
On Nonparametric Predictive Inference for
Ordinal Data

Frank P.A. Coolen?, Pauline Coolen-Schrijner??, and Tahani A. Maturi

Department of Mathematical Sciences
Durham University, Durham, DH1 3LE, UK

frank.coolen@durham.ac.uk, tahani.maturi@durham.ac.uk

http://npi-statistics.com

Abstract. Nonparametric predictive inference (NPI) is a powerful fre-
quentist statistical framework based only on an exchangeability assump-
tion for future and past observations, made possible by the use of lower
and upper probabilities. In this paper, NPI is presented for ordinal data,
which are categorical data with an ordering of the categories. The method
uses a latent variable representation of the observations and categories
on the real line. Lower and upper probabilities for events involving the
next observation are presented, and briefly compared to NPI for non-
ordered categorical data. As an example application the comparison of
two groups of ordinal data is presented.

Key words: Categorical data; lower and upper probabilities; nonpara-
metric predictive inference; ordinal data; pairwise comparison.

1 Introduction

Nonparametric Predictive Inference (NPI) is a frequentist statistical framework
based only on few modelling assumptions, enabled by the use of lower and upper
probabilities to quantify uncertainty [2, 6]. In NPI, attention is restricted to one
or more future observable random quantities, and Hill’s assumption A(n) [11] is
used to link these random quantities to data, in a way that is closely related to
exchangeability [10]. Coolen and Augustin [7, 8] presented NPI for categorical
data with no known relationship between the categories, as an alternative to the
Imprecise Dirichlet Model (IDM) [15]. However, in many practical applications
the categories are ordered, in which case such data are also known as ordinal
data. It is important that such knowledge about ordering of categories is taken
into account, this paper presents the first NPI results for such data. The method
uses an assumed underlying latent variable representation, with the categories
represented by intervals on the real-line, reflecting the known ordering of the
categories and enabling application of the assumption A(n). An excellent recent
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overview of established statistical methods for ordinal data was presented by Liu
and Agresti [12]. The IDM can be applied to ordinal data, see e.g. Coolen [4]
who applied it to grouped lifetime data including right-censored observations,
but it does not naturally use the ordering of the categories.

Section 2 provides a brief introduction to NPI. Section 3 presents NPI for
ordinal data. For events which are of most practical interest, closed form formulae
for the NPI lower and upper probabilities are derived, and some properties of
these inferences are discussed. These results are briefly compared to NPI for non-
ordered categorical data [8] in Section 4. To illustrate the application of this new
method to practical problems, comparison of two groups of ordinal data is briefly
presented in Section 5. More general results, including multiple comparisons and
inferences for multiple future observations, together with more detailed analyses
of properties of such methods, will be presented elsewhere.

2 Nonparametric predictive inference

Nonparametric predictive inference [2, 6] is based on Hill’s assumption A(n) [11].
Let X1, . . . , Xn, Xn+1 be real-valued absolutely continuous and exchangeable
random quantities. Let the ordered observed values of X1, X2, . . . , Xn be denoted
by x1 < x2 < . . . < xn and let x0 = −∞ and xn+1 =∞ for ease of notation. We
assume that no ties occur; ties can be dealt with in NPI [6] but it is not relevant
in this paper. For Xn+1, representing a future observation, A(n) [11] partially
specifies a probability distribution by P (Xn+1 ∈ Ij = (xj−1, xj)) = 1

n+1 for
j = 1, . . . , n + 1. A(n) does not assume anything else, and can be considered
to be a post-data assumption related to exchangeability [10]. Inferences based
on A(n) are predictive and nonparametric, and can be considered suitable if
there is hardly any knowledge about the random quantity of interest, other than
the n observations, or if one does not want to use such information. A(n) is
not sufficient to derive precise probabilities for many events of interest, but it
provides bounds for probabilities via the ‘fundamental theorem of probability’
[10], which are lower and upper probabilities in interval probability theory [14,
16, 17].

In NPI, uncertainty about the future observation Xn+1 is quantified by lower
and upper probabilities for events of interest. Lower and upper probabilities
generalize classical (‘precise’) probabilities, and a lower (upper) probability for
event A, denoted by P (A) (P (A)), can be interpreted as supremum buying
(infimum selling) price for a gamble on the event A [14], or just as the maximum
lower (minimum upper) bound for the probability of A that follows from the
assumptions made [6]. This latter interpretation is used in NPI, we wish to
explore application of A(n) for inference without making further assumptions.
So, NPI lower and upper probabilities are the sharpest bounds on a probability
for an event of interest when only A(n) is assumed. Informally, P (A) (P (A)) can
be considered to reflect the evidence in favour of (against) event A.

