

Context

roposa

How can we robustify a probability measure P_0 ?

And...what about

starting with \underline{P} ?

1. Distortion of probabilities

Neighbourhood models

d: distorting function comparing probabilities δ : distorting factor

 $B_d^{\delta}(P_0) = \{ P \mid d(P, P_0) \leq \delta \}$

Increasing Transformations

g:[0,1] o [0,1] increasing $g(t) \leq t$

Increasing transformations can be expressed as neighbourhood models

 $\underline{P}(A) = egin{cases} g(P_0(A)) & A
eq \mathcal{X} \\ 1 & A = \mathcal{X} \end{cases}$

2. Particular models

Vertical Barrier: $\underline{P}_{VBM}(A) = \max\{bP_0(A) + a, 0\}$ $a \le 0, b \ge 0, a + b \le 1$ $A \neq \mathcal{X}$

Linear Vacuous: $\underline{P}_{\text{LV}}(A) = (1 - \delta)P_0(A)$ $\delta \in [0,1]$, $A
eq \mathcal{X}$

 $\underline{P}_{\mathrm{PMM}}(A) = \max\{(1+\delta)P_0(A) - \delta, 0\}$ Pari Mutuel: $\delta > 0$

Total Variation: $\underline{P}_{TV}(A) = \max\{P_0(A) - \delta, 0\}$

 $\delta \geq 0$, $A \neq \mathcal{X}$

3. Distortion of lower probabilities

 Δ : family of distortion parameters

 $\{\phi_{\lambda}\}_{{\lambda}\in\Delta}$: family of transforming functions $\phi_{\lambda}: [\mathtt{0},\mathtt{1}] o [\mathtt{0},\mathtt{1}]$ ϕ_{λ} increasing $\phi_{\lambda}(t) \leq t$

Distortion procedure

$$\underline{Q}_{\lambda}[\underline{P}](A) = \begin{cases} \phi_{\lambda}(\underline{P}(A)) & A \neq \mathcal{X} \\ 1 & A = \mathcal{X} \end{cases}$$
 Imprecise LV: $\underline{\underline{Q}}_{\delta}[\underline{P}](A) = (1 - \delta)\underline{\underline{P}}(A)$ Imprecise PMM: $\underline{Q}_{\delta}^{PMM}[\underline{P}](A) = \max\{(1 + \delta)\underline{P}(A) - \delta, 0\}$

4. Particular (imprecise) models

Imprecise VBM: $\underline{Q}_{(a,b)}[\underline{P}](A) = \max\{b\underline{P}(A) + a, 0\}$

Imprecise LV: $\underline{Q}_{\delta}^{LV}[\underline{P}](A) = (1 - \delta)\underline{P}(A)$

Imprecise TV: $Q_{\delta}^{TV}[\underline{P}](A) = \max{\{\underline{P}(A) - \delta, 0\}}$

5. Desirable properties

Basic properties

Expansion (P1):

 $\underline{Q}_{\lambda_1}[\underline{P}] \leq \underline{Q}_{\lambda_2}[\underline{P}] \text{ if } \lambda_1 \succeq \lambda_2$

Semigroup (a) (P2a):

 $\underline{Q}_{\lambda_0}[\underline{P}] = \underline{P}$ for some $\lambda_0 \leq \lambda$ for any $\lambda \in \Lambda$

Semigroup (b) (P2b):

 $\underline{Q}_{\lambda_2+\lambda_1}[\underline{P}]=\underline{Q}_{\lambda_2}igl[\underline{Q}_{\lambda_1}[\underline{P}]igr]$

Structure preservation (P3):

 $Q_{\lambda}[\underline{P}]$ preserves the properties (ASL, coherence, ...) of \underline{P}

Reversibility (P4):

 $\underline{P}(A) = \varphi_{\lambda}(\underline{Q}_{\lambda}[\underline{P}](A))$ for some φ_{λ}

Distortion of credal sets

Expression as a neighbourhood (P8):

 $\mathcal{M}(\underline{Q}_{\lambda}[\underline{P}]) = \{Q \mid d(Q,\underline{P}) \leq \mu\}$

for some function d comparing probabilities and

lower probabilities and μ depending on λ

Extreme points commutativity (P9):
$$\underline{Q}_{\lambda}[\underline{P}](A) = \inf \left\{ Q(A) \mid Q \in \bigcup_{P \in \text{ext}(\mathcal{M}(\underline{P}))} \mathcal{M}(\underline{Q}_{\lambda}[P]) \right\}$$

Strong commutativity (P10):

 $\mathcal{M}(\underline{Q}_{\lambda}[\underline{P}]) = \bigcup \mathcal{M}(P)$ $P \in \mathcal{M}(\underline{P})$

Which are the desirable properties for a distortion procedure?

