
Introduction Credal sets Credal networks Modelling observations Decision making Inference algorithms Other guys

Imprecise Probabilistic Graphical Models
Credal Networks and Other Guys

Alessandro Antonucci & Cassio de Campos & Giorgio Corani

{alessandro,cassio,giorgio}@idsia.ch

SISPTA School on Imprecise Probability

Durham, September 5, 2010



Introduction Credal sets Credal networks Modelling observations Decision making Inference algorithms Other guys

Imprecise Probability Group @ IDSIA

IDSIA = Dalle Molle Institute for AI

Imprecise Probability Group
(1 professor, 4 researchers, 1 phd)

Theory of imprecise probability

Probabilistic graphical models

Data mining and classification

Observations modelling (missing

data)

Data fusion and filtering

Applications to environmental

modelling, military decision making,

risk analysis, bioinformatics, biology,

tracking, vision, . . .

IDSIA

1990

2000

Marco

Alex

Cassio

Giorgio

Alessio

Denis

Zaffalon

Antonucci

de Campos

Corani

Benavoli

Mauà
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Probabilistic Graphical Models
aka Decomposable Multivariate Probabilistic Models

(whose decomposability is induced by independence )

X1 X2 X3

X4 X5

X6 X7 X8

global model
φ(X1,X2,X3,X4,X5,X6,X7,X8)local model

φ(X1,X2,X4)
local model
φ(X2,X3,X5)

local model
φ(X4,X6,X7)

local model
φ(X5,X7,X8)

φ(X1, X2, X3, X4, X5, X6, X7, X8) = φ(X1, X2, X4) ⊗ φ(X2, X3, X5) ⊗ φ(X4, X6, X7) ⊗ φ(X5, X7, X8)

undirected graphs

precise/imprecise Markov random fields

directed graphs

Bayesian/credal networks

mixed graphs

chain graphs



Introduction Credal sets Credal networks Modelling observations Decision making Inference algorithms Other guys

Probabilistic Graphical Models
aka Decomposable Multivariate Probabilistic Models

(whose decomposability is induced by independence )

X1 X2 X3

X4 X5

X6 X7 X8

global model
φ(X1,X2,X3,X4,X5,X6,X7,X8)local model

φ(X1,X2,X4)
local model
φ(X2,X3,X5)

local model
φ(X4,X6,X7)

local model
φ(X5,X7,X8)

φ(X1, X2, X3, X4, X5, X6, X7, X8) = φ(X1, X2, X4) ⊗ φ(X2, X3, X5) ⊗ φ(X4, X6, X7) ⊗ φ(X5, X7, X8)

undirected graphs

precise/imprecise Markov random fields

directed graphs

Bayesian/credal networks

mixed graphs

chain graphs



Introduction Credal sets Credal networks Modelling observations Decision making Inference algorithms Other guys

Probabilistic Graphical Models
aka Decomposable Multivariate Probabilistic Models

(whose decomposability is induced by independence )

X1 X2 X3

X4 X5

X6 X7 X8

global model
φ(X1,X2,X3,X4,X5,X6,X7,X8)

local model
φ(X1,X2,X4)

local model
φ(X2,X3,X5)

local model
φ(X4,X6,X7)

local model
φ(X5,X7,X8)

φ(X1, X2, X3, X4, X5, X6, X7, X8) = φ(X1, X2, X4) ⊗ φ(X2, X3, X5) ⊗ φ(X4, X6, X7) ⊗ φ(X5, X7, X8)

undirected graphs

precise/imprecise Markov random fields

directed graphs

Bayesian/credal networks

mixed graphs

chain graphs



Introduction Credal sets Credal networks Modelling observations Decision making Inference algorithms Other guys

Probabilistic Graphical Models
aka Decomposable Multivariate Probabilistic Models

(whose decomposability is induced by independence )

X1 X2 X3

X4 X5

X6 X7 X8

global model
φ(X1,X2,X3,X4,X5,X6,X7,X8)

local model
φ(X1,X2,X4)

local model
φ(X2,X3,X5)

local model
φ(X4,X6,X7)

local model
φ(X5,X7,X8)

φ(X1, X2, X3, X4, X5, X6, X7, X8) = φ(X1, X2, X4) ⊗ φ(X2, X3, X5) ⊗ φ(X4, X6, X7) ⊗ φ(X5, X7, X8)

undirected graphs

precise/imprecise Markov random fields

directed graphs

Bayesian/credal networks

mixed graphs

chain graphs



Introduction Credal sets Credal networks Modelling observations Decision making Inference algorithms Other guys

Probabilistic Graphical Models
aka Decomposable Multivariate Probabilistic Models

(whose decomposability is induced by independence )

X1 X2 X3

X4 X5

X6 X7 X8

global model
φ(X1,X2,X3,X4,X5,X6,X7,X8)local model

φ(X1,X2,X4)
local model
φ(X2,X3,X5)

local model
φ(X4,X6,X7)

local model
φ(X5,X7,X8)

