ... ——*— rar )

Number of loading cycles (x10%)

models are approximation of reality and/or computational expensive

Decision tools for optimal design/maintenance/recovery but. gl

ignoring uncertainty, unjustified assumptions

Data analytics — — Physical modelling
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The data problem

Data overflow and data shadowing

Data availabllity is expect to increase

Cheap sensors, tracking and logs, surveillance

Are the data relevant?
Are we measuring the right thing?

Machine learning and Al should support uncertainty characterisation

Data robustness and trustfulness
Data tampering and malicious injection of false data
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Nuclear power plant

Sample PRA
Event Tree
-1 .. Top Events:
IE < System needed to
prevent injury s
“ it E J—w’,‘_
System succeeds | , : 74.-'1 ;
: Jl,_.,__...,}l,....«u_...,.l '—.—.-u s _._; _‘_‘_‘
Initiating Main chute works, float to ground
Event:
Jump from Reserve chute works, float to ground
Airplane
! Both chutes fail, jumper casualty
System fails:
v
Fault Tree

Methodologies, licensing, and regulation of "matured” engineering systems
are well established
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Risk analysis

Independence (of events) is often assumed it
can have dramatic consequences.

1.0 - 1.0;
Unknown dependence
Mixed dependence
0.8 Independence 0.8
0.6 0.6
[T .
[a) [a)
() ]
0.4 0.4
1"
0.2 0.2 Unknown dependence
Mixed dependence
Independence
0.0 -a 0.0 . —_"__. : —a
0 0.75 1.5 225 3x10 0 0.75 1.5 2.25 3x10
P(Ey) P(Ey)

El
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ES o
E2 k1)
E3 ¢
Component Interval scenario P-box scenario
T [4.5 x 1075,5.5 x 1079 | [4.5 x 1075,5.5 x 1079]
K2 [2.5 x 107°,3.5 x 107°] KN (3,10°)
S [0.5 x 107%,1.5 x 107%] | [0.5 x 107%,1.5 x 107%
K1 [2.5 x 107°,3.5 x 1077] KN (3,10°)
R [0.5 x 107%,1.5 x 107%] KN(1,10%)
S1 [2.5 x 107°,3.5 x 1075 | [2.5 x 107°,3.5 x 1077]
Event | Independence | Mixed dependence | Unknown dependence
E; p=0 p=0 p=[-1,1]
E; =0 p=[-11] p=[-1,1]
E; p=0 p=0.15 p=[-1,1]
E4 p=0 p=[-0.2,0.2] p=[-1,1]
Es p=0 p=1 p=[-11]

Miralles-Dolz, E., A.Gray, E.Patelli, S.Ferson. ‘Correlated Boolean Operators for Uncertainty Logic’. In Information Processing and
Management of Uncertainty in Knowledge-Based Systems, 798-811. Communications in Computer and Information Science. Cham:
Springer International Publishing, 2022. https://doi.org/10.1007/978-3-031-08971-8 64.
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Next generation nuclear (fusion) plant

West Burton O

University of

Glasgow

To be confirmed

e e e e e s
| Subject to HMG Sub/gct to HMG. dec:s.:on-
| decision-making making & considerations
I under next Spending Review |
Phase A (Pre-FEED)  [RENNNN
Assessment
Spring 2022 Winter 2022 Early 2023 Mid 2025 Early
(TBC) (TBC) 2030s

HTGR demonstration programme

%— < > B —=

Strathclyde
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Design of DEMO Nuclear fusion reactor

- Hemode

. . ] L] ok e feasible
It is essential considered the possible o ernrl
. - . 318
variability of the design parameters
; 1.80

Parameter Lower bound | Upper bound | Baseline 2

H-factor 1.0 e 1.1 175l

Divertor Limit (MWT/m) | 8.7 9.5 9.2

Core Radius 0.6 0.8 0.75

W Impurity 10~° 10—4 50~° g 012

Plasma Elongation 1.75 1.90 1.85

Thermal He-4 fraction 0.06 0.12 0.069 o101

0.08

Thermal He-d Fractio

0.06

1.75 1.80 1.85 1.90 0.06 0.08 0.10 0.12
Plasma Elongation Thermal He-4 Fraction

Miralles-Dolz, E., A.Pearce, J.Morris, E.Patelli. ‘Toward DEMO Power Plant Concept Selection Under Epistemic
Uncertainty’. IEEE Transactions on Plasma Science, 2022, 1-6. https://doi.org/10.1109/TPS.2022.3180233.
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VIRTUAL HUMAN FACTORS CLASSIFIER

An artificiall intelligence tool to classify an accident
report info a human reliability classification scheme
(such as human errors, organizational and
technological factors)

20
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Assessment of Human reliability

e Human is the ultimate barrier for safety also a source of uncertainty and failure
e Need to quantify the performance of operators and personnel

e Often modelled by Bayesian Networks

Ambient
Inadequate m::f::“ conditions ~a
quality control ’ Communication
D‘ﬂgn | ‘ "A' failure
failure e Y Y / yd
Inadequate qu‘::’m:* —.-// » Distraction Insufficient
prodecure N knowledge
\ \ / \ /
D Organisational factors :
|:] Technological factors ; i . B umm
[ ] individual factors

: Human errors Wro
Cognitive reasonnlg
bias "

Morais, C., Moura, R., Beer, M., Patelli, E., 2020. Analysis and Estimation of Human Errors From Major Accident Investigation Reports.
ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg 6, 011014. https://doi.org/10.1115/1.4044796

21




University of
Strathclyde
Glasgow

Assessment of Human reliability

e Learn from real data - Multi-attribute Technological Accidents Dataset (MATA-D)
e Machine-learning classification for new accident report (continuously updated)

e Natural Language Processor for text analytics

Real operation

Incidents (near-mi
derived i

Simulators
Expert judgement

Credibil

Morais, Caroline, Ka Lai Yung, Karl Johnson, Raphael Moura, Michael Beer, and Edoardo Patelli. ‘Identification of Human Errors and
Influencing Factors: A Machine Learning Approach’. Safety Science 146C (2022): 105528. https://doi.org/10.1016/].ssci.2021.105528.
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The data problem | (missing data)

Some events are never been observed (and this does not imply a
null probability of the evens)
o No observations is different than 0 (null) probability

Design failure Inadequate  Observation
procedure missed

Accident 1
Accident 2

Accident 238

Strathclyde

23



Approaches in Human Reliability Analysis |

Assign equal probability for both states

Linear interpolation algorithms and Cain calculator

Expert elicitation

Noisy-OR (and extensions)
‘not applicable’ state
Artificial data

\  University of
e aw)

Strathclyde

Glasgow
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Credal networks
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Defining the intervals to replace missing data combinations

L kL LT LT Ty fupupupupmpnpup .Sy ponpnygshpungfgupi gt g e et
: Part A : Computing conditional probability tables from database !
: MATA-D (o

A T )\ () OV —

OO —e N/ P“:b;:"l“"

y(1(B800 e —
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/2 CoT T
! Part B: Create credal nodes from missing data
I
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I

I

I

I

! Comb | Comb | Com Comb | Comb | Com

: # 2 b#3 m ) b#3

! HE 0.5 0 0 pf HE |05 (0] )| (o)

: false false

: HE 0.5 l 0 I | 0 I HE |os [01] l [0,1]
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Case study

Quantify the human reliability of operator during the storage tank depressurisation on static offshore oil & gas
installations

Hazards: under certain wind conditions the vapours released might reach a source of ignition (e.g., other
equipment, operations and maintenance works) with the potential to cause fire, explosion or financial loss due to
emergency production shutdown

The operators are the main barriers to prevent an incident event, with little or no support from automatic
Systeme/’rnnhnnlnn\/

Tanker-Offloading

Drilling Platform

Existing Well Centers

26
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|dentified Credal Network

