

Structural Causal Models are Credal Networks?

joint work with Marco Zaffalon (IDSIA) and Rafael Cabañas (UAL)

Alessandro Antonucci (alessandro@idsia.ch)
Senior Lecturer Researcher IDSIA USI-SUPSI

slides
SIPTA Seminar, Virtual Event, Nov 28, 2023

Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA)

- World-class Research Institute on AI founded in 1988 in Lugano
- Affiliated with both University of Lugano (USI) and University of Applied Sciences of Southern Switzerland (SUPSI)
- Staff ~ 100 people +50 PhD

Framing the Topic

Bayesian Nets (≤ 1988)

Do Calculus
(≤ 2000)

Structural Causal Models
Credal (≤ 2016)

(Science >) Al > Deep Learning

"Deep learning has instead given us machines with truly impressive abilities but no intelligence.

The difference is profound and lies in the absence of a model of reality."

Pearl's Ladder of Causation and the Need for a Causal Al

\section*{Pearl's Ladder of Causation and the Need for a Causal Al credal nets
 | (Cay |
| :---: |
| A |

as a tool
to climb the top
R $=$ counterfactuals)
of the ladder}

ML/DL

(iiN) \begin{tabular}{l}
EXAMPLES:

What does a symptom tell me about a disease?

What does a survey tell us about the election results?
\end{tabular}

Structural Causal Models

- Manifest endogenous variable X
- Observations \mathscr{D} available
- From \mathscr{D} statistical learning of $P(X)$

$$
\begin{gathered}
\text { Boolean } X \\
P(X=0)=p
\end{gathered}
$$

Structural Causal Models

- Manifest endogenous variable X
- Observations \mathscr{D} available
- From \mathscr{D} statistical learning of $P(X)$
- A latent exogenous variable U

$U \in\{0,1,2,3\}$

U

$$
\begin{gathered}
\text { Boolean } X \\
P(X=0)=p
\end{gathered}
$$

Structural Causal Models

- Manifest endogenous variable X
- Observations \mathscr{D} available
- From \mathscr{D} statistical learning of $P(X)$
- A latent exogenous variable U
- States of U determines those of X through a structural equation f_{X} f_{X} surjective but not invertible

Structural Causal Models

- Manifest endogenous variable X
- Observations \mathscr{D} available
- From \mathscr{D} statistical learning of $P(X)$
- A latent exogenous variable U
- States of U determines those of X through a structural equation f_{X} f_{X} surjective but not invertible
- $P(x)=\sum_{x} P(x u) P(u)=\sum_{u} \delta_{f(u), x} P(u)$

$U \in\{0,1,2,3\}$

$$
\begin{aligned}
& f_{X}(U=0)=0 \\
& f_{X}(U=1)=0 \\
& f_{X}(U=2)=1 \\
& f_{X}(U=3)=1
\end{aligned}
$$

$$
f \boldsymbol{f} \quad \begin{array}{ll}
f_{X}(U=1)=0 \\
f_{X}(U=2)=1
\end{array}
$$

$$
\begin{gathered}
\text { Boolean } X \\
P(X=0)=p
\end{gathered}
$$

Structural Causal Models

- Manifest endogenous variable X
- Observations \mathscr{D} available
- From \mathscr{D} statistical learning of $P(X)$
- A latent exogenous variable U
- States of U determines those of X through a structural equation f_{X} f_{X} surjective but not invertible
- $P(x)=\sum_{x} P(x u) P(u)=\sum_{u} \delta_{f(u), x} P(u)$
- A $P(U)$ giving $P(X)$? More than one!

$$
P(U)=\left[\frac{p}{2}, \frac{p}{2}, \frac{1-p}{2}, \frac{1-p}{2}\right]
$$

$U \in\{0,1,2,3\}$

$$
\begin{aligned}
& f_{X}(U=0)=0 \\
& f_{X}(U=1)=0 \\
& f_{X}(U=2)=1 \\
& f_{X}(U=3)=1
\end{aligned}
$$

$$
f \begin{array}{ll}
f_{X}(U=1)=0 \\
f_{X}(U=2)=1
\end{array}
$$

$$
\begin{gathered}
\text { Boolean } X \\
P(X=0)=p
\end{gathered}
$$

Structural Causal Models

- Manifest endogenous variable X
- Observations \mathscr{D} available
- From \mathscr{D} statistical learning of $P(X)$
- A latent exogenous variable U
- States of U determines those of X through a structural equation f_{X} f_{X} surjective but not invertible
- $P(x)=\sum_{x} P(x u) P(u)=\sum_{u} \delta_{f(u), x} P(u)$
- $P(U)$ giving $P(X)$? More than one!
- Causal inference to be based on the credal set $K(U)$ compatible with $P(X)$

Structural Causal Models $K(U)=\{P(U): P(U=0)+P(U=1)=p\}$

- Manifest endogenous variable X

$$
P(U)=\left[\frac{p}{2}, \frac{p}{2}, \frac{1-p}{2}, \frac{1-p}{2}\right]
$$

- Observations \mathscr{D} available

$$
U \in\{0,1,2,3\}
$$

- From \mathscr{D} statistical learning of $P(X)$
- Alat This is a (minimalistic) throl f_{X} su

structural causal model

- $P(x)=\sum_{x} P(x u) P(u)=\sum_{u} \delta_{f(u), x} P(u)$
- $P(U)$ giving $P(X)$? More than one!

$$
\begin{gathered}
\text { Boolean } X \\
P(X=0)=p
\end{gathered}
$$

- Causal inference to be based on the credal set $K(U)$ compatible with $P(X)$

Structural Causal Models (General Definition)

- $\mathbf{X}:=\left(X_{1}, \ldots, X_{n}\right)$ (endogenous variables)
- $\mathbf{U}:=\left(U_{1}, \ldots, U_{m}\right)$ (exogenous variables)
- Directed graph \mathscr{G} assumed to be semi-Markovian = root in \mathbf{U}, non-root in \mathbf{X}
- Equation $X=f_{X}\left(\mathrm{~Pa}_{X}\right)$ for each $X \in \mathbf{X}$
- Marginal $P(U)$ for $U \in \mathbf{U}$ (assessed if possible)

