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Object Preference Label Preference Choice functions
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Consistent Preferences - Plackett-Luce Model - Pareto rationality
Less rationality - Thurstone’s Model - quasi-rationality
- discernibility (Luce) - Bradley-Terry Model

- noise (Thurstone)
More rationality
- Monotonicity
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Preferences
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preference data

PL aims to learn preference models from observed, revealed or

automatically extracted preference information.
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Object Preference

Laptop Model Laptop 1

¢ %

» a set of objects {k| k=1,..., m}

» a vector of characteristics for each objects x, € RY
> X ={xx: k=1,...,m}

» an associated set of pairwise preferences of the form x; > x;
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What is a (strict) preference?

Asymmetry
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Negative Transitivity
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A strict preference relation is said to be consistent — rational — when it
satisfies the above two properties.



Utility representation

Definition

For a preference relation > on X, the function v : X — R represents > if

Xj = Xj if u(x;) > u(xj). (1)

We say that v is a utility function for .

Example

utility=taste utility=performance

Theorem (Debreu 1954)

The relation - admits a utility function representation iff it is consistent

(asymmetric and negatively transitive)
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Two-argument function representation

Definition

xi = x; if q(x;,x;) >0
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Example
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Xzt 4.5
Utility: 0.35

X1: 6.0

Utility: 0.24

} = u(sugar)
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Example
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X1 (6.0, 2.0)

Utility: 0.0253
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Object preference learning

1. Given D, = {x1 > X3,Xa > X0, X5 = X1,...}

?
2. Predict x, > x3
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Object PL: Parametric
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From Debreu's theorem, we can derive that

D= {x"=x: s=1,...,m} = {u(x1")—u(xW)>0: s=1,...

Functional form for u(x):

Linear [Har-Peled et al., 2002]: u(x) = w'x
Log-Linear [Dekel et al., 2003]: In u(x) = w'x
Non-linear (NNs): u(x) = w "bg(x)

The unknowns are determined by either solving a constrained

, m}

optimization problem or by minimizing a loss function. No uncertainty

representation.



Object PL: Non-parametric (Gaussian Process)

Dy = {ng) =x s=1,... . m= {u(xgs))—u(x(k)) >0: s=1,...,m}

By defining the objects as a matrix X = [x1,X2,...,x,] " and the vector
u(X) = [u(x1), u(x2),...,u(x,)]", we can write these m constraints as:
Wu(X) >0

Likelihood: p(Dm|u(X)) = lwux)>oy (u(X))
Prior: p(u(X)) = N(u(X); 0, Ko (X, X))
Posterior: p(u(X)|[Dm) = TNiwu(x)>o0y(u(X); 0, Ke(X, X))
Posterior pred.: p(u(X*)|Dp) = [ p(u(X*)|u(X)) p(u(X)|Dp)du(X)
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What is a GP?

10,0 /
75
o u(xq) m(xy) k(x1,x1)  k(xa, x2)
. U'Xy u(x) m(x) k(xz,x1)  k(x2, x2)
. wGa) | ~ N | G| | :
2 oo u(xs), u(xa) m(xs) : :
5 ulxs), u(xs) m(xs) k(xs,x1)  k(xs5,x2)
-25 //
ulx),
-5.0 . p ¢ (x—xD)?
Typical Kernel: kg(x,x") =exp | — 27 2
-7.5 2%
-100 /
-4 -2 4
X
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k(x1, x5)
k(x2, x5)

k(xs, x5)



Example

@
>

Xzt 4.5
Utility: 0.35

@

X1: 6.0
Utility: 0.24

SRR
?
{ LRl 5 ~ 8 e } = u(sugar) and predict u(5) > u(6)
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Prior

Prior:  p(u(x)) = GP(m(x), k(x, x"))

—— Mean of the Samples
95% Credible Region

0
u(5)-u(6)
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One preference

Posterior:  p(u(X)|Dm) = TNrwucx)so3 (u(X); 0, Ko (X, X))

['4.5 >2.01

0 1
u(5)-u(6)
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Two preferences

Posterior:  p(u(X)|Dm) = TNrwucx)so3 (u(X); 0, Ko (X, X))

['4.5>2.0','4.5 > 6.0']

0.0 05

10 15
u(5)-u(6)
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Five preferences

Posterior:  p(u(X)|Dm) = TNrwucx)so3 (u(X); 0, Ko (X, X))

['4.5>2.0','45>6.0",'55>8.0''50>55",'50>45']

000 025 050 075 100 125 150 175 2.00
u(5)-u(6)
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I The Nature of Intelligence
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of Intelligence
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Translating these ideas into statistical learning!
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User's preferences may be inconsistent

1. Limit of discernability:
43 4.4

- ¢

2. Noise in the observed utility

, ‘ 3.6 3.4| 3.4|
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Robustify the model: Limit of discernability

x; = x;  with probability ¢ (M)
X; = X;  with probability 1 — ® (%)

Likelihood: p(Dn[u(X)) = [] ¢ (w) = & (Yu(X))

Prior: p(u(X)) = /\y(u(X); 0. Ko(X, X))
Posterior: p(u(X)|Dy,) = SkewNormaI( ( ):0, Ko (X, X), A, T,7)
Posterior pred.: p(u(X*)|Dp) = [ p(u(X*)|u(X)) p(u(X)|Dp)du(X)

This model was derived in [Benavoli et al., 2021a, Benavoli et al., 2021b].
Originally proposed by [Chu and Ghahramani, 2005] using Laplace's
23 /45 approximation.