Augustin and Coolen [2] proved that NPI has strong consistency properties
in the theory of interval probability [14, 16, 17]. Direct application of A(n) for
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inferential problems is only possible for real-valued random quantities. However,
by using assumed latent variable representations and variations to A(n), NPI has
been developed for different situations, including Bernoulli quantities [5]. Defin-
ing an assumption related to A(n), but on a circle instead of the real-line, Coolen
[6] enabled inference for circular data. This ’circular-A(n)’ assumption, in com-
bination with a latent variable representation using a probability wheel, enabled
NPI for non-ordered categorical data as presented by Coolen and Augustin [8],
with as additional attractive feature the possibility to include both defined and
undefined new categories in the event of interest [7]. Whilst it is natural to con-
sider inference for a single future observation in many situations, one may also
be interested in multiple future observations. This is possible in a sequential
way, taking the inter-dependence of the multiple future observations into ac-
count. For example in NPI for Bernoulli quantities this was included throughout
[5], and dependence of specific inferences on the choice of the number of future
observations was explicitly studied in the context of multiple comparisons [9].

3 NPI for ordinal data

In situations with ordinal data, there are k ≥ 2 categories to which observations
belong, and these categories have a natural fixed ordering, hence they can be
denoted by C1 < C2 < . . . < Ck. It is attractive to base NPI for such data on
the naturally related latent variable representation with the real-line partitioned
into k categories, with the same ordering, and observations per category rep-
resented by corresponding values on the real-line and in the specific category.
Assuming that multiple observations in a category are represented by different
values in this latent variable representation, the assumption A(n) can be applied
for the latent variables. This is now explained in detail, and for several important
situations closed forms for the NPI lower and upper probabilities are derived.
We focus mostly on situations with k ≥ 3, although the arguments also hold
for k = 2, in which case the NPI method presented in this paper is identical to
NPI for Bernoulli data [5]. We restrict attention to a single future observation,
the interesting case of ordinal data with multiple future observations will be
presented elsewhere.

We assume that n observations are available, with only the number of ob-
servations in each category given. Let nl ≥ 0 be the number of observations
in category Cl, for l = 1, . . . , k, so

∑k
l=1 nl = n. Let Yn+1 denote the random

quantity representing the category a future observation will belong to. We wish
to derive the NPI lower and upper probabilities for events Yn+1 ∈

⋃
l∈L Cl with

L ⊂ {1, . . . , k}. These do not follow straightforwardly from the NPI lower and
upper probabilities for the events involving single categories as lower (upper)
probabilities are super-additive (sub-additive) [14].

Using the latent variable representation, we assume that category Cl is rep-
resented by interval ICl, with the intervals IC1, . . . , ICk forming a partition
of the real-line and logically ordered, that is interval ICl has neighbouring in-
tervals ICl−1 to its left and ICl+1 to its right on the real-line (or only one of
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these neighbours if l = 1 or l = k, of course). We further assume that the n
observations are represented by x1 < . . . < xn, of which nl are in interval ICl,
these are also denoted by xl

i for i = 1, . . . , nl. A further latent variable Xn+1 on
the real-line corresponds to the future observation Yn+1, so the event Yn+1 ∈ Cl

corresponds to the event Xn+1 ∈ ICl. This allows A(n) to be directly applied
to Xn+1, and then transformed to inference on the categorical random quantity
Yn+1. The ordinal data structure for the latent variables is presented in Fig. 1.
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Fig. 1. Ordinal data structure

We now derive the NPI lower and upper probabilities for general events of
the form Yn+1 ∈ CL, with CL =

⋃
l∈L Cl and L ⊂ {1, . . . , k}. We assume that L is

a strict subset of {1, . . . , k}, as the event that a future observation falls into any
of the k categories is necessarily true and has NPI lower and upper probabilities
both equal to 1. Assuming A(n) for Xn+1 in the latent variable representation,
each interval Ij has been assigned probability mass 1/(n + 1) (see Section 2).
Although we do not know exactly the values xj , since they only exist in the
latent variable representation, we do know the number of these xj values in each
interval ICl.