Structural Causal Models (General Definition)

- $\mathbf{X}:=\left(X_{1}, \ldots, X_{n}\right)$ (endogenous variables)
- $\mathbf{U}:=\left(U_{1}, \ldots, U_{m}\right)$ (exogenous variables)
- Directed graph \mathscr{G} assumed to be semi-Markovian $=$ root in \mathbf{U}, non-root in \mathbf{X}
- Equation $X=f_{X}\left(\mathrm{~Pa}_{X}\right)$ for each $X \in \mathbf{X}$
- Marginal $P(U)$ for $U \in \mathbf{U}$ (assessed if possible)
- $\mathrm{SCM}=\mathrm{BN}$ with CPTs $P\left(X \mathrm{~Pa}_{X}\right)=\delta_{X, f_{X}\left(\mathrm{~Pa}_{X}\right)}$
- Joint PMF $P(\mathbf{x}, \mathbf{u})=\prod_{U \in \mathbf{U}} P(u) \prod_{X \in \mathbf{X}} \delta_{f_{x}\left(\mathrm{pa}_{x}, x\right.}$

Structural Causal Models (General Definition)

- $\mathbf{X}:=\left(X_{1}, \ldots, X_{n}\right)$ (endogenous variables)
- $\mathbf{U}:=\left(U_{1}, \ldots, U_{m}\right)$ (exogenous variables)
- Directed graph \mathscr{G} assumed to be semi-Markovian $=$ root in \mathbf{U}, non-root in \mathbf{X}
- Equation $X=f_{X}\left(\mathrm{~Pa}_{X}\right)$ for each $X \in \mathbf{X}$
- Marginal $P(U)$ for $U \in \mathbf{U}$ (assessed if possible)
- $\mathrm{SCM}=\mathrm{BN}$ with CPTs $P\left(X \quad \mathrm{~Pa}_{X}\right)=\delta_{X, f_{X}\left(\mathrm{~Pa}_{X}\right)}$
- Joint PMF $P(\mathbf{x}, \mathbf{u})=\prod_{U \in \mathbf{U}} P(u) \prod_{X \in \mathbf{X}} \delta_{f_{X}(\mathrm{pa})_{X}, x}$
- Here discrete vars, continuous case analogous

$$
\begin{gathered}
U=\{X, Y\}, \quad V=\{Z\}, \quad F=\left\{f_{Z}\right\} \\
f_{Z}: Z=2 X+3 Y
\end{gathered}
$$

Structural Causal Models (General Definition)

- $\mathbf{X}:=\left(X_{1}, \ldots, X_{n}\right)$ (endogenous variables)

- d Dife $\quad \mathrm{SCMs}$ as (one of) the semi
- Equa most powerful tools
- Mars
- SCM for causal analyses
- Joint PMF $P(\mathbf{x}, \mathbf{u})=\prod_{U \in \mathbf{U}} P(u) \prod_{X \in \mathbf{X}} \delta_{f_{X}(\mathrm{pa})_{X}, x}$
- Here discrete vars, continuous case analogous

$$
\begin{gathered}
U=\{X, Y\}, \quad V=\{Z\}, \quad F=\left\{f_{Z}\right\} \\
f_{Z}: Z=2 X+3 Y
\end{gathered}
$$

Headache Example (Staying on the First Rung)

- You take aspirin $(X=1)$ and headache vanishes $(Y=1)$
- Probability that this has been due to aspirin?
- Observational data \mathscr{D} about the two variables available
- From $\mathscr{D}, P(Y=0 X=0)=0.5>P(Y=0 X=1)=0.1$

X	Y	n
0	0	\cdots
0	1	\cdots
1	0	\cdots
1	I	\cdots

Headache Example (Staying on the First Rung)

- You take aspirin $(X=1)$ and headache vanishes $(Y=1)$
- Probability that this has been due to aspirin?
- Observational data \mathscr{D} about the two variables available
- From $\mathscr{D}, P(Y=0 X=0)=0.5>P(Y=0 X=1)=0.1$
- Not genuine causal analysis: adding further covariates might give contradictory results (Simpson's paradox)

Headache Example (Staying on the First Rung)

- You take aspirin $(X=1)$ and headache vanishes $(Y=1)$
- Probability that this has been due to aspirin?
- Obs
- Fron
- Not migh

Time to climb up

 the ladder

Take the Aspirin! (Interventions = Second Rung)

- Gender Z as an additional (endogenous) variable
- Markovian \mathscr{G} (one exo parent for each endo)

- Force people to take aspirin $=$ intervention $\operatorname{do}(X=1)$

Take the Aspirin! (Interventions = Second Rung)

- Gender Z as an additional (endogenous) variable
- Markovian \mathscr{G} (one exo parent for each endo)

- Force people to take aspirin $=$ intervention $\operatorname{do}(X=1)$
- f_{X} should be modified (constant output), after a surgery on \mathscr{G} (incoming arcs removed) intervention = observation

Take the Aspirin! (Interventions = Second Rung)

- Gender Z as an additional (endogenous) variable
- Markovian \mathscr{G} (one exo parent for each endo)

- Force people to take aspirin $=$ intervention $\operatorname{do}(X=1)$
- f_{X} should be modified (constant output), after a surgery on \mathscr{G} (incoming arcs removed) intervention = observation
- Pearl's do calculus allows to reduce interventional queries to observational ones (solved by BN inference)
- E.g., backdoor $P(y \operatorname{do}(X=x))=\sum P(y x, z) \cdot P(z)$
- Do calculus only needs \mathscr{G} (and not the SCM)!

Identifiability of Causal Queries

- Do calculus reduces interventional to observational queries by exploiting d-separation in SCMs
- Sound and complete (graph-theoretic) algorithm

+ inference in the empirical joint PMF
- Alternatively: surgery and inference in the SCM ...