Nodes identified with critical
task analysis

27



|dentified Credal Network

Nodes identified with critical
task analysis

Links defined with cause-
consequence idiom which

resembles the logic of a bow-tie

diagram

discrete nodes: rectangles
(child nodes in green, root
nodes in blue)

credal nodes: grey ellipses

University of

Strathclyde

Glasgow

inadequate
quality control

inadequate
task allocation

adverse ambient
conditions

Faulty disgnosis
of team A

-y

Inadequate 5 N
plan of team C

Distraction of
team B

Faulty diagnosis
of team B

maintenance
failure

missing
information

inadequate
procedure

J insufficient

knowledge

Communication
fallure

cognitive bias
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g‘{“r;mfclyde
ldentified Credal Network o 2

Management Maintenance Knowledgs
/ Qualty  Procedu®  Digtraction  Priory Task  Bias  Communication

Nodes identified with critical .

task ana|ysi S - Nodes merged by using CREAM method
Links defined With Cause- sm\-‘} 'Q‘ s‘\iﬁ’; -\’_U.'l';’(.1|'1;)du'; igwiﬁ—z s‘_‘3 Sa '1”1 **“‘_-‘ Mitigation nodes
consequence idiom which g e = -
resembles the logic of a bow-tie i |

diagram o Trigger nod e Lo Consequence node
Discrete nodes: rectangles

(child nodes in green, root Prior probabilities expressed in terms of k out of n trials

nodes in blue) Lack of possible combinations events in MATA-D interpreted

, as missing data rather than impossible events
Credal nodes: grey ellipses

Incomplete combinations replaced by intervals [0,1]


https://www.sciencedirect.com/topics/engineering/root-node
https://www.sciencedirect.com/topics/engineering/root-node
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Decision making and criteria selection

Select factors with
interval probabilities

Output of the CN are intervals T
v

Comparison of two or more variables S o v e

wider interval

affected by imprecision?
Selecting a factor P(PSF1 = T) that reduce P(HE = T)

Different than reducing the imprecision of the
conditional probability of the event,
e.g., P(HE=T|PSF1=T).

Does the widest
interval overlap
the other
mtervals?

S | Factor with highest lower
bound is the most
impacting factor

LY

Define rules to select the most important
factor under imprecision ewr—"

intervals (or maximise
expected utility), to find
highest upper bounds Factor with highest upper
[69] or perform a local bound is most impacting
sensitivity analysis, No factor (interval 3 1
dominance [69])




Decision making and criteria selection

Output of the CN are intervals
Comparison of two of more
variables affected by imprecision?

Selecting a factor P(PSF1 = T) that reduce P(HE =T)

Different than reducing the imprecision of the conditional
probability of the event, e.g., P(HE=T|PSF1=T).

Define rules to select the most
important factor under imprecision

University of
Strathclyde
Glasgow

A =[0.1,0.15]
B = [0.05, 0.25]

03
0.25
0.2

0.15 3
0.1
0.05
0

|
®
.

A B

@ lower bound @ upper bound

C=1[0.2,0.25]
D =10.2, 0.35]
04 =1
H @ i
03 i I
) i :
0.2 © : bl i
R
0.1
0
C D

® lower bound @ upper bound

E =[0.5, 0.6]
F=[0.1,04]
0.7
0.6 )
05 @
0.4 @
0.3
0.2
0.1 s
0
E F

@ lower bound @ upper bound

G=[0.1,0.3)
H =[0.5, 0.7]
0.8
0.7 @
0.6
0.5 ©
04
0.3 e
0.2
0.1 [
0
G H

@ lower bound @ upper bound

[=[0.1,0.7]
J=1[0.5,0.7)

0.8

0.7 a ]

0.6

0.5 )

0.4

0.3

0.2

0.1 )
0

| J

@ lower bound @ upper bound
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The data problem Il (small data)

e Small sample sizes

Communication failure

FALSE | FALSE | FALSE | FALSE | TRUE TRUE TRUE J TRUE
Inadequate task allocation

FALSE | FALSE | TRUE TRUE | FALSE | FALSE | TRUE
. . Insufficient knowledge | FALSE
e Data disproportion

TRUE
TRUE | FALSE | TRUE | FALSE | TRUE | FALSE | TRUE
Faulty diagnosis - FALSE 71 15 62 4 1 1 7 6
Faulty diagnosis - TRUE 1 1 7 12 2 3 3 2
Communication failure FALSE | FALSE | FALSE | FA¥SE | TRUE | TRUE | TRWE | TRUE
Inadequate task allocation | FALSE | FALSE | TRUE | TRUE | FALSE | FALSE | TRUE | TRUE

Insufficient knowledge FALSE | TRUE | FALSE | TRUE | FALSE | TRUE | FALSE | TRUE
Faulty diagnosis — FALSE | 0.99 0.94 0.90 0.79 0.33 0.25 0.70 | 0.75
Faulty diagnosis — TRUE | 0.01 0.06 0.10 0.21

0.67 0.75 0.30

0.25

We need to understand if small sample sizes are “statistically significant”.

Lack of transparency in Bayesian/Credal network to visualize the data
disproportion issue.
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Distortion model

Criticism to interval analysis ([0,1] interval for missing data):

* the lack of robustness (one observation may change from
being the [0,1] interval to an exact relative frequency);

®* avery conservative approach in some nodes and a precise
approach in others,

* the use of the vacuous model [0,1] is equivalent to applying
natural extension in the imprecise probability literature

P, estimated from the available data
O related to the proportion of noisy data (probability that any
other probability measure is possible)

University of
Strathclyde
Glasgow
Safety Science
Volume 157, January 2023, 105915 e

Distortion models for estimating human error

probabilities
(1-08)Py(A) ifA+Z.
£LV (A) :{ .
1 ifA=2%.
credal set

M (Pry) = {(1—9) P + 6P | P probability measure

5., ) 2

|3 £

o T z o ————

z o £ —

g i

g

o :

= v g =

g ﬁ f! == 3
- Bos ———

Estimated HEP (Faulty Diagnosis (FD), Wrong Reasoniﬁg (WR), Observation Misseci (OM) and
Inadequate Plan (IP)) using the approach from (Morais et al., 2019a, Morais et al., 2019b) (in 34
red), the linear vacuous model (in blue) and the total variation model (in green).


https://www.sciencedirect.com/science/article/pii/S0925753522002545
https://www.sciencedirect.com/science/article/pii/S0925753522002545
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Confidence boxes (c-boxes)

Confidence

Generalisations of statistical confidence distributions
Encode confidence intervals at every confidence level

o
o
N
wn
-

The bases for c-boxes are the classical notions of ok

confidence (Neyman, 1937), confidence distributions Redrawn from https://sites.google.com/site/confidenceboxes/
(Cox, 1958), imprecise probability concepts (Walley,

1991) and probability boxes (Ferson et al., 2003). : =

0/1 O J
11

0.0 02 04 06 08 10

in P(1/10) = 0.1 P(100/1000) = 0.1
212
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Credal network with c-boxes [ [ [

No additional parameters required = [ [ T

e imprecision arising from small data (= "‘:':,""> |
sets can be propagated through - : Pt
the model with c-boxes T

e Return the results in terms of e L L L —
(desired) confidence interval A - .