φ(X1, X2, X3, X4, X5, X6, X7, X8) = φ(X1, X2, X4) ⊗ φ(X2, X3, X5) ⊗ φ(X4, X6, X7) ⊗ φ(X5, X7, X8)

undirected graphs

precise/imprecise Markov random fields

directed graphs

Bayesian/credal networks

mixed graphs

chain graphs



Introduction Credal sets Credal networks Modelling observations Decision making Inference algorithms Other guys

Probabilistic Graphical Models
aka Decomposable Multivariate Probabilistic Models

(whose decomposability is induced by independence )

X1 X2 X3

X4 X5

X6 X7 X8

global model
φ(X1,X2,X3,X4,X5,X6,X7,X8)local model

φ(X1,X2,X4)
local model
φ(X2,X3,X5)

local model
φ(X4,X6,X7)

local model
φ(X5,X7,X8)

φ(X1, X2, X3, X4, X5, X6, X7, X8) = φ(X1, X2, X4) ⊗ φ(X2, X3, X5) ⊗ φ(X4, X6, X7) ⊗ φ(X5, X7, X8)

undirected graphs

precise/imprecise Markov random fields

directed graphs

Bayesian/credal networks

mixed graphs

chain graphs



Introduction Credal sets Credal networks Modelling observations Decision making Inference algorithms Other guys

Probabilistic Graphical Models
aka Decomposable Multivariate Probabilistic Models

(whose decomposability is induced by independence )

X1 X2 X3

X4 X5

X6 X7 X8

global model
φ(X1,X2,X3,X4,X5,X6,X7,X8)local model

φ(X1,X2,X4)
local model
φ(X2,X3,X5)

local model
φ(X4,X6,X7)

local model
φ(X5,X7,X8)

φ(X1, X2, X3, X4, X5, X6, X7, X8) = φ(X1, X2, X4) ⊗ φ(X2, X3, X5) ⊗ φ(X4, X6, X7) ⊗ φ(X5, X7, X8)

undirected graphs

precise/imprecise Markov random fields

directed graphs

Bayesian/credal networks

mixed graphs

chain graphs



Introduction Credal sets Credal networks Modelling observations Decision making Inference algorithms Other guys

[Exe #1] Fault trees (Vesely et al, 1981)

brake fails = [ pads ∨ ( sensor ∧ controller ∧ actuator ) ]

devices failures are independent

pads
fails

OR
gate

AND
gate

sensor
fails

controller
fails

actuator
fails

brake
fails

111

0

?

1

1

1

1.8.8

.2

?

.64

= .2× .64 + .8× .64 + .2× .36 =.712

.712

1[.8,1][.8,1]

[0,.2]

?

[.64,1]

[.64,1]

[.64,1]

with [.7, 1] instead
P(brake fails)∈[.49,1]

Indecision!
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Three different levels of knowledge

FIFA’10 final match between Holland and Spain
Result of Holland after the regular time? Win, draw or loss?

DETERMINISM

The Dutch goalkeeper is
unbeatable and Holland

always makes a goal

Holland (certainly) wins

P(Win)
P(Draw)
P(Loss)

=

 1
0
0



UNCERTAINTY

Win is two times more
probable than draw, and

this being three times
more probable than loss

P(Win)
P(Draw)
P(Loss)

=

 .6
.3
.1



IMPRECISION

Win is more probable
than draw, and this is

more probable than loss

P(Win) > P(Draw)
P(Draw) > P(Loss)

P(Win)
P(Draw)
P(Loss)

=

[ α
3 + β + γ

2
α
3 + γ

2
α
3

]
∀α, β, γ such that
α > 0, β > 0, γ > 0,
α+ β + γ = 1
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DETERMINISM

The Dutch goalkeeper is
unbeatable and Holland

always makes a goal

Holland (certainly) wins

P(Win)
P(Draw)
P(Loss)

=

 1
0
0
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this being three times
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P(Win)
P(Draw)
P(Loss)

=

 .6
.3
.1



IMPRECISION

Win is more probable
than draw, and this is
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P(Win) > P(Draw)
P(Draw) > P(Loss)

P(Win)
P(Draw)
P(Loss)

=

[ α
3 + β + γ

2
α
3 + γ

2
α
3

]
∀α, β, γ such that
α > 0, β > 0, γ > 0,
α+ β + γ = 1
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Three different levels of knowledge (ii)

DETERMINISM UNCERTAINTY IMPRECISION

INFORMATIVENESS

EXPRESSIVENESS

Limit when learning from
large (complete) data sets

Propositional
(Boolean) Logic

Bayesian Theory
of Probability

Walley’s Theory of
Coherent Lower
Previsions

Natural Embedding (de Cooman)

Only special cases

Small/incomplete data
Expert’s (qualitative) knowledge
Vague/incomplete observations
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From CLPs to Credal Sets

probability distribution
p : X → R{

p(x) ≥ 0∀x ∈ X∑
x∈X p(x) = 1

coherent linear prevision
P : L(X )→ R{

P(f + g) = P(f ) + P(g)
P(f ) ≥ inf f , ∀f , g ∈ L(X )

P(f ) =
∑

x∈X p(x)f (x)

P(x) = P(I{x})

Bayesian / precise

Modelling knowledge about X , taking values in X

Credal / imprecise

set of distributions
K (X) = { p(X) | constraints }

coherent lower prevision
P : L(X )→ R P(f ) ≥ min f ∀f ∈ L(X )

P(λf ) = λP(f )∀λ > 0
P(f + g) ≥ P(f ) + P(g)∃ set M of linear previsions s.t.