Identifiability of Causal Queries

- Do calculus reduces interventional to observational queries by exploiting d-separation in SCMs
- Sound and complete (graph-theoretic) algorithm + inference in the empirical joint PMF
- Alternatively: surgery and inference in the SCM ...
- Not all queries can be computed by do calculus. If not we call the query unidentifiable
- Emerging idea: unidentifiable queries are only partially identifiable (bounds can be estimated!)
- Recent works in this field by various groups: sampling (Bareinboim), poly programming (Shpitser)

$P\left(x_{3} \operatorname{do}\left(x_{2}\right) \in[l, u]\right.$

Identifiability of Causal Queries

- Do calculus reduces interventional to observational quer
- Sour Optimisation techniques + Alte
- Alter
- Not If no partial identifiability
- Emerging idea: unidentifiable queries are only partially identifiable (bounds can be estimated!)
- Recent works in this field by various groups: sampling (Bareinboim), poly programming (Shpitser)

Back to Headache (Moving to the Third Rung)

- What if I had not taken the aspirin, would have headache stayed?

- An intervention contrasting the current observation ...
- This is a counterfactual query $P\left(Y_{X=0}=0 \quad X=1, Y=1\right)^{U}$ (called probability of necessity, PN , sub denote do)

$U ¢ \quad \varphi V$
$X \stackrel{\downarrow}{\bullet}$

Back to Headache (Moving to the Third Rung)

- What if I had not taken the aspirin, would have headache stayed?

- An intervention contrasting the current observation ...
- This is a counterfactual query $P\left(Y_{X=0}=0 \quad X=1, Y=1\right)^{U} \quad{ }_{l} V$
(called probability of necessity, PN , sub denote do) $\quad X$ U
- We need the complete SCM: $\mathscr{G}+\left\{f_{X}\right\}_{X \in \mathbf{X}}+\{P(U)\}_{U \in \mathbf{U}}$
- With complete SCM, an augmented model called twin network with duplicated endogenous variables is used X^{\prime} for counterfactual analysis after surgery
- (Non-trivial) counterfactuals are unidentifiable!

To Compute Counterfactuals ...

- We need a fully specified SCM, i.e.,

1. Graph \mathscr{G} over (\mathbf{X}, \mathbf{U})
(often available by domain expert or Markovian assumption)
2. Endogenous equations $\left\{f_{X}\right\}_{X \in \mathbf{X}}$ (available or obtained by complete enumeration)
3. Exogenous marginals $\{P(U)\}_{U \in \mathbf{U}}$ (rarely available)

To Compute Counterfactuals ...

- We need a fully specified SCM, i.e.,

1. Graph \mathscr{G} over (\mathbf{X}, \mathbf{U})
(often available by domain expert or Markovian assumption)
2. Endogenous equations $\left\{f_{X}\right\}_{X \in \mathbf{X}}$ (available or obtained by complete enumeration)
3. Exogenous marginals $\{P(U)\}_{U \in \mathbf{U}}$ (rarely available)

- Latent $P(\mathbf{U})=\prod P(U)$ unavailable? We have data \mathscr{D} about \mathbf{X}
- Compute counterfactual $=$ Compute $\{P(U)\}_{U \in \mathbf{U}}$ from \mathscr{D}
- Not a new problem: LP approach for special cases already in Balke and Pearl (1994), but do-calculus reduced attention to CFs

Causal Analysis at the Party (Balke \& Pearl 1994)
\mathbf{U}_{A}

Ann sometimes goes to parties
Bob is not a party guy, but he likes Ann and he might be there Carl broke up with Ann, he tries to avoid Ann, but he likes parties Carl and Bob hate each other, they might have a Scuffle if both at the party

Causal Analysis at the Party (Balke \& Pearl 1994)

CAUSAL GOSSIP

INTERVENTIONAL

COUNTERFACTUAL

and he might be there
"Ann must not be
trieatthe party,
ort Bob would be there instead of home might have a $P\left(B^{\text {th }} \mathrm{do}(\bar{a})\right)=$?

"If Bob were at the party, us then Bob and Carl
would surely Scuffle"
$P\left(S_{b}^{c} \bar{b}\right)=$?
a (fully specified) SCM can answer these questions

Let's (Eventually) Use IPs!

- Find the exogenous marginals?

$$
P\left(U_{A}\right) P\left(U_{B}\right) P\left(U_{C}\right) P\left(U_{S}\right)
$$

Let's (Eventually) Use IPs!

- Find the exogenous marginals?

$$
P\left(U_{A}\right) P\left(U_{B}\right) P\left(U_{C}\right) P\left(U_{S}\right)
$$

- Endogenous (= with $\mathscr{D})$ consistency

$$
\sum_{{ }^{4}, u_{B}, u_{C}, u_{D}}\left[p\left(u_{A}\right) \cdot \delta_{a, f_{A}\left(u_{A}\right)} \cdot p\left(u_{B}\right) \cdot \delta_{b, f_{B}\left(a, u_{B}\right)} \cdot p\left(u_{C}\right) \cdot \delta_{c, f_{C}\left(a, u_{c}\right)} \cdot p\left(u_{S}\right) \cdot \delta_{s, f_{S}\left(b, c, u_{S}\right)}\right]=\tilde{p}(a, b, c, s)
$$

Let's (Eventually) Use IPs!

- Find the exogenous marginals?

$$
P\left(U_{A}\right) P\left(U_{B}\right) P\left(U_{C}\right) P\left(U_{S}\right)
$$

- Endogenous (= with $\mathscr{D})$ consistency
- This induces global non-linear (so-called Verma) constraints

Empirical, known

$$
\sum_{u_{A}, u_{B}, u_{C}, u_{D}}\left[p\left(u_{A}\right) \cdot \delta_{a, f_{A}\left(u_{A}\right)} \cdot p\left(u_{B}\right) \cdot \delta_{b, f_{B}\left(a, u_{B}\right)} \cdot p\left(u_{C}\right) \cdot \delta_{c, f_{C}\left(a, u_{c}\right)} \cdot p\left(u_{S}\right) \cdot \delta_{s, f_{S}\left(b, c, u_{S}\right)}\right]=\tilde{p}(a, b, c, s)
$$

Let's (Eventually) Use IPs!