To derive the NPI lower probability for the event Yn+1 ∈ CL, we derive the
NPI lower probability for the corresponding latent variable event Xn+1 ∈ ICL,
where ICL =

⋃
l∈L ICl and L ⊂ {1, . . . , k}. This lower probability is derived

by summing all probability masses assigned to intervals Ij that are fully within
ICL, so in effect we minimise the total probability mass assigned to ICL. Hence,
these NPI lower probabilities are

P (Yn+1 ∈ CL) = P (Xn+1 ∈ ICL) =
1

n+ 1

n+1∑
j=1

1{Ij ⊂ ICL} (1)

where 1{A} is equal to 1 if A is true and equal to 0 else. As we do not know the
exact locations of the intervals ICl, this may appear to be vague, yet the fact
that we know the numbers of xj values within each interval ICl suffices to get
unique values for these NPI lower probabilities.

The corresponding NPI upper probabilities are derived by maximising the
total probability mass that can be assigned to ICL. Without any further as-
sumptions on the way the probability mass 1/(n+ 1) is spread over an interval
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Ij , this means that we can include all such probability masses corresponding
to intervals Ij that have a non-empty intersection with ICL. So the NPI upper
probabilities are

P (Yn+1 ∈ CL) = P (Xn+1 ∈ ICL) =
1

n+ 1

n+1∑
j=1

1{Ij ∩ ICL 6= ∅} (2)

These NPI upper probabilities are also uniquely determined. The construction
of these NPI lower and upper probabilities can be presented following Shafer’s
concept of basic probability assignments [13], but it should be emphasized that
the NPI approach does not follow the Dempster-Shafer rule for updating which is
often associated with the use of basic probability assignments. Next, we present
closed form results for these NPI lower and upper probabilities for two special
cases which are of practical interest. Thereafter we briefly discuss some proper-
ties of these NPI lower and upper probabilities, and we present an example to
illustrate them.

3.1 Special cases

An important special case of these inferences concerns the event Yn+1 ∈ CL, with
CL consisting of adjoining categories, so the corresponding union of intervals ICL

forms a single interval on the real-line in the latent variable representation. For
this case simple closed forms for the NPI lower and upper probabilities are
available. Let L = {s, . . . , t}, with s, t ∈ {1, . . . , k}, s ≤ t, excluding the case
with s = 1 and t = k for which both the NPI lower and upper probabilities are
equal to 1. Let Cs,t =

⋃t
l=s Cl, ICs,t =

⋃t
l=s ICl and let ns,t =

∑t
l=s nl. Using

the notation (x)+ = max(x, 0), the NPI lower and upper probabilities (1) and
(2) for such events are

P (Yn+1 ∈ Cs,t) = P (Xn+1 ∈ ICs,t) =


(ns,t − 1)+

n+ 1
if 1 < s ≤ t < k

ns,t

n+ 1
if s = 1 or t = k

(3)

P (Yn+1 ∈ Cs,t) = P (Xn+1 ∈ ICs,t) =
ns,t + 1
n+ 1

for 1 ≤ s ≤ t ≤ k (4)

Of course, s = t is the event that the next observation belongs to one specific
category.

A further special case for which closed form expressions are available for the
NPI lower and upper probabilities occurs if nl > 0 for all l ∈ {1, . . . , k}, so there
are observations in all k categories. We need to consider if the categories C1 and
Ck are included in CL (so IC1 and ICk in ICL) and we need to take account of
all pairs of neighbouring categories which are both included in CL. Let

pL =
k−1∑
r=1

1{r, r + 1 ∈ L}
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be the number of neighbouring pairs of categories included in CL, and let

eL = 1{1 ∈ L}+ 1{k ∈ L}+ pL

We further introduce the notation sL for the number of categories in CL, so
sL = |L|, and nL =

∑
l∈L nl. Then the NPI lower probability (1), with L a strict

subset of {1, . . . , k}, is

P (Yn+1 ∈ CL) = P (Xn+1 ∈ ICL) =
∑

l∈L(nl − 1) + eL

n+ 1
=
nL − sL + eL

n+ 1
(5)

and the corresponding NPI upper probability (2) is

P (Yn+1 ∈ CL) = P (Xn+1 ∈ ICL) =
∑

l∈L(nl + 1)− pL

n+ 1
=
nL + sL − pL

n+ 1
(6)

These two special cases are likely to cover many situations of practical in-
terest. The problem for deriving a simple general closed form expression for the
NPI lower and upper probabilities (1) and (2) results from accounting for one
or more consecutive categories without any observations in the event of inter-
est, in which case it is important whether or not there are observations in the
neighbouring categories.