P(f ) = infP∈M P(f ) ∀f ∈ L(X )
lower envelope Theorem

(a set and its convex closure have the same lower envelope!)

convex closed
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Credal sets (Levi, 1980)

A closed convex set K (X ) of probability mass functions

Equivalently described by its extreme points ext[K (X )]

Focus on categorical variables (|X | < +∞)

and finitely generated CSs (polytopes, |ext[K (X )]| < +∞)
V-representation

enumerate the

extreme points

H-representation

linear constraints

on the probabilities

LRS software

(Avis & Fukuda)

Given a function (gamble) f (X ), lower expectation:

E [f (X )] := minP(X)∈K (X)

∑
x∈X P(x)f (x)

LP task: the optimum is on an extreme!

E [f (X )] = minP(X)∈ext[K (X)]

∑
x∈X P(x)f (x)
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Credal Sets over Boolean Variables

Boolean X , values in X = {x ,¬x}
Determinism ≡ degenerate mass f
E.g., X = x ⇐⇒ P(X) =

[
1
0

]
Uncertainty ≡ prob mass function
P(X) =

[
p

1− p

]
with p ∈ [0, 1]

Imprecision credal set
on the probability simplex

K (X) ≡
{

P(X) =

[
p

1− p

] ∣∣∣.4 ≤ p ≤ .7
}

A CS over a Boolean variable cannot
have more than two vertices!

ext[K (X)] =

{[
.7
.3

]
,

[
.4
.6

]}

P(x)

P(¬x)

P(X ) =

[
1
0

]P(X ) =

[
.7
.3

]P(X ) =

[
.4
.6

]

.4 .7

.6

.3
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Geometric Representation of CSs (ternary variables)

Ternary X (e.g., X = {win,draw,loss})

P(X ) ≡ point in the space (simplex)

No bounds to |ext[K (X )]|
Modelling ignorance

Uniform models indifference
Vacuous credal set

Expert qualitative knowledge
Win is more probable than draw,
which more probable than loss

Learning from small datasets
Learning with multiple priors
(e.g., IDM with s = 2)

Learning from incomplete data
Considering all the possible
explanation of the missing data

P(win)

P(draw)

P(loss)

P(X) =

 .6
.3
.1



P(X)K (X)

P0(x) = 1
|ΩX |

P0(X)K0(X)

K0(X)=

{
P(X)

∣∣∣∣ ∑x P(x) = 1,
P(x) ≥ 0

}

(Walley, 1991)

From natural language to
linear contraints on probabilities

extremely probable P(x) ≥ 0.98
very high probability P(x) ≥ 0.9

highly probable P(x) ≥ 0.85
very probable P(x) ≥ 0.75

has a very good chance P(x) ≥ 0.65
quite probable P(x) ≥ 0.6

P(x) ≥ 0.5
has a good chance 0.4 ≤ P(x) ≤ 0.85

is improbable (unlikely) P(x) ≤ 0.5
is somewhat unlikely P(x) ≤ 0.4

is very unlikely P(x) ≤ 0.25
has little chance P(x) ≤ 0.2

is highly improbable P(x) ≤ 0.15
is has very low probability P(x) ≤ 0.1

is extremely unlikely P(x) ≤ 0.02

P(win)

P(draw)

P(loss)

Previous matches:
Holland 4 wins,
Draws 1,

Spain 3 wins

1957: Spain vs. Holland 5 − 1
1973: Holland vs. Spain 3 − 2
1980: Spain vs. Holland 1 − 0
1983: Spain vs. Holland 1 − 0
1983: Holland vs. Spain 2 − 1
1987: Spain vs. Holland 1 − 1
2000: Spain vs. Holland 1 − 2
2001: Holland vs. Spain 1 − 0
2005: Spain vs. Holland ∗ − ∗ (missing)
2008: Holland vs. Spain ∗ − ∗ (missing)
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Modelling ignorance

Uniform models indifference
Vacuous credal set

Expert qualitative knowledge
Win is more probable than draw,
which more probable than loss

Learning from small datasets
Learning with multiple priors
(e.g., IDM with s = 2)

Learning from incomplete data
Considering all the possible
explanation of the missing data

P(win)

P(draw)

P(loss)

P(X) =

 .6
.3
.1



P(X)K (X)

P0(x) = 1
|ΩX |

P0(X)K0(X)

K0(X)=

{
P(X)