- Find the exogenous marginals?

$$
P\left(U_{A}\right) P\left(U_{B}\right) P\left(U_{C}\right) P\left(U_{S}\right)
$$

- Endogenous (= with $\mathscr{D})$ consistency
- This induces global non-linear (so-called Verma) constraints
- Constraints became local and
 linear ones by marginalisation and conditioning (Zaffalon et al., 2020)

Unknown

Unknown
Unknown

$$
\sum_{u_{A}, u_{B}, u_{C}, u_{D}}\left[p\left(u_{A}\right) \cdot \delta_{a, f_{A}\left(u_{A}\right)} \cdot p\left(u_{B}\right) \cdot \delta_{b, f_{B}\left(a, u_{B}\right)} \cdot p\left(u_{C}\right) \cdot \delta_{c, f_{C}\left(a, u_{c}\right)} \cdot p\left(u_{S}\right) \cdot \delta_{s, f_{S}\left(b, c, u_{S}\right)}\right]=\tilde{p}(a, b, c, s)
$$

Constraining Exogenous Marginals

$$
f_{B}\left(a, u_{B}\right)
$$

Constraining Exogenous Marginals

$$
\begin{aligned}
& P(a)=\sum P\left(a u_{A}\right) \cdot P\left(u_{A}\right) \\
& P(b a) \stackrel{u_{A}}{=} \sum P\left(b a, u_{B}\right) \cdot P\left(u_{B}\right) \\
& P(c a)=\sum^{u_{B}} P\left(c a, u_{C}\right) \cdot P\left(u_{C}\right) \\
& P(s b, c)=\sum_{u_{S}}^{u_{C}} P\left(s b, c, u_{S}\right) \cdot P\left(u_{S}\right)
\end{aligned}
$$

Constraining Exogenous Marginals

$$
\begin{aligned}
& P(a)=\sum P\left(a u_{A}\right) \cdot P\left(u_{A}\right) \\
& P(b a) \stackrel{u_{A}}{=} \sum P\left(b a, u_{B}\right) \cdot P\left(u_{B}\right) \\
& P\left(\begin{array}{cc}
c & a)=\sum^{u_{B}} P\left(c a, u_{C}\right) \cdot P\left(u_{C}\right)
\end{array}\right. \\
& P(s \quad b, c)=\sum_{u_{S}} P\left(s \quad b, c, u_{S}\right) \cdot P\left(u_{S}\right)
\end{aligned}
$$

- Linear constraints on marginal exogenous probabilities leading to the credal sets specification $K\left(U_{A}\right), K\left(U_{B}\right), K\left(U_{C}\right), K\left(U_{S}\right)$
- Structural equations (= endogenous CPTS) remain unaffected

Constraining Exogenous Marginals

$$
\begin{aligned}
& P(a)=\sum P\left(a u_{A}\right) \cdot P\left(u_{A}\right) \\
& f_{B}\left(a, u_{B}\right) \\
& P(b a)= \\
& { }_{\mathbf{c}}^{\mathbf{u}_{\mathrm{c}}} f_{\mathrm{C}}\left(a, u_{\mathrm{C}}\right) \\
& \text { SCMs are CN! } \\
& P\left(\begin{array}{ll}
c & a
\end{array}\right)=\sum^{u_{B}} \\
& P(s \quad b, c)=\sum_{u_{S}}^{u_{c}} P\left(s \quad b, c, u_{S}\right) \cdot P\left(u_{S}\right) \\
& \text { s) } f_{S}\left(b, c, u_{S}\right)
\end{aligned}
$$

- Linear constraints on marginal exogenous probabilities leading to the credal sets specification $K\left(U_{A}\right), K\left(U_{B}\right), K\left(U_{C}\right), K\left(U_{S}\right)$
- Structural equations (= endogenous CPTS) remain unaffected

Reducing Causal Queries to CN Inference

- Consistent SCMs as a single CN

Reducing Causal Queries to CN Inference

- Consistent SCMs as a single CN
- d-separation holds for CNs, we can do surgery à la Pearl
- CN algs to compute bounds!

Reducing Causal Queries to CN Inference

- Consistent SCMs as a single CN
- d-separation holds for CNs, we can do surgery à la Pearl
- CN algs to compute bounds!
- Interventions are straightforward

$$
\left.P(B \quad \operatorname{do}(\bar{a})) \in\left[\begin{array}{ll}
\underline{P}^{\prime}(B & \bar{a}), \bar{P}^{\prime}(B \\
\bar{a}
\end{array}\right)\right]
$$

Reducing Causal Queries to CN Inference

- Consistent SCMs as a single CN
- d-separation holds for CNs, we can do surgery à la Pearl
- CN algs to compute bounds!
- Interventions are straightforward $P(B \quad \operatorname{do}(\bar{a})) \in\left[\begin{array}{ll}\left.\underline{P}^{\prime}\left(\begin{array}{ll}B & \bar{a}\end{array}\right), \bar{P}^{\prime}\left(\begin{array}{ll}B & \bar{a}\end{array}\right)\right]\end{array}\right.$
- Counterfactuals require twin nets $P\left(S_{b} \bar{b}\right) \in\left[\underline{P}\left(S \quad b, \bar{b}^{\prime}\right), \bar{P}\left(S \quad b, \bar{b}^{\prime}\right)\right]$
- Identifiable? $\underline{P}=\bar{P}$