P(DIF) , - -

04

02

op

C.Morais, S.Ferson, R.Moura, S.Tolo, M.Beer, E.Patelli. 2021 ‘Handling the Uncertainty with Confidence in
Human Reliability Analysis’. In Proceedings of the 31st European Safety and Reliability Conference.
Angers, France: Research Publishing, Singapore. hitps://doi.org/10.3850/978-981-18-2016-8 357-cd.
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Challenge problem
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Computational challenges
Propagate and characterize uncertainty and incertitude of a black-box

<_E) Model updating ————
<A) Model calibration

B) Uncertainty reduction ) l
Observations D, Observations D,

Model parameters WN %__ d\m.,w....._
a = [ay,~,as)": , |
d Aleatory inputs
g b (Characterized by p-boxes)
f Black-box model
p x & = [el'.“-:eSlr: y= y(a. et):
h Epistemic inputs Sub-system Performance function
(Characterized by intervals) _
g,-—g,-(a.e.e) R .
~ T. z=12z(a,e0,t): —» C) Reliability analysis
OO = Ol Integrated system l—o w(a,e, 0)
Design parameters gra ys ‘mlazxa 9i » 2
t=1,¢,

D) Reliability-based design Failure probability bounds
E) Design tuning R(8) = [minP[w(a,e, @) = 0], maxP[w(a,e, 8) = 0]

38

Patelli, E., Alvarez, D.A., Broggi, M., de Angelis, M., 2015. Uncertainty management in multidisciplinary design of critical safety
systems. J. of Aerospace Information Systems 12, 140-169 htips://doi.org/10.2514/1.1010273
Lye, A., Broggi, M., Kitahara, M., Patelli, E. 2022. Robust optimization of a dynamic Black-box system under severe uncertainty: A

distribution-free framework, Mechanical Systems and Signal Processing 167A, https://doi.org/10.1016/|.ymssp.2021.108522



https://doi.org/10.2514/1.I010273
https://www.sciencedirect.com/journal/mechanical-systems-and-signal-processing
https://doi.org/10.1016/j.ymssp.2021.108522

Glasgow

g‘rr;m::lyde
Model updating subproblem (Task A)
5 aleatory inputs a~f,

Distribution family is unknown a priori
Support domain is given: a€|0, 2]°

4 epistemic inputs e~E

0.1

0.05

Support domain is given: e€0, 2]*
100 sets of observations: 005
* y=y(a e i),

z=z(a, e, 6, t)

y(t)
(]

-0.1
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Challenges (adapted from Matteo Broggi)

Model updating under hybrid uncertainties

« Hypotheses on the distribution families of aleatory inputs;
« Dependence structure among aleatory inputs;
* Updating dynamic systems: very high dimensional observations.

Enhancement of subjective assumption-free framework

« How to calibrate the PDF of aleatory inputs whose distribution families are unknown?
* How to calibrate the correlated joint PDF?
« How to incorporate the time dependent observations to update the dynamic systems?

40 -13 Jan 2023
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Our solution for Task A

Bayesian model updating approach Likelihood|| Data Prior
« Aleatory variables modelled as a staircase density functions B;;'(e”s.'“T.;)e;.;m
« Bhattacharyya distance-based +

d = —log U_O:o \/PD(x) - Py (x) dx] /\

» Approximate Bayesian Computation,

/ Bhattacharyya
d é ) | distance
P(D|O,M) < exp| —— W/
EB ‘| \ g
« Comparing the time series through a moving window procedure

« Totally 4+5%x4=24 epistemic parameters are updated

Distributional overlap

distance 41



Staircase Random Variable
(adapted from Matteo Broggi)

Proposed by Crespo et al 2018 nttps://doi.org/10.1016/.apm.2018.07.029

Univariate random variable having:

* Bounded support set: Q, and first four moments: 6

Staircase density function

 Piecewise constant function: f { \ \
* n,—number of bins

Examples

« 0O=10, 2], 6=[1.0, 0.33, 0, 1.8] Uniform distribution

- 0O,.=10, 2], 8=[0.57, 0.10, 0.59, 2.86] Beta distribution (left skewed)
« 0O~=1[0, 2], 06=[1.0, 0.42 0.42, 1.37] Bi-modal distribution

Characterize aleatory inputs whose distribution families are unknown

University of
Strathclyde
Glasgow

WIS
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https://doi.org/10.1016/j.apm.2018.07.029

Staircase Random Variable

(adapted from Matteo Broggi)

University of
Strathclyde
Glasgow

Optimization problem on moment matching constraints:

1 = argmin{J(1): A(8,n,)l = b(0), 0 € 6}

=0

J(I) — cost function, e.g., maximum entropy;
© — 0 feasible domain, g,(0)<0, i=1,...,13

Moment constraints

Moment constraints

Mean y;

Variance my;

Skewness 1m5;

G1=Xi— K
92 = M — X,
g3 = —my;

94 =Mz =V

g5 =m3; — my(; — x)° = Fgm3*(u; - x,)
96 = 7713;"1;/2(7; — u) —my(X; — p)? + mi;
g7 = 4m3; + mzm3; — mg;(x; — J_fj)z

gs = 6V3ingmy/* — (%, — x,)’

~ 3/2 — 3
go = _6\/§m3im2§/ = (xi - _;')

Kurtosis

R 2
10 = —My;My;

- - +
= 127, .2
g1 = 127y — (X — x;)
2
- ~ 3/2 ~ 3/2
912 = (m4im2i — ViMyp — WiMgiMy; )(Vi —my) + (msimu — Hiy;

2.3 3 =~ _3
13 = mMyymy; + my; — My;my;

43
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Selected results (Task A)

g gos
Blue: Distribution-based approach (Beta distributions) % i 2
Green: Distribution-free approach 3
Red: EXperimental data g : :g:::::;r,
0.1 ~ - - : , 5 =

0.05 |

y(t)
o

-0.05 |

-0.1 : : . : : :
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t [s]

samples of e

Realization of the uncertainty model y
44 - 13 Jan 2023


https://www.sciencedirect.com/topics/computer-science/beta-distribution

University of
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Glasgow

N Mechanical Systems and Signal Processing
PR Volume 164, 1 February 2022, 108253

L essons learned®

* The comments are not referring to a specific solution or methodology

From Crespo and Kenny

“The quantification of aleatory uncertainty was poor overall, whereas Synthetic Validation of Responses to the NASA
L _ _ _ ,  Langley Challenge on Optimization under

the quantification of the epistemic uncertainty was generally acceptable.”  ypcertainty

“(system) knowledge basis is essential to deal with epistemic uncertainty”

and “[...] uncertainty reduction in series rather than in parallel.”

“Parameter dependencies in the aleatory variables were grossly mischaracterized.”

“Robust design optimization overcame the shortcomings of poor uncertainty modeling.”

“If the epistemic scenarios being ignored turn out to be infeasible, the performance improvements resulting from
the risk-based design will be well justified. Otherwise, the possibly gross underestimation of the failure
probability might render the UQ modeling and design optimization processes not only pointless but also liable”

“This outcome [of the challenge problem] highlights the need for developing and maturing the
processes needed to effectively model and manage the effects of uncertainty in model predictions.”
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Probability Theory Interval Arithmetic

Computational tools (Ander Gray)

ProbabilityBoundsAnalysis.|l

MomentArithmetic.|l

ZoneArithmetic.|l



https://github.com/AnderGray/MomentArithmetic.jl
https://github.com/AnderGray/ZoneArithmetic.jl
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Probability boxes

CDF

1.0

0.8

0.6

0.4

0.2

0.0

=1

-1.0

0.5

1.0

19

Documentation: https://docs.julialang.org

|
(2) | ( 2) |
—— 1l 1. ___ | Type "?" for help, "1?" for Pkg help.
|| [ I A
I L1l 111 (]| | Version 1.6.0 (2021-03-24)
IN_Z' 221N | Official https://julialang.org/ release
|-/ |

julia> using ProbabilityBoundsAnalysis

julia> pbl = normal(interval(-06.1,0.1), 0.3)
Pbox: ~ normal ( range=[-1.0271, 1.0271], mean=[-0.1, ©0.1], var=0.09)

julia> plot(pb1)
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Probability boxes

CDF

1.0
0.8
0.6
0.4
0.2
0.0
. . _— .
-1.5 -1.0 =05 0.0 0.5 1.0
X

19

Documentation: https://docs.julialang.org
Type "?" for help, "1?" for Pkg help.