∣∣∣∣ ∑x P(x) = 1,
P(x) ≥ 0

}

(Walley, 1991)

From natural language to
linear contraints on probabilities

extremely probable P(x) ≥ 0.98
very high probability P(x) ≥ 0.9

highly probable P(x) ≥ 0.85
very probable P(x) ≥ 0.75

has a very good chance P(x) ≥ 0.65
quite probable P(x) ≥ 0.6

P(x) ≥ 0.5
has a good chance 0.4 ≤ P(x) ≤ 0.85

is improbable (unlikely) P(x) ≤ 0.5
is somewhat unlikely P(x) ≤ 0.4

is very unlikely P(x) ≤ 0.25
has little chance P(x) ≤ 0.2

is highly improbable P(x) ≤ 0.15
is has very low probability P(x) ≤ 0.1

is extremely unlikely P(x) ≤ 0.02

P(win)

P(draw)

P(loss)

Previous matches:
Holland 4 wins,
Draws 1,

Spain 3 wins

1957: Spain vs. Holland 5 − 1
1973: Holland vs. Spain 3 − 2
1980: Spain vs. Holland 1 − 0
1983: Spain vs. Holland 1 − 0
1983: Holland vs. Spain 2 − 1
1987: Spain vs. Holland 1 − 1
2000: Spain vs. Holland 1 − 2
2001: Holland vs. Spain 1 − 0
2005: Spain vs. Holland ∗ − ∗ (missing)
2008: Holland vs. Spain ∗ − ∗ (missing)
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Basic operations with credal sets

Joint

PRECISE
Mass functions

P(X ,Y )

IMPRECISE
Credal sets

K (X ,Y )

Marginalization
P(X ) s.t.

p(x) =
∑

y p(x , y)

K (X ) ={
P(X)

∣∣∣∣ P(x) =
∑

y P(x , y)

P(X ,Y ) ∈ K (X ,Y )

}

Conditioning
P(X |y) s.t.

p(x |y) = P(x,y)∑
y P(x,y)

K (X |y) ={
P(X |y)

∣∣∣∣∣ P(x |y) = P(x,y)∑
y P(x,y)

P(X ,Y ) ∈ K (X ,Y )

}

Combination P(x , y) = P(x |y)P(y) K (X |Y ) ⊗ K (Y ) =P(X ,Y )

∣∣∣∣∣∣
P(x , y)=P(x |y)P(y)
P(X |y) ∈ K (X |y)
P(Y ) ∈ K (Y )
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Basic operations with credal sets (vertices)

Joint

Marginalization

Conditioning

Combination

IMPRECISE
Credal sets

K (X ,Y )

K (X ) ={
P(X)

∣∣∣∣ P(x) =
∑

y P(x , y)

P(X ,Y ) ∈ K (X ,Y )

}
K (X |y) ={

P(X |y)

∣∣∣∣∣ P(x |y) = P(x,y)∑
y P(x,y)

P(X ,Y ) ∈ K (X ,Y )

}

K (X |Y ) ⊗ K (Y ) =P(X ,Y )

∣∣∣∣∣∣
P(x , y)=P(x |y)P(y)
P(X |y) ∈ K (X |y)
P(Y ) ∈ K (Y )



IMPRECISE
Extremes

= CH
{

Pj (X ,Y )
}nv

j=1

= CH{
P(X)

∣∣∣∣ P(x) =
∑

y P(x , y)

P(X ,Y ) ∈ ext[K (X ,Y )]

}

= CH{
P(X |y)

∣∣∣∣∣ P(x |y) = P(x,y)∑
y P(x,y)

P(X ,Y ) ∈ ext[K (X ,Y )]

}

= CHP(X ,Y )

∣∣∣∣∣∣
P(x , y)=P(x |y)P(y)
P(X |y) ∈ ext[K (X |y)]
P(Y ) ∈ ext[K (Y )]



[EXE]
Prove it!
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[Exe #2] An imprecise bivariate (graphical?) model

Two Boolean variables: Smoker,
Lung Cancer

Eight “Bayesian” phisicians, each
one assessing Pj (S,C)

K (S,C) = CH
{

Pj (S,C)
}8

j=1

Compute:
Marginal K (S)

Conditioning
K (C|S) := {K (C|s),K (C|s)}
Combination (marg ext)
K ′(C,S) := K (C|S)⊗ K (S)

Is this a (I)PGM?