Markovian and Quasi-Markovian SCMs as CNs

```
Algorithm 1 Given an SCM \(M\) and a PMF \(\tilde{P}(\boldsymbol{X})\), return CSs \(\{K(U)\}_{U \in \boldsymbol{U}}\)
    : for \(X \in X\) do
        \(U \leftarrow \operatorname{Pa}(X) \cap \boldsymbol{U} \quad / / U\) as the unique exogenous parent of \(X\)
        \(\underline{\mathrm{Pa}(X) \leftarrow \mathrm{Pa}(X) \backslash\{U\} \quad / / \text { Endogenous parents of } X}\)
        if \(\underline{\mathrm{Pa}}(X)=\phi\) then
            \(K(U) \leftarrow\left\{P^{\prime}(U): \sum_{u \in f_{X}^{-1}} P^{\prime}(u)=\tilde{P}(x), \forall x \in \Omega_{X}\right\} \quad / /\) Eq. (4)
        else
            \(K(U) \leftarrow\left\{P^{\prime}(U): \sum_{u \in f_{\bar{X} \underline{\operatorname{pap}(X)}}^{-1}(x)} P^{\prime}(u)=\tilde{P}(x \mid \underline{\operatorname{pa}}(X)), \forall x \in \Omega_{X}, \forall \underline{\mathrm{pa}}(X) \in \Omega_{\underline{\underline{\mathrm{Pa}}_{x}}}\right\} \quad\) // Eq. (6)
        end if
    end for
```

```
Algorithm 2 Given an SCM \(M\) and a PMF \(\tilde{P}(\boldsymbol{X})\), return CSs \(\{K(U)\}_{U \in \boldsymbol{U}}\)
    : for \(U \in \boldsymbol{U}\) do
        \(\left\{X_{U}^{k}\right\}_{k=1}^{n_{U}} \leftarrow \operatorname{Sort}[X \in \boldsymbol{X}: U \in \operatorname{Pa}(X)] \quad / /\) Children of \(U\) in topological order
        \(\gamma \leftarrow \varnothing\)
        for \(\left(x_{U}^{1}, \ldots, x_{U}^{n_{U}}\right) \in x_{k=1}^{n_{U}} \Omega_{X_{U}^{k}}\) do
            for \(\left.\left(\underline{p a}\left(X_{U}^{1}\right), \ldots, \underline{p a}\left(X_{U}^{n_{U}}\right)\right) \in \times_{k=1}^{n_{U}} \Omega_{\underline{\mathrm{Pa}}\left(X_{U}^{k}\right)}\right)\) do
            \(\Omega_{U}^{-} \leftarrow \bigcap_{k=1}^{n_{U}} f_{X_{U}^{k} \mid \underline{p}\left(X_{U}^{k}\right)}^{-1}\left(x_{U}^{k}\right)\)
            \(\left.\gamma \leftharpoondown \gamma \cup\left\{\sum_{u \in \Omega_{U}^{\prime}} P(u)=\prod_{k=1}^{n_{U}} \tilde{P}\left(x_{U}^{k} \mid x_{U}^{1}, \ldots, x_{U}^{k-1}, \underline{\operatorname{pa}}\left(X_{U}^{1}\right)\right), \ldots, \underline{\mathrm{pa}}\left(X_{U}^{k}\right)\right)\right\}\)
            end for
        end for
        \(K(U) \leftarrow\{P(U): \gamma\} \quad / / \mathrm{CS}\) by linear constraints on \(P(U)\)
    end for
```

Quasi-Markovian Models

C GitHub

Software and Experiments

\triangle Crema
 Credal Models Algorithms

Java library for CNs

C GitHub

Software and Experiments

\triangle Crema
Credal Models Algorithms
Java library for CNs

Java library for Causal Inference built on the top of CREMA

Exact inference by credal variable elimination only for small models ApproxLP (Antonucci et al., 2014) allows to process larger models RMSE always $<0.7 \%$

Intermezzo: Belief Functions (as Credal Sets)

- Linear constraints for CN induced by SCM have a peculiar form
- These are CS corresponding to belief functions (Dempster '68, Shafer '76)
- Class of generalised probabilistic models
- PMF distributes mass over the singletons, BF over (poss. overlapping) sets
- Dempster's multi-valued mapping, in SCMs $\mathbf{U}=f^{-1}(\mathbf{X}), \mathrm{BF}(\mathbf{U}):=f^{-1}[P(\mathbf{X})]$
- Dedicated conditioning/combination rules
$\sum p_{(\omega)}=\operatorname{coman}$ u : condition
$\left.\sum_{u \in \Omega_{U}^{\prime}} \bar{P}(u)=\prod_{k=1}^{n_{U}} \tilde{P}\left(x_{U}^{k} \mid x_{U}^{1}, \ldots, x_{U}^{k-1}, \underline{p a}\left(X_{U}^{1}\right)\right), \ldots, \underline{\operatorname{pa}}\left(X_{U}^{k}\right)\right)$
$\cdot\left\{P^{\prime}(U): \sum_{u \in f \in f_{X}^{1} \underline{\underline{\underline{p}}(x)}}(x){ }{ }^{\prime}(u)=\tilde{P}(x \mid \underline{\operatorname{pa}}(X)), \forall x \in \Omega_{X}, \forall \underline{\operatorname{pa}}(X) \in \Omega_{\underline{\mathbf{p a}_{X}}}\right\}$

Credits: Fabio Cuzzolin

Back to SCM2CN: Non Quasi-Markovian Case

- Non Quasi-Markovian? Non-Linear constraint
- E.g., $\sum P\left(u_{1}\right) \cdot P\left(u_{2}\right)=\ldots$
- Merge exogenous variables $U:=\left(U_{1}, U_{2}\right)$
- Independence constraints can be disregarded
 (but higher exogenous dimensionality)
- Again CN approximate inference to solve causal queries
- State space dimensionality affects complexity
- We might have very large latent spaces ...

Canonical Specification of Structural Equations

- Finding the equations given \mathscr{G} only
- $P(B \quad A)$ should be a deterministic CPT

Canonical Specification of Structural Equations

- Finding the equations given \mathscr{G} only
- $P(B \quad A)$ should be a deterministic CPT

$P(B A)$

Canonical Specification of Structural Equations

- Finding the equations given \mathscr{G} only
- $P(B \quad A)$ should be a deterministic CPT
- U_{B} indexing all these deterministic CPTs

$P(B A, U)$

	$\mathrm{A}=0$	$\mathrm{~A}=1$	$\mathrm{~A}=0$	$\mathrm{~A}=1$	$\mathrm{~A}=0$	$\mathrm{~A}=1$	$\mathrm{~A}=0$
$\mathrm{~A}=1$							
$\mathrm{~B}=0$	1	1	1	0	0	1	0
$\mathrm{~B}=1$	0	0	0	1	1	0	1
	$\mathrm{U}=0$	$\mathrm{U}=1$	$\mathrm{U}=2$	$\mathrm{U}=3$			
	$B=0$	$B=A$	$B=\neg A$	$B=1$			

Canonical Specification of Structural Equations

- Finding the equations given \mathscr{G} only
- $P(B \quad A)$ should be a deterministic CPT
- U_{B} indexing all these deterministic CPTs