Version 1.6.0 (2021-03-24)
Official https://julialang.org/ release

N — —

I
|
|
I
I
N |
- I
julia> using ProbabilityBoundsAnalysis

julia> pbl = normal(interval(-0.1,0.1), 0.3)
Pbox: ~ normal ( range=[-1.0271, 1.0271], mean=[-0.1, ©0.1], var=0.09)

julia> plot(pbl)

julia> cut(pbl, ©.55)
[-0.0623016, ©0.141492]

julia> rand(pbl, 1073)
1000-element Vector{Interval{Floaté4}}:
[0.21093, 0.417437]

[-0.363369, -0.157885]
[-0.09624, 0.107521]
[0.379457, ©.593457]
[0.204566, 0.410931)
[-0.0470878, ©.156736]
[0.204566, 0.410931)
[-0.288402, -0.0838438]
[-0.392235, -0.186249]
[0.0573201, ©.261651]



Probability boxes

1.01

0.8

0.6

CDF

0.4

0.2

0.0

=10

49

—1:0

julia> cdf(pbl, 0)
[0.364999, 0.635001]

julia> mass(pbl, interval(®, ©0.5) )
[0.344999, 0.615]

1D

Py = [0.345,0.615]



Distributions with imprecise parameters

Normal
u€|01],0€ (23]

1.0

Lognormal
_HE€[23]0€[L5]

|
J
o8| |
|
|
06 |
w
8 [
(")
4

0.0

0.0

Uniform

U, €[01],U, =3

Exponential
A€ |

0.4,0.6]

Beta
a € (0.7,1],B € [3,4]

1

08

00| ¢

Chi squared
k € [20,50]

1.0/

y

Gamma
a € [56],8=2

10| e —

Cauchy
a € [1,100],8 =1
0.0 ”‘ ——J

50
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CDF

10|
0.81
0.61
0.4/
0.2

0.01

0.0

0.2

0.4

0.6

0.8

1.0

CDF

10|
0.81
0.61
0.4/
0.2

0.0/
0.0

Binary
operations

0.5

1.0

B

15

2.0

25

3.0

CDF

1.01

0.81

0.61

0.4/

0.2

0.01

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
C



Risk analysis

What if we do not have distributions?

Ander Gray Scott Ferson Vladik Kreinovich Edoardo Patelli

| . University of
& Strathclyde
€ Glasgow

52
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First order error propagation

* In probability theory called “Moment propagation”
* Propagates mean & variance through mathematical expressions

* Although widely used, requires a lot of assumptions, and does
not inform about distribution shape

* Requires stochastic independence Bao’ o
r o
* Moments must be perfectly known Sk a”a/ys'
IS

* Gives no information about tails without distribution assumption

* Only accurate for near-linear models
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Moment arithmetic

seneralisation with the following:

Independence between variables need not be assumed
Moment propagation formulae may be evaluated with intervals
Assumptions about input distributions is no longer necessary
Works for non-linear functions

~omputer arithmetic on random variable’s range, mean and variance
7 binary operations: +, -, *, /, *, min, max
9 unary operations: rescale, shift, exp, log, In, 1/x, x?, \/x, |x|

| RV JUNG [N al il ik Al e e e A e Tl L ol AN

Gray, Ander, Scott Ferson, Vladik Kreinovich, and Edoardo Patelli. ‘Distribution-Free Risk Analysis’. International Journal of Approximate
Reasoning 146 (2022): 133-56. https://doi.org/10.1016/j.ijar.2022.04.001.



https://doi.org/10.1016/j.ijar.2022.04.001

Moment arithmetic

Rigorous formulas for least and
greatest possible values

Interval arithmetic

Arithmetic with independence

l Mean Variance
X+Y EX + EY VX +VY
X-Y EX - EY VX + VY
XxY EXEY (EX)*VY + (EY)*VX + VXVY
‘l forOgY E(X x(1/Y)) V(X x(1/Y))

XYfor0<Xor0<Y

max(X,Y)

min(X,Y)

E(exp(In(X) x Y))

“Bertsimas min"

EX, ifYy <X
EY, ifX<Y
“Bertsimas max" , otherwise
EX, ifX<Y
EY. fY <X

otherwise

Viexp(In(X) x Y))

VX, ifYy <X
VY. ifX<Y
env(max(VX,VY),0), otherwise
VX, fX<Y
VY, ifY <X

otherwise

env(max(VX,VY),0),

' Least possible value Greatest possible value
k + X (shifting) k+ X k+ X
kX. if0<k kX, f0<k
kX (rescaling) _
kX, ifk<0 kX, ifk<0
X PR cx’
In(X)for0< X In(X) In(X)
logo(X) for 0 < X logio(X) logi0(X)
+lor0¢ X 1/X 1/X
0. ifoe X —
X? max(X?, X’)

X| (absolute value)

VX for0< X
X+Y
X-Y
XxY
,l for0¢ Y
XYfor0<Xor0<Y
min(X,Y)

max(X,Y)

min(X?, X°).

0,

min(/ X, ' X]),
vX

|

X
X

min( XY, XY,
min(XY. )_(Y.
min( X,
max(X.

< <

otherwise
ifoe X

otherwise

XY.XY)
X/Y.X/Y)
XX XY)
Y)

Y)

max(| X/, |X1)

vX
!

7
< =

max(XY, XY, XY,XY)
max(X/Y.X/Y.X/Y.X/Y)
max(XY, XY, X¥, X¥)
min(X,Y)
max(X,Y)

University of

Strathclyde

Glasgow

Arithmetic without dependence assumptions (Fréchet)

XYfor0<Xor0<Y

I Mean Variance
k+ X (shifting) k+EX vX
kX (rescaling) kEX K*VX
X rowe(exp) rowevar{exp)
In(X)for0< X rowe(ln) rowevar(ln)
log,o(X) for 0 < X rowe(log,,) rowevar(log,,)
% for0g X rowe(reciprocal) rowevar(reciprocal)
2 (EX)? + VX rowevar(square)
EX, fo< X
| X (absolute value) ~EX. X <0 | max(0, EX? + VX - E(|X])*)
[|EX],|[EX]| + VVX(x - ;ﬂ;lnl‘:";'—\:\r )], foe X

\,"f.\' for0< X
X+Y
X-Y
XxY

X 4 »
¥ forO¢Y

max(X,Y)
min(X,Y)

rowe(, /)

v
EX + EY
EX - EY

EXEY = VVXVY
E(X x(1/Y))
E(exp(In(X) x Y))
“Bertsimas max”

“Bertsimas min”

rowevar( \]
(VVX £ VVX)?
(VVX £ vVX)?
“Goodman”
VX x(1/Y))
Viexp(In(X) x Y))
env(max(V X, VY),0)
envimax(VX,VY),0)
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Mean and variance bounds can be estimated from range Mean and
variance bounded
o o o , from ranges
julia> A = Moments(mean = missing, var = missing, range = interval(2.3, 7)) )__,,,f"/”’
moment : ~ ( mean =|[2.3,7.0], var =|[0.0,5.5225 , range = [2.3,7.0]
julia> B = Moments(mean =|3, Jvar = missin range = interval(2.3, 7)) Tlghter varla.nce
moment : ~ ( mean = 3, var = [6.9,2.8000000060000007]|, range = [2.3,7.0] ) o when mean is
julia> C = Moments(mean = interval(5, 10), var = missing, range = interval(2.3, 7)) given
moment : ~ ( mean = [5.0,7.0], var = [0.0,5.4] , range = [2.3,7.0] )

julia> D = Moments(mean = interval(10, 30), var = missing, range = interval(2.3, 7))

ERROR: : ormation not valid. Mean n Range = .
[10, 301 n [2.29999, 7] = 2

julia> E = Moments(mean = 3, var = interval(15,18), range = interval(2.3, 7))

ERROR: ArgumentError: Provided information not valid. Variance n VarBounds = 2.
|[15, 18] n [Q, 2.80001] = @

Inconsistent mean

Inconsistent

variance
56
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Bounds
of CDF

[X, X] = [0,100), EX =10, VX = s?