Smoker Cancer

j Pj (s, c) Pj (s,¬c) Pj (¬s, c) Pj (¬s,¬c)

1 1/8 1/8 3/8 3/8

2 1/8 1/8 9/16 3/16

3 3/16 1/16 3/8 3/8

4 3/16 1/16 9/16 3/16

5 1/4 1/4 1/4 1/4

6 1/4 1/4 3/8 1/8

7 3/8 1/8 1/4 1/4

8 3/8 1/8 3/8 1/8

(0,1,0,0)

(0,0,1,0)

(1,0,0,0)

(0,0,0,1)
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Cano-Cano-Moral Transformation

Joint variable X := (C,S), K (X ) = {Pj (X )}nv
j=1 (|X = 4| and nv = 8)

Auxiliary variable D to enumerate elements of ext[K (X )]

Precise K (X |D), with P(X |dj ) := Pj (X ) with |D| = 8
Vacuous K (D) (8 vertices)

Marginal extension K (X ,D) = K (X |D)⊗ K (D)

After marginalization of D, K (X ,D) becomes K (X )

IP models as combination of precise models and vacuous priors
Hyerarchical model with a vacuous second order knowledge

S CX ≡ (C,S)D
unconditional

vacuous

conditional
precise

S CD
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Independence

Stochastic independence/irrelevance (precise case)

X and Y stochastically independent: P(x , y) = P(x)P(y)

Y stochastically irrelevant to X : P(X |y) = P(X )

independence⇒ irrelevance

Strong independence/irrelevance (imprecise case)

X and Y strongly independent: stochastic independence
∀P(X ,Y ) ∈ ext[K (X ,Y )]

Y strongly irrelevant to X : K (X |y) = K (X )

independence⇒ irrelevance

Every notion admits a conditional formulation
Other IP independence concepts (epistemic, Kuznetzov, strict)
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A tri-variate example

3 Boolean variables: Smoker, Lung Cancer, X-rays

Given cancer, no relation between smoker and X-rays
IP language: given C, S and X strongly independent
Marginal extension (iterated two times)
K (S,C,X ) = K (X |C,S)⊗K (C,S) = K (X |C,S)⊗K (C|S)⊗K (S)

Independence implies irrelevance: given C, S irrelevant to X
K (S,C,X ) = K (X |C)⊗ K (C|S)⊗ K (S)

Global model decomposed in 3 “local” models
A true PGM! Needed: language to express independencies

Smoker Cancer X-rays

K (C|S)K (S) K (X |C,S)K (X |C)
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Markov Condition
Probabilistic model over set of variables (X1, . . . ,Xn)
in one-to-one correspondence with the nodes of a graph

Undirected Graphs

X and Y are independent given Z
if any path between X and Y

containts an element of Z

Directed Graphs

Given its parents, every node is independent of
its non-descendants non-parents

X and Y are d-separated by Z if, along every path between
X and Y there is a W such that either W has converging
arrows and is not in Z and none of its descendants are in Z,
or W has no converging arrows and is in Z

X

Z1 Z2

Y

X

Z1 Z2

Y
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Credal networks

A directed acyclic graph G whose nodes are in 1-to-1
correspondence with a set of (categorical) variables (X1, . . . ,Xn)

Graph semantics by Markov condition
(for directed graphs, strong independence)
Variables in topological order (Xj descendant of Xi implies j > i)

K (X1, . . . ,Xn) = ⊗1
j=nK (Xj |Xj−1, . . . ,X1) = ⊗1

j=nK (Xj |Pa(Xj ))

directed graph
(with Markov condition)

G

credal network
specification

conditional credal sets
{K (Xi |Pa(Xi )}n

i=1}

joint credal set
K (X1, . . . ,Xn) = ⊗n

i=1K (Xi |Pa(Xi )

credal network
strong extension
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Medical diagnosis by CNs (a simple example of)

Five Boolean vars
Conditional
independence
relations by a DAG
Elicitation of the local
(conditional) CSs
This is a CN
specification
The strong extension
K (S,C,B,X ,D) =

CH

P(S,C,B,X ,D)

∣∣∣∣∣∣∣∣
P(s, c,b, x ,d)=P(s)P(c|s)P(b|s)P(x |c)P(d |c,b)
P(S) ∈ K (S)
P(C|s) ∈ K (C|s),P(C|¬s) ∈ K (C|¬s)
. . .



Cancer Bronchitis

Smoker

DyspneaX-Rays

P(s)∈[.25, .50]

P(c|s)∈[.15, .40]
P(c|¬s) ∈ [.05, .10]

P(x |c) ∈ [.90, .99]
P(x |¬c) ∈ [.01, .05]

P(b|s) ∈ [.30, .55]
P(b|¬s) ∈ [.20, .30]

P(d |c, b) ∈ [.90, .99]
P(d |¬c, b) ∈ [.50, .70]
P(d |c,¬b) ∈ [.40, .60]
P(d |¬c,¬b) ∈ [.10, .20]

[EXE]
P(s, c, b, x , d) =?
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Inside the strong extension

A CN whose conditional credal sets are all precise?
K (X |pa(Xi )) = {P(X |pa(Xi )}

This is a Bayesian network (Pearl, 1988).
Its SE still precise: P(x1, . . . , xn) =

∏n
i=1 P(xi |pa(Xi ))

“Operational” definition of SE of a CN:K (X1, . . . ,Xn) =

CH
{

P(X1, . . . ,Xn)
∣∣∣ P(x1, . . . , xn) =

∏n
i=1 P(xi |pa(Xi ))