- Knowledge might discard some states (ex., Bob goes to the party if Ann does)

$$
P(B \quad A, U)
$$

Canonical Specification of Structural Equations

- Finding the equations given \mathscr{G} only
- $P\left(B^{A} A\right)$ should be a deterministic CPT
- U_{B} indexing all these deterministic CPTs

- Knowledge might discard some states (ex., Bob goes to the party if Ann does)
$P(B A, U)$
- With Boolean parent \& child) $U=4$ in general (exp size) :

$$
U=X^{\prod_{Y \in \operatorname{Pa}_{Y}} \mathrm{Y}}
$$

even more challenging
with multiple exogenous parents

Canonical Specification of Structural Equations

- Finding the equations given \mathscr{G} only
- $P\left(B_{A} A\right)$ should be a deterministic CPT
- U_{B} indexing
- Knowledge r (ex, Bob go \mathscr{G} and \mathscr{D} only $B A, U$)
- With Boolea

CFs based on

 $b=f_{B}\left(a, u_{B}\right)$in general (exp size) :

$$
U=X^{\prod_{Y \in \operatorname{Pa}_{Y}} \mathrm{Y}}
$$

even more challenging
with multiple exogenous parents

An Application: Counterfactual Analysis in Palliative Cares

- Study of terminally ill cancer patients' preferences wrt their place of death (home or hospital)
- \mathscr{G} obtained by expert knowledge and data
- Exogenous variables?

$$
\begin{aligned}
& \text { Impact on place of death in cancer patients: a causal } \\
& \text { exploration in Southern Switzerland } \\
& \text { Heidi Kern 1, Giorgio corani 2. David Huber 2 , Nicola vermes 2, Marco Zaffalon 2, } \\
& \text { Marco varini }{ }^{3} \text {, Claudia Wenzel 4, André Fringer 5 }
\end{aligned}
$$

- Markovian assumption (= no confounders)

An Application: Counterfactual Analysis in Palliative Cares

- Most patients prefer to die at home
- But a majority actually die in institutional settings
- Interventions by health care professionals can facilitate dying at home?

An Application: Counterfactual Analysis in Palliative Cares

- Importance of a variable?
- Probability of necessity and sufficiency

$$
P N S:=P\left(Y_{X=1}=1, Y_{X=0}=0\right)
$$

An Application: Counterfactual Analysis in Palliative Cares

- Importanar f marinhlar

- Pobabo Small CN but large P cardinalities CF inference

Causal Expectation Maximisation (Zaffalon et al., 2021)

- Exogenous variables are always missing (MAR, asystematic, way)

- Expectation Maximisation (Dempster 1977)
- Random initialisation of P(U)
- E-step: Missing data completion by expected (fractional) counts
- M-step: "completed" data to retrain P(U)
- Iterate until convergence
- EM goes to a (local/global) max of $\log P(\mathscr{D})$

Causal EM: Likelihood Unimodality

- Causal EM reduce should converge to global maxima only the corresponding $P(U)$ belongs to credal set $K(U)$
- Sampling initialisations = sampling of $K(U)$
- For each sample we obtain an inner point

Theorem 1. Let \mathscr{K} denote the set of quantifications for $\left\{P(U\}_{U \in U}\right.$ consistent with the following constraint to be satisfied for each $c \in \mathscr{C}$ and each $\boldsymbol{y}^{(c)}$:

$$
\begin{equation*}
\sum_{\substack{\boldsymbol{u}^{(c)}: f_{X}\left(\mathrm{pa}_{X}\right)=x \\ \forall X \in \boldsymbol{X}^{(c)}}} \prod_{X \in \boldsymbol{U}^{c}} P(u)=\prod_{X \in \boldsymbol{X}^{(c)}} \hat{P}\left(x \mid \boldsymbol{y}_{X}^{(c)}\right), \tag{8}
\end{equation*}
$$

where the values of u, x and $\boldsymbol{y}_{X}^{(c)}$ are those consistent with $\boldsymbol{u}^{(c)}$ and $\boldsymbol{y}^{(c)}$. If $\mathcal{K} \neq \varnothing$, the log-likelihood in Eq. (7) achieves its global maximum if and only if $\{P(U)\}_{U \in U} \in \mathcal{K}$. If $\mathcal{K}=\varnothing$, the marginal log-likelihood in Eq. (7) can only take values strictly lower than the global maximum.

alobal optimum

Causal EM: Guarantees?

- We first reduced causal queries to CN inference
- Causal EM reduces CN inference to (iterated) BN inference
- Identifiable queries? Each sample gives the same values (a numerical alternative to do-calculus)
- Unidentifiable? Each sample as an inner point
- Credible intervals can be derived

Theorem 5. Let $\left[a^{*}, b^{*}\right]$ denote the exact probability bounds of a causal query. Say that $\rho:=\left\{r_{i}\right\}_{i=1}^{n}$ are the outputs of n EMCC iterations, while $[a, b]$ is the interval induced by ρ, i.e., $a:=\min _{i=1}^{n} r_{i}$ and $b:=\max _{i=1}^{n} r_{i}$. By construction $a^{*} \leq a \leq b \leq b^{*}$. The following inequality holds:

$$
\begin{equation*}
P\left(a-\varepsilon L \leq a^{*} \leq b^{*} \leq b+\varepsilon L \mid \rho\right)=\frac{1+(1+2 \varepsilon)^{2-n}-2(1+\varepsilon)^{2-n}}{\left(1-L^{n-2}\right)-(n-2)(1-L) L^{n-2}}, \tag{13}
\end{equation*}
$$

where $L:=(b-a)$ and $\varepsilon:=\delta /(2 L)$ is the relative error at each extreme of the interval obtained as a function of the absolute allowed error $\delta \in(0, L)$.

Causal EM: Guarantees?

- We first reduced causal queries to CN inference
- Causal EM reduces CN inference to (iterated) BN inference
- Identifiable queries? Each sample gives the same values (a numerical alternative to do-calculus)
- Unidentifiable? Each sample as an inner point
- Credible intervals can be derived

Casual EM: Guarantees?