----------

----------

----------
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Arithmetic tables with intervals

e Even starting with point estimates from means and variances, moment arithments
generally yields interval results
e EX, VX and bounds can be intervals as well

Repeated variables problem:

Simple numerical solution: Subintervalisation

e n™ interval calculations
e Feasible since only 2 variable are intervals
e Generally 2" = 32768

58
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Dependent variables

Z=X+Y | [—1,1] 4+ [-1,1] = [-2, 2] A

YCY —1,1] C [-3, 3] X

Even if X and Y are non-dependent,
Z and X are dependent
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Zone arithmetic

https://github.com/AnderGray/ZoneArithmetic.jl

Z=X+Y

1.00 1 W 1.0 -
0.75 -
0.5 1
0.50 -
0.25 -
Y 00 T
0.00 - X
-0.25 =05
—0.50 -
)| I
_1.0 - | |
—0.75 A T T T T T T T T T
-20 -15 -1.0 -05 0.0 0.5 1.0 1.5 2.0
-1.00- L
-1.0 -0.5 0.0 05 1.0 V4
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https://github.com/AnderGray/ZoneArithmetic.jl
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Tracking dependencies

Dependencies can be tracked
In a graph

The nodes are variables (intervals) ]

The edges are dependencies
(zones)

When a new variable is
calculated, it's added and
linked in the graph

julia> d = a + ¢
intervalZ([0, 161, 4)

3 University of

7 Strathclyde
€7 Glasgow




Dependence tracking

1.0

0.8:

0.6

CDF

0.4-

0.2

0.0

62
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p=0.5

- with dep track
without

CDF

1.0

0.8;

0.6

0.4-

0.2’

0.0

p=[-1,1]

- with dep track
without




@%ﬁdyde
Dependence tracking with subintervals

1.0 1.0
0.81 0.8
0.61 0.6
(VI [V
(] 0
O QO
0.41 0.4
0.21 09
- with dep track dep track
0.0/ without 0.0- - dep track + subintervals
0O 25 50 75 100 125 150 175 0O 25 50 75 100 125 150 175
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How do we make
computations with imp
probabillities In numeri
models?



Motivation — Deterministic Analysis

*«Engineering system represented by
numerical model (e.g. finite
elements)

* Model depends on inputs z

* model parameters
e initial / boundary conditions

* Response of interest r
 displacement / velocity / acceleration
e stress / strain

65

Input

Output

=

Deterministic

Model




Motivation — Reliability Analysis

*sAleatory uncertainty of input
modeled with probability
distribution, depends on
parameter 0 (e.g. mean)

* Response must not exceed
threshold 7y

* Probability of undesirable
behavior: pr

66

Reliability

Input

pdf(z|0)

Output

pdf(r|0)

PF

=

Deterministic

Model

i




Motivation — Interval Reliability Analysis

* Epistemic uncertainty on 6
modeled as interval
(parametric p-box)

* pr belongs to an interval

67

Interval reliability Reliability

Input pdf(z|6)
T L
| 91 ) z
Output pdf(r|6)
7_)1 7)117 ]

PF(O:S)
pr(02)
pr(61)

» )’
Tt

=

Deterministic

Model
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Decoupling approaches

* Coping with aleatoric and epistemic uncertainty: huge challenge!

i

Epistemic Aleatoric Deterministic

model

* \What we would like: decoupling of the uncertainty

Epistemic Deterministic Aleatoric Deterministic
model B model

i

technische universitat
dortmund
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Introduced approaches

- Decoupling of uncertainty
- additive relation between Nyjeqt0ry @Nd Nepistemic

- Three approaches developed recently:
» decoupling based on operator norm theory

« augmented space approaches
- Bayesian quadrature

- Savings in computational cost with several orders of magnitude



70

Operator norm framework: scope

* Linear systems subject to epistemic (@) and aleatory (y) uncertainties
* Gaussian forces affected subject to (6¢) and aleatory (z) uncertainty

response

system

force

l H |
r(0,y,z) = A(Os,vy)

.f(gfaz)

¢_|

|

technische universitat
dortmund

E(x) [Pa)

Imprecise Random field

Correlation length increases

¥

Imprecise PSD

;z(n - \/}\/\\A[ V\j/u«f'b*w ‘Y. '\?}f}(.‘ j\\l

’L ]

3 3 .'.
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Operator Norm Theorem (1/2)

Response for 6

' (1) (1) »(2)
Input force Model r (0 9 ) |
1 1 (1)
t o F(677,2®) iﬁ r (6 .y, 6 ,2)
h Response for (%
(l) (1)
f(o P = A(e y 0}\ Z) A r (0‘()2) (2) 9 (2))

o r (67,.6°,29)

»
»

* Response r is the result of stretching loading f(6,z) by A(6,,y)
» Less stretching leads to smaller p; more stretching leads to higher pr

71




Operator Norm Theorem (2/2)

Response

Input force

1(65”,z?)

« The amount of stretching induced by A can be bounded from
above by the operator norm theorem

||A||:>02 - iIlf{C 2 0 : ||Av||:>o S C||’U||2}

* In this case, operator norm corresponds to maximum standard
deviation of response 0,,,..(0)

72
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Proposed approach

Opt.imiza_tion Deterministic model Reliability Deterministic model
(epistemic (aleatory
parameters) E Parameters)
* . .
Q = argmin ( T max (9)) Determined
0c[0.0] deterministically via
- | linearization
«» only required for T o S PF
6 = argmax (omax(0)) stochastic system gl ‘{
OE[Q,E] matrices

* Proposed approach involves:
— Two deterministic optimization problems
— Two reliability problems

73 -13 Jan 2023



Example 1

* SDOF oscillator subject to stochastic ground acceleration
* Aleatoric ground acceleration modeled using Clough-Penzien model

* Aleatoric mass (lognormal)
* Epistemic stiffness

* Failure criterion: first excursion, involves maximum displacement and
maximum acceleration

technische universitat
dortmund

m

- l\' 7
ground

acceleration



Example 1

* SDOF oscillator subject to stochastic ground acceleration

102k

pr(k)

T
/

107

pr(k)
ok (k)

max

= e eele a:mx(k) E

1
—
oo
w

1
0
o

75 70 80 90

100

110
k [N/m]

120

130

140

ok... maximum standard
deviation estimated by
linearization

* 05 Maximum standard
deviation estimated by

Minimum / maximum values of (0% ..,

a‘f,.a,) occur at minimum / maximum values
of pr

technische universitat
dortmund

z(t)

l | m

- k‘
ground
acceleration




Example 1

* SDOF oscillator subject to stochastic ground acceleration

1\ pr(k)
10 [ \\ ﬂan:u.\(k)
LT & . ﬂ;:ii_\(k.)
\
\\\.\
10~k
1 1 1 v o B Rl | 1
70 80 90 100 110 120 130
k [N/m]

76 - 13 Jan 2023

140

technische universitat
dortmund

z(t)

H 5— m
— k

ground
acceleration

Proposed approach

Direct optimization (DIS)

lower bound upper bound

lower bound upper bound

PF
k [N/m)]

Relative execution time

4.6 x 10~ 1.5 x 10~2
107 70

4.4 x 1073 1.5 x 1072
111 70
64.9
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Example 2: a six-story building

* 6 story building

* Reinforced concrete

* 9500 shell & beam elements
* QOI: interstory drift
* Load: earthquake

77 -13 Jan 2023
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Load acting on the building

Soil type | w, [rad/s| | (, |wy [rad/s] | (;
_ . Firm 3 0.60 0.87 0.60
* Earthquake is modelled as stochastic