P(Xi |pa(Xi )) ∈ ext[K (Xi |pa(Xi ))]

}

The vertices of the SE correspond to Bayesian networks!
A CN = collection of BN (all with the same graph) n exponential
Sensitivity analysis interpretation
ext[K (X1, . . . ,Xn)] = {Pj (X1, . . . ,Xn)}n

j=1
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Non-separately specified CNs

Constraints among different conditional
mass functions of a CN
Explicit enumeration of the relative BNs

Auxiliary parent selecting the conditional
probabilities (Cano, Cano, Moral, 1994)
with a vacuous prior

“Extensive” specification
Constraints among conditional mass
functions of the same variable
Each CPT takes values from a set of tables
an auxiliary parent selecting the tables

An unconstrained (i.e., separated)
specification is always possible
(Antonucci & Zaffalon, IJAR, 2008)

P1(X)

P2(X) P3(X)

T

X

pa(X)

P(X |pa(X), T = tj )
=

Pj (X |pa(X))

XiTi
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Updating credal nets

A variable of interest Xq (query)

Information xE about the state
of some other variables XE (evidence)

Updating posterior beliefs about the queried
variable given the available evidence

Bayesian case:

P(xq |xE ) =

∑
xM∈ΩXM

∏n
i=1 P(xi |pa(Xi ))∑

xM∈ΩXM
,xq∈ΩXq

∏n
i=1 P(xi |pa(Xi ))

with XM = (X1, . . . ,Xn) \ (Xq ,XE )

Fast algorithm for singly-connected BNs

Credal case:

P(xq |xE ) = minj=1,...,v

∑
xM∈ΩXM

∏n
i=1 Pj (xi |pa(Xi ))∑

xM∈ΩXM
,xq∈ΩXq

∏n
i=1 P(xi |pa(Xi ))

Fast algorithm for binary singly-connected CNs

NP-hard (Cooper, 1989)

NP-hard even on singly-connected (de Campos, 2005)

X1

X2 X3

X4

Temperature

Holland result

Goalkeeper’s

fitness

Attackers’

fitness

X4

X1

P(x4|x1) =

∑
x2,x3,x4

P(...)∑
x2,x3

P(...)
P(x4|x1) = minj

∑
x2,x3,x4

Pj (...)∑
x2,x3

Pj (...)



Introduction Credal sets Credal networks Modelling observations Decision making Inference algorithms Other guys

Updating credal nets

A variable of interest Xq (query)

Information xE about the state
of some other variables XE (evidence)

Updating posterior beliefs about the queried
variable given the available evidence

Bayesian case:

P(xq |xE ) =

∑
xM∈ΩXM

∏n
i=1 P(xi |pa(Xi ))∑

xM∈ΩXM
,xq∈ΩXq

∏n
i=1 P(xi |pa(Xi ))

with XM = (X1, . . . ,Xn) \ (Xq ,XE )

Fast algorithm for singly-connected BNs

Credal case:

P(xq |xE ) = minj=1,...,v

∑
xM∈ΩXM

∏n
i=1 Pj (xi |pa(Xi ))∑

xM∈ΩXM
,xq∈ΩXq

∏n
i=1 P(xi |pa(Xi ))

Fast algorithm for binary singly-connected CNs

NP-hard (Cooper, 1989)

NP-hard even on singly-connected (de Campos, 2005)

X1

X2 X3

X4

Temperature

Holland result

Goalkeeper’s

fitness

Attackers’

fitness

X4

X1

P(x4|x1) =

∑
x2,x3,x4

P(...)∑
x2,x3

P(...)
P(x4|x1) = minj

∑
x2,x3,x4

Pj (...)∑
x2,x3

Pj (...)



Introduction Credal sets Credal networks Modelling observations Decision making Inference algorithms Other guys

Updating credal nets

A variable of interest Xq (query)

Information xE about the state
of some other variables XE (evidence)

Updating posterior beliefs about the queried
variable given the available evidence

Bayesian case:

P(xq |xE ) =

∑
xM∈ΩXM

∏n
i=1 P(xi |pa(Xi ))∑

xM∈ΩXM
,xq∈ΩXq

∏n
i=1 P(xi |pa(Xi ))

with XM = (X1, . . . ,Xn) \ (Xq ,XE )

Fast algorithm for singly-connected BNs

Credal case:

P(xq |xE ) = minj=1,...,v

∑
xM∈ΩXM

∏n
i=1 Pj (xi |pa(Xi ))∑

xM∈ΩXM
,xq∈ΩXq

∏n
i=1 P(xi |pa(Xi ))

Fast algorithm for binary singly-connected CNs

NP-hard (Cooper, 1989)

NP-hard even on singly-connected (de Campos, 2005)

X1

X2 X3

X4

Temperature

Holland result

Goalkeeper’s

fitness

Attackers’

fitness

X4

X1

P(x4|x1) =

∑
x2,x3,x4

P(...)∑
x2,x3

P(...)
P(x4|x1) = minj

∑
x2,x3,x4

Pj (...)∑
x2,x3

Pj (...)