3.2 Properties

The NPI lower and upper probabilities (1) and (2) satisfy the conjugacy property
P (Yn+1 ∈ CL) = 1−P (Yn+1 ∈ CLc) for all L ⊂ {1, . . . , k} and Lc = {1, . . . , k}\L,
which follows from 1{Ij ⊂ ICL}+ 1{Ij ∩ ICc

L 6= ∅} = 1 for all j = 1, . . . , n+ 1.
Augustin and Coolen [2] prove stronger consistency properties for NPI lower
and upper probabilities for real-valued random quantities within the theory of
Weichselberger [16, 17], in particular that they are F -probability. Their results
apply directly to the NPI lower and upper probabilities for Xn+1 in the latent
variable representation in this paper, and hence also imply that the NPI lower
and upper probabilities (1) and (2) for the categorical random quantity Yn+1

are F -probability. This implies the above mentioned conjugacy property, and
also coherence of these lower and upper probabilities in the sense of Walley [14].
However, Walley-coherence goes further by also considering such lower and upper
probabilities at different moments in time, that is to say with different numbers
of observations as is relevant in case of updating. In NPI, updating is performed
by just calculating the relevant lower and upper probabilities using all available
data, and is not performed via conditioning on prior sets of probabilities [2].
The NPI lower and upper probabilities (1) and (2) bound the corresponding
empirical probability for the event of interest, so

P (Yn+1 ∈ CL) ≤ nL

n
≤ P (Yn+1 ∈ CL) (7)

Property (7) can be considered attractive when aiming at ’objective inference’,
and the possibility to satisfy this property is an important advantage of statistical
methods using lower and upper probabilities [6].
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3.3 Example

Suppose there are k = 5 ordered categories, C1 < . . . < C5, and n = 11 observa-
tions with n1 = 1, n2 = 3, n3 = 1, n4 = 4 and n5 = 2, so equations (5) and (6)
can be used. The NPI lower and upper probabilities for several events Y12 ∈ CL
are given in Table 1, together with the corresponding empirical probability nL/n.

L P P nL/n

{1} 1/12 2/12 1/11
{2} 2/12 4/12 3/11
{3} 0 2/12 1/11
{4} 3/12 5/12 4/11
{5} 2/12 3/12 2/11
{1, 2} 4/12 5/12 4/11
{1, 2, 3} 5/12 6/12 5/11
{2, 3, 4} 7/12 9/12 8/11
{1, 2, 4} 7/12 10/12 8/11
{1, 2, 4, 5} 10/12 1 10/11

Table 1. NPI lower and upper probabilities

These lower and upper probabilities illustrate the relation (7), and they also
show that the difference between corresponding upper and lower probabilities is
not constant. The lower and upper probabilities for the events with L consisting
of a single category or a group of adjoining categories also illustrate the lower
and upper probabilities (3) and (4) from the first special case discussed above.

4 Comparison to NPI for non-ordered categorical data

Coolen and Augustin [8] presented NPI for categorical data with a known number
of possible categories yet with no ordering or other known relationship between
the categories. Their inferences are based on a latent variable representation
using a probability wheel, with each category represented by a single segment
of the wheel yet without any assumption about the specific configuration of the
wheel. Their NPI lower and upper probabilities with regard to the next observa-
tion are further based on a circular version of A(n) [6] and optimisation over all
possible configurations of the probability wheel that are possible corresponding
to the data and this so-called circular-A(n) assumption. Coolen and Augustin
[7] illustrated how this model can also be used in case of an unknown number of
possible categories, which is less likely to be of relevance in case of ordinal data
hence we have not addressed it here. For further details of NPI for non-ordered
categorical data we refer to Coolen and Augustin [8], we just wish to emphasize
that the inferences can differ substantially if categories are known to be ordered
and therefore the inferences presented here are applied.
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To illustrate that NPI for non-ordered categorical data and NPI for ordinal
data can be very different, consider the following simple example. Suppose we
have k = 6 ordered categories, C1 < . . . < C6, and only n = 3 observations,
one in each of the first three categories, so n1 = n2 = n3 = 1 and n4 = n5 =
n6 = 0. Following the results presented in this paper, the NPI lower and upper
probabilities for the event Y4 ∈ {C1, C2, C3} are 3/4 and 1, respectively. If,
however, the categories were not assumed to be ordered, then the corresponding
NPI lower and upper probabilities for this event would be 0 and 1, respectively
[8]. The latter lower probability may be surprising, it results from the possibility
that the categories C1, C2, C3 could, in the probability wheel representation, be
separated by the other three categories, and from the fact that no single category
has been observed more than once. We do not discuss this difference in more
detail, but it is important to recognize that the inferences for categorical data
can differ substantially if one can use a known ordering of the categories. Due to
the different latent variable representations for these two situations, it is not the
case that the NPI lower and upper probabilities according to these two models
are nested, as could perhaps have been expected. One could consider different
structures for the categories and different latent variable representations, this is
left as an interesting topic for future research.