Invariance properties

Permutations (P5)

 σ : permutation $A = \{x_{i_1}, \ldots, x_{i_k}\}$ $A^{\sigma} = \{x_{\sigma(i_1)}, \ldots, x_{\sigma(i_k)}\}$ $\underline{P}^{\sigma}(A) = \underline{P}(A^{\sigma})$ $\underline{Q}_{\lambda}[\underline{P}]^{\sigma}(A) = \underline{Q}_{\lambda}[\underline{P}](A^{\sigma})$ $\underline{Q}_{\lambda}[\underline{P}] \longrightarrow (\underline{Q}_{\lambda}[\underline{P}])^{\sigma} = \underline{Q}_{\lambda}[\underline{P}^{\sigma}]$

Marginalisation (P6) Π : partition of \mathcal{X} \underline{P}^{Π} : restriction of \underline{P} to $\mathcal{P}(\Pi)$ $\underline{Q}_{\lambda}[\underline{P}]^{\Pi}$: restriction of $\underline{Q}_{\lambda}[\underline{P}]$ to $\mathcal{P}(\Pi)$

 $\underline{Q}_{\lambda}[\underline{P}] \longrightarrow (\underline{Q}_{\lambda}[\underline{P}])^{\Pi} = \underline{Q}_{\lambda}[\underline{P}^{\Pi}]$

Conditioning (P7) Regular extension B such that $Q_{\lambda}[\underline{P}](B)>0$ $\underline{P}_B = \underline{P}(\cdot|B)$ $Q_{\lambda}[\underline{P}]_{B} = Q_{\lambda}[\underline{P}](\cdot|B)$ $\underline{Q}_{\lambda}[\underline{P}] \longrightarrow (\underline{Q}_{\lambda}[\underline{P}])_B = \underline{Q}_{\lambda^*}[\underline{P}_B]$

Which properties

6.Results

are satisfied by each model?

Model	(P1)	\	(P2b)	ASL	Coh.	(P 2-monot.	P3) <i>k</i> -monot.	(P4)	(P5)	(P6)	(P7)	(P8)	(P9)	(P10)
IVBM	N.A.	N.A.	N.A.	//	/ / /	//	X	if $b \neq 0$ and $\min_{x} \underline{P}(\{x\}) \geq -a/b$	11	11	X	✓ ✓	/ /	✓ <u>P</u> 2-monot.
ITV	11	//	11	//	//	//	X	$\text{if } \delta \leq \min_{x} \underline{P}(\{x\})$	11	11	X	✓ ✓	11	✓<u>P</u> 2-monot.
ILV	11	11	X	//	/	//	√ √	√ √	11	11	X	✓ ✓	11	 ✓ P 2-monot.
IPMM	//	//	X	//	//	//	if $\underline{Q[P]}(A) > 0$ for $A \neq \emptyset$	$\text{if } \min_{x} \underline{P}(\{x\}) \geq \delta/_{1+\delta}$	//	//	X	if $\underline{P}(A) > 0$ for $A \neq \emptyset$	/ /	✓ <u>P</u> 2-monot.

7. Conclusions

- Some properties do not hold for all IVBM...
- ... but hold for specific models
- Remarkably, the ILV *always* preserves *k*-monotonicity and reversibility
- Under 2-monotonicity, distorting \underline{P} is equivalent to distorting $\mathcal{M}(\underline{P})$
- desirable gambles?
- is it possible to characterise the distortion through its associated set of almost
- ? are the solutions of a coalitional game preserved by the distortion?

8. References

- [1] Bronevich. "On the closure of families of fuzzy measures under eventwise aggregations", FSS 2005.
- Corsato, Pelessoni, Vicig. "Nearly-Linear uncertainty measures", IJAR 2019.
- Destercke. "A new contextual rule discounting rule for lower probabilities", IPMU 2010.
- Herron, Seidenfeld, Wasserman. "Divisive conditioning: further results on dilation", PhiSci 1997.
- Montes, Miranda, Destercke. "Unifying neighbourhood and distortion models: Part I", IJGS 2020.
- [6] Moral. "Discounting Imprecise Probabilities", The Mathematics of the Uncertain, 2018.
- [7] Nieto-Barba, Montes, Miranda. "The imprecise TV model and its connections with game theory", FSS 2025.