Introduction Credal sets Credal networks Modelling observations Decision making Inference algorithms Other guys

Updating credal nets

A variable of interest Xq (query)

Information xE about the state
of some other variables XE (evidence)

Updating posterior beliefs about the queried
variable given the available evidence

Bayesian case:

P(xq |xE ) =

∑
xM∈ΩXM

∏n
i=1 P(xi |pa(Xi ))∑

xM∈ΩXM
,xq∈ΩXq

∏n
i=1 P(xi |pa(Xi ))

with XM = (X1, . . . ,Xn) \ (Xq ,XE )

Fast algorithm for singly-connected BNs

Credal case:

P(xq |xE ) = minj=1,...,v

∑
xM∈ΩXM

∏n
i=1 Pj (xi |pa(Xi ))∑

xM∈ΩXM
,xq∈ΩXq

∏n
i=1 P(xi |pa(Xi ))

Fast algorithm for binary singly-connected CNs

NP-hard (Cooper, 1989)

NP-hard even on singly-connected (de Campos, 2005)

X1

X2 X3

X4

Temperature

Holland result

Goalkeeper’s

fitness

Attackers’

fitness

X4

X1

P(x4|x1) =

∑
x2,x3,x4

P(...)∑
x2,x3

P(...)
P(x4|x1) = minj

∑
x2,x3,x4

Pj (...)∑
x2,x3

Pj (...)



Introduction Credal sets Credal networks Modelling observations Decision making Inference algorithms Other guys

Updating credal nets

A variable of interest Xq (query)

Information xE about the state
of some other variables XE (evidence)

Updating posterior beliefs about the queried
variable given the available evidence

Bayesian case:

P(xq |xE ) =

∑
xM∈ΩXM

∏n
i=1 P(xi |pa(Xi ))∑

xM∈ΩXM
,xq∈ΩXq

∏n
i=1 P(xi |pa(Xi ))

with XM = (X1, . . . ,Xn) \ (Xq ,XE )

Fast algorithm for singly-connected BNs

Credal case:

P(xq |xE ) = minj=1,...,v

∑
xM∈ΩXM

∏n
i=1 Pj (xi |pa(Xi ))∑

xM∈ΩXM
,xq∈ΩXq

∏n
i=1 P(xi |pa(Xi ))

Fast algorithm for binary singly-connected CNs

NP-hard (Cooper, 1989)

NP-hard even on singly-connected (de Campos, 2005)

X1

X2 X3

X4

Temperature

Holland result

Goalkeeper’s

fitness

Attackers’

fitness

X4

X1

P(x4|x1) =

∑
x2,x3,x4

P(...)∑
x2,x3

P(...)

P(x4|x1) = minj

∑
x2,x3,x4

Pj (...)∑
x2,x3

Pj (...)



Introduction Credal sets Credal networks Modelling observations Decision making Inference algorithms Other guys

Updating credal nets

A variable of interest Xq (query)

Information xE about the state
of some other variables XE (evidence)

Updating posterior beliefs about the queried
variable given the available evidence

Bayesian case:

P(xq |xE ) =

∑
xM∈ΩXM

∏n
i=1 P(xi |pa(Xi ))∑

xM∈ΩXM
,xq∈ΩXq

∏n
i=1 P(xi |pa(Xi ))

with XM = (X1, . . . ,Xn) \ (Xq ,XE )

Fast algorithm for singly-connected BNs

Credal case:

P(xq |xE ) = minj=1,...,v

∑
xM∈ΩXM

∏n
i=1 Pj (xi |pa(Xi ))∑

xM∈ΩXM
,xq∈ΩXq

∏n
i=1 P(xi |pa(Xi ))

Fast algorithm for binary singly-connected CNs

NP-hard (Cooper, 1989)

NP-hard even on singly-connected (de Campos, 2005)

X1

X2 X3

X4

Temperature

Holland result

Goalkeeper’s

fitness

Attackers’

fitness

X4

X1

P(x4|x1) =

∑
x2,x3,x4

P(...)∑
x2,x3

P(...)

P(x4|x1) = minj

∑
x2,x3,x4

Pj (...)∑
x2,x3

Pj (...)



Introduction Credal sets Credal networks Modelling observations Decision making Inference algorithms Other guys

Updating credal nets

A variable of interest Xq (query)

Information xE about the state
of some other variables XE (evidence)

Updating posterior beliefs about the queried
variable given the available evidence

Bayesian case:

P(xq |xE ) =

∑
xM∈ΩXM

∏n
i=1 P(xi |pa(Xi ))∑

xM∈ΩXM
,xq∈ΩXq

∏n
i=1 P(xi |pa(Xi ))

with XM = (X1, . . . ,Xn) \ (Xq ,XE )

Fast algorithm for singly-connected BNs

Credal case:

P(xq |xE ) = minj=1,...,v

∑
xM∈ΩXM

∏n
i=1 Pj (xi |pa(Xi ))∑

xM∈ΩXM
,xq∈ΩXq

∏n
i=1 P(xi |pa(Xi ))

Fast algorithm for binary singly-connected CNs

NP-hard (Cooper, 1989)

NP-hard even on singly-connected (de Campos, 2005)

X1

X2 X3

X4

Temperature

Holland result

Goalkeeper’s

fitness

Attackers’

fitness

X4

X1

P(x4|x1) =

∑
x2,x3,x4

P(...)∑
x2,x3

P(...)