Medium T 0.60 0.57 0.60
Process. Soft 247 0.85 0.247 0.85

® Gaussian stochastic process

® Autocorrelation governed by modulated Clough-
Penzien spectrum:

SCP (w) 2 0 20 10 i 60
wg + (2{ywyw) w* c |
(02 - 02) + (2840,0)° (0? - 0?) + (285wp0)°

80 100

plt,z)

: | . T T' ‘L\ 2
—<AY \ﬂfv}f/\\}fﬁﬁ\:\w)%%&f»w MQ‘“N | h

1 L
0 0.5 1 1.5

2 3 3.5 4
t \’
78 - 13 Jan 2023



technische universitat
dortmund

Uncertainty model

*«Clough-Penzien spectrum:
1 I CI

Wa it g9 CJ{ S({ C{ cé
m[2.4;8] 7[0.24;0.8] [0.6;0.85] [0.6;0.85] 4 x 10-2[0.75;1.25] [0.12;0.16] [0.14;0.18]

* GausSian random process.
* 1300 random variables

* Concrete material of each floor:
* 6 Young’s moduli: E! = [2.07; 2.53]x10*1°

79 -13 Jan 2023
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Example 2: results

* Optima in operator norm

correspond to optima in failure 10°

ope ¢ Operator norm method
prObabIIIty x  Vertex analysis
° La rge red uction in 102 - Quasi Monte Carlo
computational cost:
* Double loop MCS: 107
5.000.000 FE simulations
* Vertex analysis: 107
4.096.000 FE simulations
. “)‘ L 1 1 1 L4 4 2 0 4 . . 1 4
) Operator.norm°. 1.2 1.4 1.6 1.8 2 22 24 26
3500 FE simulations max;_1,__,, max; || Aiz.(0) ||z %103

80 -13 Jan 2023
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Extension of the method to nonlinear dynamics

* VIaln quesTIon: HOW TO apply TNIS MeTnoa to Systems oT TOIOWINg Torm¢
Mx(t,z) + Cx(t,z) + Kx(t,z) + ®(X, x,x) = pp(t, 2)

Idea: Define a linearized system of equations as:
(M + M.)x(t,z) + (C+ C,)x(t,z) + (K + K.)x(t,z) = pp(t, 2)
Where M, C, and K, are determined by minimizing
e=P(Xx,x,x)—M,x(t,z) + Cox(t,z) + K.x(t,2)

Define the operator norm over the system
M*x(t,z) + K*x(t,z) = P*(t,2)

With

e 0 M+M,

— _(M+Me)
“Mm+M, c+c,)

k=T K+(-)KJ' P*=[,,p(2,z)]

Then, identify those parameters 8* of a parametric p-box that yield extrema in P
Compute bounds on P¢ using full-scale nonlinear model

81-13Jan 2023
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Nonlinear gtiffnee " g2
ki - bz [
Example 1: - P
11 11 '
. N oz o MR o B ©
* 2 DOF oscillator
* P; is a Gaussian stochastic , , . .
process with 0.8, l.jQ] x4 [0.8, 1.2],x().-17r [0.8. l.iQ] x0.7 [0.8. l.f] x 0.7 [0.8,1.2] X 3x 107

Clough-Penzien spectrum

* k, is a Duffing-type nonlinearity parameter P, (DL)  P;(ON)  P;(DL) P, (ON)

S5 2.504-10% 2.4087-100™ 3-100™ 3.591-10™
o . . . wy 13.31 15.07 10.31 10.05
Pf IS computed using classical W'y 1.506 1.507 1.008 1.005
Monte Carlo simulation L 0.825 0.839 0.578 0.5600
s 0.699 0.839 0.637 0.5600
Ps 0.2880 0.2980 0.9800  0.9830
ON 0.0052 0.0048 0.0176  0.0221
n’ 331000 530 226000 520

82 -13Jan 2023
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Literature on the operator norm framework

M. G. R. Faes and M. A. Valdebenito, ‘Fully decoupled reliability-based optimization of linear structures
subject to Gaussian d?/namlc loading considering discrete des(g,n variables’, Mechanical Systems and
Sighal Processing, vol. 156, p. 1076716, Jul. 2027, doi: 10.1016/j.ymssp.2021.107616.

M. G. R. Faes, M. A. Valdebenito, D. Moens, and M. Beer, ‘Operator norm theory as an efficient tool to
propagate hybrid uncertainties and calculate imprecise grpba ilities’, Mechanical Systems and Signal
Processing, vol. 152, p. 107482, May 2021, doi: 10.1016/[.ymssp.2020.107482.

M. G. R. Faes and M. A. Valdebenito, ‘Fully decou;aled reliability-based design optimization of structural
systems subject to uncertain loads’, .Computer Methods in Applied Mechanics and Engineering, vol. 371,
p. 113313, Nov. 2020, doi: 10.1016/j.cma.2020.113313.

M. G. R. Faes, M. A. Valdebenito, D. Moens, and M. Beer, ‘Bounding the first excursion probability of
linear structures subjected to imprecise stochastic loading’, Computérs & Structures, vol. 239, p. 106320,

Oct. 2020, doi: 10.1016/j.compstruc.2020.106320.

P. Ni, D. J. Jerez, V. C. Fragkoulis, M. G. R. Faes, M. A. Valdebenito, and M. Beer, ‘Operator Norm-
Based Statistical Linearization to Bound the First Excursion Probability of Nonlinear Structures Subjected
to Imprecise Stochastic Loading’, ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng., vol. 8,
no. 1, p. 04021086, Mar. 2022, doi: 10.1061/AJRUA6.0001217.



https://doi.org/10.1016/j.ymssp.2021.107616
https://doi.org/10.1016/j.ymssp.2020.107482
https://doi.org/10.1016/j.cma.2020.113313
https://doi.org/10.1016/j.compstruc.2020.106320
https://doi.org/10.1061/AJRUA6.0001217

Augmented space methods

* Imprecise probability

classical probability

interval probability

pr(8) = / Tr(y) fy (y16)dy
/\ y

min max

—_
Pr Pr

* Augmented reliability problem

f@((})/\

Fy (y)

technische universitat
dortmund

y-bea
o= @

(interval)

e ri= [ [ @ w0fe0)dd o

Model 6 as aleatoric (!)

Augmented probability

84 -13 Jan 2023 L

pr(0), \ .

Retrieve pg(0) with Bayes

artefact, extracts dependence of pr w.r.t. 6

. |
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Application: Imprecise reliability in linear

dynamics

Failure:
*  Maximum displacement
e Maximum acceleration

Stochastic ground
acceleration

“«—> z(t)
C e
’ 5— m
k

stiffness: parametric
p-box (w.r.t. ;)

22
<=
v

21| Directional Importance
Sampling (exploits linearity)
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* Wide range of pg
* Non-monotonic behaviour captured!
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Parallel Bayesian quadrature optimization

Observations of g

Bayesian experimental design

technische universitat
dortmund

9o

GP(u

H

Prior

(z,0).k, (,0))

Y

Posterior

9n ~ GP(u,, (2,0),k, (x,0))

Posterior

Y

m,, (8) ~ GP(ptn, (0),k.. (0))

m(8)= / 0y 0@ @0z

Dang, C., Wei, P., Faes, M. G., & Beer, M. (2022). Bayesian probabilistic propagation of hybrid uncertainties: Estimation of
response expectation function, its variable importance and bounds. Computers & Structures, 270, 106860.
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Parallel Bayesian quadrature optimization

* Propagation of mixed uncertainties based on active Bayesian integration
of a Gaussian Process prior over the model’s response

* Teaser: -' : -
* nonlinear oscillator with response: Notation Type Mathematical model
1 Random variable N(1,0.1%)
Co Random variable N(0.1,0.012)
_ 2Fy . [(t1 [c1 + e m Random variable N(1,0.1%)
Z = g(c1,¢2,m, F1, 1) = |- — sin (.— ’>‘
€1+ C2 s " F P-box variable  LN([1 2],[0.1 0.3]%)
t Interval variable (0.5 1.5]
-U0) 20
© ‘ l ¥ -
Bbdddd m F(t) N 4 s (‘- 4 "v A ] ( [ \
o ‘—> Method m - COVimy|/% my  COVimyy| /% \ (
0 0

T DLMCS 04953 087 25766 037 10f
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Active Bayesian optimization: teaser results

- More details and derivations in these papers:

« C.Dang, P. Wei, M. G. R. Faes, M. A. Valdebenito, and M. Beer, ‘Interval uncertainty
propagation by a parallel Bayesian global optimization method’, Applied Mathematical
Modelling, vol. 108, pp. 220-235, Aug. 2022, doi: 10.1016/j.apm.2022.03.031.