5 Comparison of two groups

In many applications of statistics, one aims at comparing multiple groups of
data. We briefly illustrate how the NPI approach presented in this paper can
be used for comparison of two groups of data, detailed justification of these
results will be presented elsewhere, together with generalization to comparisons
of more than two groups of data. Suppose that, as before, we consider k ordered
categories, C1 < . . . < Ck, but now we have data for two independent groups
which we wish to compare. Traditional statistical methods [12] tend to formulate
problems of comparison of multiple groups as tests of hypotheses, but in NPI
comparisons are necessarily predictive, hence one or more future observations
per group are compared. Let us denote the two different groups by A and B,
and we add a superscript a or b to our earlier notation to indicate the group. So,
the total number of observations for group A (B) is na (nb), of which na

j (nb
j) are

in category Cj . To use NPI for the comparison of these two groups, restricting
attention to a single future observation per group, we assume A(na) for the next
observation Y a

na+1 from group A, and A(nb) for the next observation Y b
nb+1 from

group B, and per group we use the same latent variable representation as before.
Whilst ordinal data do not normally have meaningful associated location

summaries (e.g. mean or median), due to the natural ordering of the categories
it is meaningful to consider the events Y a

na+1 < Y b
nb+1 and Y a

na+1 ≤ Y b
nb+1 for

comparison of the two groups. For the corresponding underlying latent variables,
this then follows NPI comparison of two groups of real-valued data as presented
by Coolen [3], with the added complication that no actual observations are avail-
able for the latent variables and hence there is no knowledge about the ordering
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of values of the two groups within a category. Hence, the NPI lower and upper
probabilities for these events are derived by minimisation and maximisation,
respectively, of corresponding lower and upper probabilities for all possible or-
derings of the latent variables per category. This leads to the following NPI lower
and upper probabilities, with γ = ((na + 1)(nb + 1))−1,

P (Y a
na+1 < Y b

nb+1) = γ

k∑
v=2

v−1∑
w=1

na
wn

b
v (8)

P (Y a
na+1 < Y b

nb+1) = γ

(
k∑

v=2

v−1∑
w=1

na
wn

b
v + nb − nb

1 + na − na
k + 1

)
(9)

and

P (Y a
na+1 ≤ Y b

nb+1) = γ

(
k∑

v=1

v∑
w=1

na
wn

b
v + na

1 + nb
k

)
(10)

P (Y a
na+1 ≤ Y b

nb+1) = γ

(
k∑

v=1

v∑
w=1

na
wn

b
v + na + nb + 1

)
(11)

We illustrate such comparison of two ordinal data sets, using these NPI lower
and upper probabilities, by considering the data presented in Table 2, which were
also used by Agresti [1] who provides further references to the origins of this
data set. The data consider tonsil size for two groups of children, namely 1326
noncarriers (Group A) and 72 carriers (Group B) of streptococcus pyogenes. An
observation in category C1 implies that tonsils are present but not enlarged, C2

that tonsils are enlarged and C3 that tonsils are greatly enlarged.

C1 C2 C3

Noncarriers (A) 497 560 269
Carriers (B) 19 29 24

Table 2. Data: size of tonsils

The NPI lower and upper probabilities (8)-(11) for these data are P (Y a
1327 <

Y b
73) = 39781

1327×73 = 0.4107, P (Y a
1327 < Y b

73) = 40892
1327×73 = 0.4221, P (Y a

1327 ≤
Y b

73) = 72441
1327×73 = 0.7478 and P (Y a

1327 ≤ Y b
73) = 73319

1327×73 = 0.7569. Agresti [1]
considered all 1326 × 72 = 95472 different carrier-noncarrier pairs that can be
put together from these children, of which for 19(560 + 269) + 29(269) = 23552
pairs the noncarrier has larger tonsils than the carrier, hence for 71920 pairs
the carrier’s tonsils are as least as large as those of the noncarrier, and for
39781 pairs the carrier has the larger tonsils. Notice that the relative frequencies
corresponding to these pairs, 39781

95472 = 0.4167 and 71920
95472 = 0.7533 are bounded

by the corresponding NPI lower and upper probabilities. In this example, the
differences between corresponding NPI upper and lower probabilities are small,
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due to the large numbers of observations. Clearly, if one considers groups with
fewer observations, there will be more imprecision. However, this NPI approach
remains valid and keeps its attractive frequentist properties for all sizes of data
sets, so inferences are not only valid for large samples as is often the case in more
established frequentist statistical methods.
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