- We first reduced causal queries to CN inference
- Cay In practice?
lan 20 EM runs to get close to the actual bounds with 95\% credibility
- Cre For identifiable queries 9 runs to be

Theore are the sure with 99\% credibility

$$
\begin{equation*}
P\left(a-\varepsilon L \leq a^{*} \leq b^{*} \leq b+\varepsilon L \mid \rho\right)=\frac{1+(1+2 \varepsilon)^{2-n}-2(1+\varepsilon)^{2-n}}{\left(1-L^{n-2}\right)-(n-2)(1-L) L^{n-2}}, \tag{13}
\end{equation*}
$$

where $L:=(b-a)$ and $\varepsilon:=\delta /(2 L)$ is the relative error at each extreme of the interval obtained as a function of the absolute allowed error $\delta \in(0, L)$.

Causal EM: Experiments

PNS for artificial SMCs: quick convergence (= much faster than direct CN approach)

Counterfactual Analysis in Palliative Cares by Causal EM

- Importance of a variable?
- Probability of necessity and sufficiency

$$
P N S:=P\left(Y_{X=1}=1, Y_{X=0}=0\right)
$$

- 15 EM runs before convergence

PNS(Family_Awareness) $\in[0.06,0.10]$

PNS(Patient_Awareness) $\in[0.03,0.10]$
PNS(Triangolo) $\in[0.30,0.31]$

Coun One should act on Triangolo first: for instance,

- Im by making Triangolo available to all patients, we
- Pr should expect a reduction of people at the hospital by 30\%
- 15

This would save money too, and would allow politicians to do economic considerations as to which amount it is even economically profitable to fund Triangolo, and have patients die at home, rather than spending more to have patients die at the hospital

Causal Analysis from Biased Data

- Selective data acquisition (untreated M and treated F missing)

Treatment X	Recovery Y	Gender \mathbf{Z}	counts
0	0	0	2
1	0	0	41
0	1	0	114
1	1	0	313
0	0	1	107
1	0	1	109
0	1	1	13
1	1	1	1

[Müeller et al., 2022]

Causal Analysis from Biased Data

- Selective data acquisition (untreated M and treated F missing)
- A (Boolean) selector variable $S \equiv(X \neq Z)$

Treat, X	Recover y	Gender Z	Selector S	counts
$*$	$*$	$*$	0	2
I	0	0	1	41
$*$	$*$	$*$	0	114
1	1	0	1	313
0	0	1	1	107
$*$	$*$	$*$	0	109
0	1	1	1	13
$*$	$*$	$*$	0	1

[Müeller et al., 2022]

Causal Analysis from Biased Data

- Selective data acquisition (untreated M and treated F missing)
- A (Boolean) selector variable $S \equiv(X \neq Z)$
- Assume we know $n(S=0) \propto P(S=0)$

Treat, X	Recover y Y	Gender Z	Selector S	counts
1	0	0	1	41
1	1	0	1	313
0	0	1	1	107
0	1	1	1	13
*	*	*	0	226
$\left[\begin{array}{c}\text { [Müeller et al., 2022] }\end{array}\right.$				

Causal Analysis from Biased Data

- Selective data acquisition (untreated M and treated F missing)
- A (Boolean) selector variable $S \equiv(X \neq Z)$
- Assume we know $n(S=0) \propto P(S=0)$
- Interventional queries with bias?
- Do calculus for selection bias

Barenboim \& Tian (AAAI, 2015)

Treat, X	Recover y Y	Gender Z	Selector S	counts
1	0	0	1	41
1	1	0	1	313
0	0	1	1	107
0	1	1	1	13
$*$	$*$	$*$	0	226

[Müeller et al., 2022]

Recovering Causal Effects from Selection Bias

```
    Elias Bareinboim*
    Computer Science Department
University of California, Los Angeles
    Niversity of California, Los Angeles
    cb@cs.ucla.cdu
```

Department of Computer Science Iowa State University jtian@ iastate.cdu

Causal Analysis from Biased Data

- Selective data acquisition (untreated M and treated F missing)
- A (Boolean) selector variable $S \equiv(X \neq Z)$
- Assume we know $n(S=0) \propto P(S=0)$
- Interventional queries with bias?
- Do calculus for selection bias Barenboim \& Tian (AAAI, 2015)
- Unidentifiable queries?
- Our EM(CC) can be used for that!

Treat, X	Recover y Y	Gender Z	Selector S	counts
1	0	0	1	41
1	1	0	1	313
0	0	1	1	107
0	1	1	1	13
$*$	*	*	0	226

Back to the Biased Data ...

- S determined by an equation, a SCM!

$U X$	$U Y$	$U Z$	X	Y	Z	S	n
$*$	$*$	$*$	I	0	0	I	41
$*$	$*$	$*$	I	I	0	I	313
$*$	$*$	$*$	0	0	1	I	107
$*$	$*$	$*$	0	I	I	I	13
$*$	$*$	$*$	$*$	$*$	$*$	0	226

Back to the Biased Data ...

- S determined by an equation, a SCM!
- CN approach? No, $S=1$ induces relations between $P(U)$'s in the CN

$U X$	$U Y$	$U Z$	X	Y	Z	S	n
$*$	$*$	$*$	I	0	0	1	41
$*$	$*$	$*$	I	I	0	1	313
$*$	$*$	$*$	0	0	1	1	107
$*$	$*$	$*$	0	1	1	1	13
$*$	$*$	$*$	$*$	$*$	$*$	0	226

Back to the Biased Data ...

- S determined by an equation, a SCM!
- CN approach? No, $S=1$ induces relations between $P(U)$'s in the CN
- EM? Maybe, but "non-rectangular" missingness, might kill unimodality ...

$U X$	$U Y$	$U Z$	X	Y	Z	S	n
$*$	$*$	$*$	I	0	0	I	41
$*$	$*$	$*$	I	I	0	I	313
$*$	$*$	$*$	0	0	1	1	107
$*$	$*$	$*$	0	I	1	I	13
$*$	$*$	$*$	$*$	$*$	$*$	0	226

- Convergence to max preserved? (hence inner points of $[\underline{P}, \bar{P}]$)

Back to the Biased Data ...