« C.Dang, P. Wei, M. G. R. Faes, M. A. Valdebenito, and M. Beer, ‘Parallel adaptive
Bayesian quadrature for rare event estimation’, Reliability Engineering & System Safety,
vol. 225, p. 108621, Sep. 2022, doi: 10.1016/|.ress.2022.108621.

« C.Dang, P. Wei, M. G. R. Faes, and M. Beer, ‘Bayesian probabilistic propagation of
hybrid uncertainties: Estimation of response expectation function, its variable
importance and bounds’, Computers & Structures, vol. 270, p. 106860, Oct. 2022, doi:
10.1016/j.compstruc.2022.106860.

« C. Dang, M. A. Valdebenito, M. G. R. Faes, P. Wei, and M. Beer, ‘Structural reliability
analysis: A Bayesian perspective’, Structural Safety, vol. 99, p. 102259, Nov. 2022, doi:
10.1016/].strusafe.2022.102259.



https://doi.org/10.1016/j.apm.2022.03.031
https://doi.org/10.1016/j.ress.2022.108621
https://doi.org/10.1016/j.compstruc.2022.106860
https://doi.org/10.1016/j.strusafe.2022.102259

Monitoring and modelling complex systems for

remaining useful life assessment under

uncertainty, nonlinearity and sparse noisy data.

"AL"\"\.I'\"\

./‘L(\Jr\v’\'\

y
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Need of IP for Safe Residual Life assessment: 5' INal4

- to use of unexploited information, measurements and models and integrate the
- to quantify the uncertainty caused by the lack of knowledge

knowledge on the measurements (e.g.
actual structural condition settlements/accelerations at
(e.g. cracks, degradation) specific locations)

models of different fidelity focusing

on phenomena occurring at different

: In operating time-scales; inspection reports; local
and environmental testing; experts’ opinions;

conditions (time-varying) measurements of different
quality/time and space resolution)




y
Projects on IP in Safe Residual Life assessment ! INal

T Dol I n Deltares
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High fidelity model
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Statistical model updating strategies accounting Evolving probabilistic physics-informed machine

for mixed and limited information. learning model based on imprecise probability



Example: Random vibration analysis of aircraft/spacecraft rl I n H
structural components under imprecise probability a

https://www.wired.com/wp-
content/uploads/images_blogs/a
utopia/2013/06/777assemblylin
€021-660x440.jpg

—————

- Usually only the randomness in the excitation (of mechanical and acoustic nature) is of
concern.

- Parameters of the structural components are assumed to be deterministic

- The random vibration analysis of aircraft/spacecraft structural components (or secondary
structures) is often performed with simplified techniques, such as Miles’ Equation (hp:
dominant natural frequency with a with respect to the structural response)



Probability of exceedance of a threshold -|

A structural component with a dominant natural frequency with respect (1
to the structural response

w, =k/m=2xf,

So(/u) o
_ _ Q 0 f” 0=1/(2¢)=(Nkm)/c k L
T yrms T 3,3 _
3272' fn Ser (f) S, broadband random loading with
Rms of the mass displacement a constant spectral density m = 0.81 kg
0=10
Probability that the displacement y(?) exceeds a given level b with a Sy =100 (N/kg)’ /Hz

velocity y(¢) inasmall interval of time

2
© b Y = 2o eXp{_E(a_j }

. . Y Y
Pf :j J- p(y’y)dydy ‘ Pf :l—CXp[—V[jT} the average number of positive

0 b_ydt stationary Gaussian crossing per unit of time of a barrier
random process:

o, = %
b=7x0,=0.0018 mm "o\ (2nf,)

: : :
7 = 3 hours Imprecisely known dominant frequency! o



y
Typical information available in Engineering 1INalf

Vimin SV, = E[f] (x)] = J‘f] (x)p(x)dx<v, .., Jj=23,..,n
f]-(x)=x mean value
fi(x)=x’ second moment
fi(x)=[b,c] possible values that the uncertain variable may take

the constraints corresponds to the probability
of finding x within those bounds



y
Example: information available on the "1 Dalf
spring stiffness

(i) the variable is positive

(ii) the vertices of a convex region
of the statistical expectations are
as shown

E[In(z)]

Vi min =V, :E[fj (x)] =J‘fj(x)p(x)dx£vj’max, j=273,..n

Cicirello, A. and Langley, R.S. Probabilistic assessment of performance under uncertain information using a generalised maximum entropy principle, Probabilistic Engineering Mechanics, 2018.
https://doi.org/10.1016/j.probengmech.2017.07.006



4
From equalities to the Maximum entropy "1 INa 4
distribution

=E f( )]z_‘-fj(x)p(x)dxﬁvj,max, j=2,3,...,n

Maximum entropy principle:
- incorporating the current state of knowledge H = —J‘Mp(x)log(p(x))dx
- subjective pdf _OO !

o)
__F:P(X)log(f((x))jdx+z/1 {_[ f dx E[f](x)]}
Zﬁjfj(X) - fi(x)=1 m=E[f(x)]=1

p(x)=t(x)exp 4




_ . L . 4
-rom inequalities to a Generalised 'TINA4
Maximum entropy distribution

vj=E[fj(x)]=jfj(x)p(x)dx£vj,max, j=2,3,...,n

p(xlae R)=t(x)exp Zn;ajfj(x) . t(x)

A family of maximum entropy distributions defined over the set of basic variables
The basic variables:

e substitute the Lagrange multipliers

* can have any possible pdf within certain bounds, including the extreme case of
a delta function at any point between the bounds

Cicirello, A. and Langley, R.S. Probabilistic assessment of performance under uncertain information using a generalised maximum entropy principle, Probabilistic Engineering Mechanics, 2018.
https://doi.org/10.1016/j.probengmech.2017.07.006



. . y
Mapping from the statistical bounds to 1IN
the basic variables

E[ fi(x)] 4 a, 4
A 3 h
| é'm-domain 1 — p(x|aeR):exp{Zajfj(x)}
o | ; =
Vzl,mm Vz,n:ax EEfz (x)] ;2
(a) ()
Family of pdfs p(x|la)=exp|[a +a,/5(x)+asf3(x)]
Mapping of ;.. e (x) CxXp| 4 (aZ,l’all ) +ay, /5 (x) +a, f; (x)_ dx =V, iy Ef:\ig:eon;ezrfcedure was
each point \.. /1 (x) CXp :al (a2,19a3,1 ) + az,lfz (x) + a3,1f3 (x): dx = V3 min see paper:

Solve non-linear equations for each point to be mapped

Cicirello, A. and Langley, R.S. Probabilistic assessment of performance under uncertain information using a generalised maximum entropy principle, Probabilistic Engineering Mechanics, 2018.
https://doi.org/10.1016/j.probengmech.2017.07.006



Example: mapping on the a-domain 'y| INslf

2 3.&)5 2..] 3.‘15 2.2
l‘::.l‘l(.\’,"’lll) <10°

1.8 1.85 1.9 1.95

p(xla)=exp[a;—ax—azIn(x)]

Previous work: 0.2126 < Py < 0.4303
- Equally spaced grid of points

- 430 points in R = 430 Pf calculations Py ‘point 10 0.2935 et



Challenge in reliability applications: not known

a-priori the pdf that will lead to max Pf!

b

p(x|a)

= == = |VlaxEnt
One pdf

Pr(a)=|Ps(x|a)p(x|a)dx

Pr(xla)=[ " p(wlx.a)x

Pr(a)t |

4
TINalf



Bounds on thg failure p.robab|||ty. 11Nl
robust reliability analysis

Py (a)t | The single value Pf obtained with the MaxEnt
| ﬁ pdf can be significantly lower than the UB

The UB and LB on the chosen reliability metric

can be largely different. The designer can

decided to

* gain more information on the vaguely known
pdf to reduce, if possible, the basic variable
domain — would the Pf interval change a lot?