Five preferences

Posterior:  p(u(X)|Dnm) = SkewNormal(u(X); 0, Ko(X, X), A, T, 7)

['4.5>2.0','45>6.0','55>8.0','50>55",'50 > 45']
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User's preferences may be inconsistent due to time

» Monday:

&
v - %

» Tuesday:

é
A

Make the model to be aware of time:

Prior:  p(u(X, £)) = N(u(X, ); 0, Ke((X, ), (X, 1))
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More rationality

Objects are flights:

42 Discover the world with KLM cost
[ — jons orinfo v .
‘Get inspired by our exciting destinati M info duratlon
Sponsored X =
company

€1,064

dep. time

Additional rationality constraints:

This fight emits 243 less CO2e than a typical ight an this route

€777m
cost + & cost
S duration duration
O company company

dep. time dep. time

This fight emits 24% less CO2e than a typical ight on this route

or, equivalently,

m
€777

u(cost +0,...) < u(cost,...)

26 /45 Similarly for duration.



Monotonic GP

d

u<o0
dcost

u(cost) ~ GP(m(cost), k(cost, cost’)) subject to

SkewGP
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When gambles are the objects

—

Then there is a utility that represents the preference
u(x1) > u(x2)

Add monotonicity

0 0
7U(X1) > 0, aTnu(xl) >0

Given the preferences

{x1 =%, X1 >=X4...} learn wu
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When gambles are the objects
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—

Then there is a utility that represents the preference
u(x1) > u(x2)

Add monotonicity

0 0
7U(X1) > 0, aTnu(xl) >0

Given the preferences
{x1 =%, X1 >=X4...} learn wu
Add linearity

u(x1) = wixiy + woxgp  equiv.  w(x) ~ GP(0,xx ")



Multiple utilities and incompleteness

(cpu,drive) (cpu,drive)  (cpu,drive) (cpu,drive) (cpu,drive) (cpu,drive)

ML LD P

X1 (5.0, 3.5)
Utility: 0.1633

X2:(6.0, 2.0)
Utility: 0.0253
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Choice functions

& « 5 & o
(T F T8 (T
» rationality criteria for choices (Chernoff, Expansion, Aizerman,
Sen-a..)

(%) (%%

» utility representation
» A cupcake is selected if it is the best with respect to (at least)
one utility (in IP e-admissibility)
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Choice functions

&

A_{"mv\ivg}, C(A)_{g

=

» rationality criteria for choices (Chernoff, Expansion, Aizerman,
Sen-a..)
& & &
(8% %) (8%
» utility representation

» A cupcake is selected if it is the best with respect to (at least)
one utility (in IP e-admissibility)

L L
p(C(A), Alur(X), . . ., u (X)) = (1 = [T 10> un @) =TT ’u,-(v)>u,-(u)(u(x))> Uy Uz
{o.v} €C4(A) i=1 e
L
~ GP(0, k
1T (H <1 — Iu,-(v)>u,-(0)(u(X))> = (0, k)
VER(A) \i=1 o€ C(A) up ~ GP(0, k)
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Example: choosing ellipses

Two criteria:
» ‘“being closer to a circle”

> “being aligned to the axes”

The student selected the left and right-ellipse.
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Example: choosing ellipses

Dataset: 50 images 25 x 25 pixels and 160 choices
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Example: choosing ellipses

— ellipse1s — ellipse1s
—— ellipsels —— ellipse18
— ellipse21 — ellipse21

Posterior
Posterior
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Example: choosing ellipses

— ellipse3 A — ellipse3
—— ellipse6 —— ellipses
— ellipse23 — ellipse23

Posterior
Posterior

-75 =50 -25 0.0

u2

| could make ellipses that the model predicts you would
36,45 like the most.



Smart manufacturing
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Smart manufacturing
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Block 0
Block 1
Block 2
Block 3

Xo = [Power, Speed, HatchSpacing] = [300, 100, 40]
x1 = [90, 700, 140]

xo = [70, 250, 50]

x3 = [40, 550, 110]



Thank you

Preferences are everywhere!

u(x;) >0

u(xi) > u(x)

Tostar > U(Xi) > Tistar

7> u(x)>6

6.3+ € > u(x;) > 6.3




Thank you

Preferences are everywhere!

7> u(x)>6

6.3+ € > u(x;) > 6.3



Linear elliptical slice sampling [Gessner et al., 2020]

1. Given previous sample up(X)
2. Sample v(X) ~ N(u(X); 0, Ke(X, X))
3. Define the ellipse
up(X) cos(¢) + v(X)sin(¢), ¢ € [0,27)

4. Intercept ellipse with {Wu(X) > 0}

5. Sample ¢ at random inside the intersection

ur(X) = up(X) cos(¢) + v(X)sin(¢)
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Learning Hyperparameters

Marginal likelihood:

arg mgxp(D,,,|9) = //{WU(X)>0}(U(X))N(U(X);0, Ko(X, X))du(X)

Approximation:
1. Approximation of numerical integration for Truncated Gaussian;
2. Laplace's approximation;

3. Variational approximation.
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Preferential bayesian optimisation with skew gaussian
processes.

A unified framework for closed-form nonparametric regression,
classification, preference and mixed problems with skew
gaussian processes.
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Preference learning with gaussian processes.

Log-linear models for label ranking.

Integrals over gaussians under linear domain constraints.
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