- S determined by an equation, a SCM!
- CN approach? No, $S=1$ induces relations between $P(U)$'s in the CN
- EM? Maybe, but "non-rectangular" missingness, might kill unimodality ...

$U X$	$U Y$	$U Z$	X	Y	Z	S	n
$*$	$*$	$*$	I	0	0	I	41
$*$	$*$	$*$	I	I	0	I	313
$*$	$*$	$*$	0	0	1	1	107
$*$	$*$	$*$	0	1	1	1	13
$*$	$*$	$*$	$*$	$*$	$*$	0	226

- Convergence to max preserved? (hence inner points of $[\underline{P}, \bar{P}]$) Yes!

Theorem 4 As a function of $\{P(U)\}_{U \in \boldsymbol{U}}$, the log-likelihood in Eq. (7) has no local maxima and a global maximum equal to the value $L L^{*}$ in Eq. (6). Such a maximum is achieved if and only if the M-compatibility constraints in Eqs. (8) and (9) are satisfied.

Sketch of the proof

Sketch of the proof

$U X$	$U Y$	$U Z$	X	Y	Z	S	n
$*$	$*$	$*$	I	0	0	1	41
$*$	$*$	$*$	I	I	0	1	313
$*$	$*$	$*$	0	0	1	1	107
$*$	$*$	$*$	0	1	1	1	13
$*$	$*$	$*$	$*$	$*$	$*$	0	226

$\Omega_{X^{\prime}}:=\Omega_{X} \cup\{*\}$

$U X$	$U Y$	$U Z$	X^{\prime}	S	n
$*$	$*$	$*$	$\{100\}$	I	41
$*$	$*$	$*$	$\{110\}$	I	313
$*$	$*$	$*$	$\{00 \mid\}$	1	107
$*$	$*$	$*$	$\{011\}$	I	13
$*$	$*$	$*$	$\{*\}$	0	226

.
S

Sketch of the proof

$$
\Omega_{X^{\prime}}:=\Omega_{X} \cup\{*\}
$$

Counterfactual Bounds for Biased Data

Probability of Necessity and Sufficiency

$$
\begin{gathered}
\text { PNS }:=P\left(Y_{X=0}=0, Y_{X=1}=1\right) \\
\hline
\end{gathered}
$$

Treatment X	Recovery Y	Gender Z	counts
0	0	0	2
1	0	0	41
0	1	0	114
1	1	0	313
0	0	1	107
1	0	1	109
0	1	1	13
1	1	1	1

Current Work: Hybrid Data

Learning to Bound Counterfactual Inference from
 Observational, Biased and Randomised Data

Marco Zaffalon ${ }^{\text {a }}$, Alessandro Antonucci ${ }^{\text {a,* }}$, Rafael Cabañas ${ }^{\text {b }}$, David Huber ${ }^{\text {a }}$
IDSIA, Lugano (Switzerland)
${ }^{b}$ Department of Mathematics, University of Almería, Almería (Spain)

Study	Treatment	Gender	Survival	Counts
	do(drug)	female	survived	489
	do(drug)	female	dead	511
	do(drug)	male	survived	490
interventional	do(drug)	male	dead	510
	do(no drug)	female	survived	210
	do(no drug)	female	dead	790
	do(no drug)	male	survived	210
	do(no drug)	male	dead	790
observational	drug	female	survived	378
	drug	female	dead	1022
	drug	male	survived	980
	drug	male	dead	420
	no drug	female	survived	420
	no drug	female	dead	180
	no drug	male	survived	420
			dead	180

Table 1: Data from interventional and observational studies on the potential effects of a drug on patients affected by a deadly disease.

Treatment	Gender	Survival	W	Counts
drug	female	survived	drug	489
drug	female	dead	drug	511
drug	male	survived	drug	490
drug	male	dead	drug	510
no drug	female	survived	no drug	210
no drug	female	dead	no drug	790
no drug	male	survived	no drug	210
no drug	male	dead	no drug	790
drug	female	survived	w_{\varnothing}	378
drug	female	dead	w_{\varnothing}	1022
drug	male	survived	w_{\varnothing}	980
drug	male	dead	w_{\varnothing}	420
no drug	female	survived	w_{\varnothing}	420
no drug	female	dead	w_{\varnothing}	180
no drug	male	survived	w_{\varnothing}	420
no drug	male	dead	w_{\varnothing}	180

Table 2: A merged version of the two datasets in Table【 with the index variable W.

Current Work: Symbolic Knowledge Compilation (TPM 2023)

- Joint work with Adnan Darwiche and Hizuo Chen
- Our EM requires many (BN) queries
- Equations remain constant
- Compile BN once, use many times
- Symbolic compilation

Current Work: Symbolic Knowledge Compilation (TPM 2023)

- Joint work with Adnan Darwiche and Hizuo Chen
- Our EM requires many (BN) queries
- Equations remain constant
- Compile BN once, use many times
- Symbolic compilation

Current Work: Symbolic Knowledge Compilation (TPM 2023)

- Joint work with Adnan Darwiche and Hizuo Chen
- Our EM \square env: Panalieleae varabibe Eliminiatoins ACC: Symbolic Knowledge Compilation ACP: Parallelized Symbolic Knowledge

Compilation

- Equatic
- Compil $\frac{r^{\text {Tice}}}{\text { ma }}$
- Symbol

Current Work: Causal Graphs by LLMs (under preparation)

- GPT parsing causal statements in natural language

- Link with IPs? Multiple causal graphs might be returned!
- Many recent papers on bounding counterfactual wrt ignorance about the causal structure (credal structures?)

Conclusions

- Causality theories have an intimate connection with credal models
- Past research about CNs might offer new tools for causal analysis
- CNs offer formalism for a deeper SCMs understanding
- Lot of work to be done, causal ML/RL just at the beginning!
- Our current directions are:
- Canonical models
- Continuous Variables
- XAI (Counterfactual Explanations)
- "Credal EM" propagating credal initialisations?

Conclusions

- Causality theories have an intimate connection
- Past research about CNs might offer ney
- CNs offer formalism for a deeper
- Lot of works has to be done learning is just at the
- Our current dire
- Canon.

- co al \&Parallelisation
- Contmuous Variables
- Learning Causal Graphs (GPT)

slides