* investigate a different design solution which
l}}i‘}g(/’, (a)) can be more robust (lowest probability
interval) with respect to the uncertainty in

miP(Pf(a)) << max(l?f (")) the parameters of the distribution

ac ack



Key steps: from parameterised pdf to .yl 1Nl
oounds on Pf

Step 1: Evaluate few initial values of |
P - Pr(a)=[P(xa)p(x|a)dy

! Describing the uncertainty of not
P, (a) i having carried out the reliability
R e b e | analyses at each point of R

_______________________________________________

Step 3: Actively select points in the a-domain to

I I
I I
I I
I I
L) ) ) o e | R
i obtain bounds of Pf with very few full reliability : mln(Pf ( )) <P, < maX(Pf (a))
| analyses | acR acR
|
e e e e e e e e e b M o |
Cicirello A. Propagation of Imprecise Probability descriptions via machine learning based optimization for robust reliability 103

analysis. In: International Symposium on Reliability Engineering and Risk Management 2022, Hannover, Germany, 2022.



Step 2: probabilistic description of P, (a) 'lelnnH

fO>

Pr(a)

9

* Discrete function at each aj point in

P, :[Pf (al)»Pf(az)"“’Pf (aN)]

* Additional uncertainty caused by not having
evaluated the model

 Model each reliability result that has not been
computed yet as a Gaussian random variable

* The collection of random variables is a
Gaussian Process!

D={(ay;. P,

(ao ))’] —1: Nt} Noise-free observations: reliability
g analyses carried out

Pf*k = Pf (a*k ) Function realizations we want to predict



Step 2: Predictive mean and variance .yl 1NAlf

Noise-free observations n, = [mo (am), e ey M (aozvo )} D= (A09Pf0) ®
I RS o e
x L. . -
f : (Z0:),, :COV[Pf (aOi)’Pf(a*J)]:K(aOi’a*J)

Kernel function: encodes smoothness of the response
function. Return similarity between two points

Function realizations we
want to predict

By conditioning  p(Pr|A., Ay, Py )~ N(p +ZZog (Pry 1y ), Zoe —EoZgpEy )

Only the predictive marginal mean and variance are needed to quantify the predictive
uncertainty at each test point

m(af):m(a*f)J“Efozgé(Pfo_”0) o’ (a,)=x(a,a., ) =X, B Xy, i o

Mean value at each test point @ Variance value at each test point




4

Active learning: from training dataset to UB TINAI

Pr(a) 1

Initial Training Dataset:
few full reliability
analyses carried out for

UB response
estimation

¢

N pointsinR @ a>
! R
GP regression . Selection of one Enhanced
: Stopping . ) .
Model (using all criteria point © in R for Training Dataset
available data) improving UB UB

I iteration for UB I

Cicirello A. Propagation of Imprecise Probability descriptions via machine learning based optimization for robust reliability
analysis. In: International Symposium on Reliability Engineering and Risk Management 2022, Hannover, Germany, 2022.



Active learning: next point selection and stopping

Selection of one
point © in R for
improving UB

Stopping
criteria

4
11Nalf

Improvement |
By e = max [Py | 7) (a)= f))f (2) = Py ax if Pr(2)> Py

Probability of Improvement

p(17 (a))~ N (m(a) =By .07 ()

Expected Improvement

=] 1 (1 @)

A K

a__ =argmax [E[m (a)]

max
acRk

- max number of full reliability analyses has been reached
- criterion satisfied on the Acquisition Function (A < 0,0001)



UB and LB estimation: from the GP mean functior!
I Nalf

Initial Training Dataset:
few full reliability
analyses carried out for
Nt pointsinR @

I_ e e R e e e R MRS ORRR R R mem SR MR ORRRORRR RS SRR SRR OmRR R RRORRR oReR R s s e e e "

UB response I GP regression Stoopin Selection of one Enhanced |
estim:tion <:| I| Model (using all cri'rc,:riag point © inR for Training Dataset :
: available data) improving UB UB |

. [

max (Pf (a)) ~ lu(aUB,L ) 2 By max : I iteration for UB, L I |
I |

I |

. [

LB response : GP regression Stoopin Selection of one Enhanced |
estimation <:|I Model (using all cri'rc,:riag point @ in R for Training Dataset |
(| available data) improving LB LB |

[

I

: . l t |
r?elz? (Pf (a)) ~ U (aLB’S ) < Pﬂ)’mm I Separate iteration for LB, S 8 )



Results of the proposed approach

-2

251

45}

- 5 1 1 1 1 1
1.6 1.8 2 2.2 2.4 2.6 2.8

x10®

One realization of th?S randomly selected

initial points

Squared exponential kernel

Stop criteria: - max 5 simulation per bound
- A<0.0001

4
TINalf

max e
Py (a) S
04 - é?iﬁ};éf
0.3 -
18 — 3
2 T 3.5
10® - 24 e 45 4 a3
a2 2.6 min
Table 2. Lower Bound and Upper Bound results.
Bound Benchmark Initial GP Proposed Total of 15
Lower 0.21263 0.30953  0.21263 (Iter. 5)  at most for
Error . 45.57 9 0 % other
Upper 043025 040376 040376 (Iter. 1) Starting
points!
Error - 6.16 % 6.16 % 109




Conclusions ’
1 INalf

From statistical bounds to a Generalised Maximum Entropy distribution

A non-intrusive approach for propagating imprecise probability (as a parameterised pdf) to yield bounds of Pf:
- Drastically reducing the number of full reliability analyse to be carried out

- Embeds uncertainty in the response bounds estimates arising from having run few simulations

- For the case investigated: bounds obtained in 11 full reliability analyses, rather than 430!

No modifications of the expensive-to-evaluate

physics-based model and reliability model The predicted bounds wrt to current

observations:
Probabilistic model (GP) - Overpredict the UB
embedding both user - Underpredict the LB
knowledge (kernel) and
noise-free observations Explainable
(physics-based model +
reliability model) The bounds on the UB and LB
embed explicitly uncertainty
Selection of points in the basic of not having evaluated all t
variable domain justified in possible simulations = will be
terms of the trade-off between used in the future!
exploration and exploitation

Interpretable




Why is IP not (yet!) widely
used in Engineering?

What is the biggest challenge
in IP for Engineering?



Intervals analysis in engineering

» Used when upper and lower bounds are known reliably
* Sometimes absolutely sure, sometimes just a judgment

* Intervals are easy to understand
» Calculations with them are easy “— range

* They work with even the crappiest data

 Often sufficient for a decision

 Quicker than Monte Carlo

* The computations are guaranteed to enclose the true results (so long as the
inputs do)

 You can still be wrong, but the method won't be the reason if you are

112 - 13 Jan 2023
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University of
@ Strathclyde
- Glasgow

Summary
Imprecise probability allows to deal with Conzle-
lack of knowledge and imprecision “ 4 N

NCERTAINTY  Re¥

Rigorous propagation of uncertainty exist
(intrusive and non-intrusive) and freely
available libraries

Embedded feature in the digital twin and UQ

- I
a by-product EIA:IH + | ZQ