P(x4|x1) = minj

∑
x2,x3,x4

Pj (...)∑
x2,x3

Pj (...)



Introduction Credal sets Credal networks Modelling observations Decision making Inference algorithms Other guys

Updating credal nets

A variable of interest Xq (query)

Information xE about the state
of some other variables XE (evidence)

Updating posterior beliefs about the queried
variable given the available evidence

Bayesian case:

P(xq |xE ) =

∑
xM∈ΩXM

∏n
i=1 P(xi |pa(Xi ))∑

xM∈ΩXM
,xq∈ΩXq

∏n
i=1 P(xi |pa(Xi ))

with XM = (X1, . . . ,Xn) \ (Xq ,XE )

Fast algorithm for singly-connected BNs

Credal case:

P(xq |xE ) = minj=1,...,v

∑
xM∈ΩXM

∏n
i=1 Pj (xi |pa(Xi ))∑

xM∈ΩXM
,xq∈ΩXq

∏n
i=1 P(xi |pa(Xi ))

Fast algorithm for binary singly-connected CNs

NP-hard (Cooper, 1989)

NP-hard even on singly-connected (de Campos, 2005)

X1

X2 X3

X4

Temperature

Holland result

Goalkeeper’s

fitness

Attackers’

fitness

X4

X1

P(x4|x1) =

∑
x2,x3,x4

P(...)∑
x2,x3

P(...)

P(x4|x1) = minj

∑
x2,x3,x4

Pj (...)∑
x2,x3

Pj (...)



Introduction Credal sets Credal networks Modelling observations Decision making Inference algorithms Other guys

Updating credal nets

A variable of interest Xq (query)

Information xE about the state
of some other variables XE (evidence)

Updating posterior beliefs about the queried
variable given the available evidence

Bayesian case:

P(xq |xE ) =

∑
xM∈ΩXM

∏n
i=1 P(xi |pa(Xi ))∑

xM∈ΩXM
,xq∈ΩXq

∏n
i=1 P(xi |pa(Xi ))

with XM = (X1, . . . ,Xn) \ (Xq ,XE )

Fast algorithm for singly-connected BNs

Credal case:

P(xq |xE ) = minj=1,...,v

∑
xM∈ΩXM

∏n
i=1 Pj (xi |pa(Xi ))∑

xM∈ΩXM
,xq∈ΩXq

∏n
i=1 P(xi |pa(Xi ))

Fast algorithm for binary singly-connected CNs

NP-hard (Cooper, 1989)

NP-hard even on singly-connected (de Campos, 2005)

X1

X2 X3

X4

Temperature

Holland result

Goalkeeper’s

fitness

Attackers’

fitness

X4

X1

P(x4|x1) =

∑
x2,x3,x4

P(...)∑
x2,x3

P(...)

P(x4|x1) = minj

∑
x2,x3,x4

Pj (...)∑
x2,x3

Pj (...)



Introduction Credal sets Credal networks Modelling observations Decision making Inference algorithms Other guys

Updating credal nets

A variable of interest Xq (query)

Information xE about the state
of some other variables XE (evidence)

Updating posterior beliefs about the queried
variable given the available evidence

Bayesian case:

P(xq |xE ) =

∑
xM∈ΩXM

∏n
i=1 P(xi |pa(Xi ))∑

xM∈ΩXM
,xq∈ΩXq

∏n
i=1 P(xi |pa(Xi ))

with XM = (X1, . . . ,Xn) \ (Xq ,XE )

Fast algorithm for singly-connected BNs

Credal case:

P(xq |xE ) = minj=1,...,v

∑
xM∈ΩXM

∏n
i=1 Pj (xi |pa(Xi ))∑

xM∈ΩXM
,xq∈ΩXq

∏n
i=1 P(xi |pa(Xi ))

Fast algorithm for binary singly-connected CNs

NP-hard (Cooper, 1989)

NP-hard even on singly-connected (de Campos, 2005)

X1

X2 X3

X4

Temperature

Holland result

Goalkeeper’s

fitness

Attackers’

fitness

X4

X1

P(x4|x1) =

∑
x2,x3,x4

P(...)∑
x2,x3

P(...)

P(x4|x1) = minj

∑
x2,x3,x4

Pj (...)∑
x2,x3

Pj (...)



Introduction Credal sets Credal networks Modelling observations Decision making Inference algorithms Other guys

Updating with incomplete observations

P(Xq = xq |XE = xE ,XM = ∗)
= P(Xq = xq |XE = xE )

right only if missing at random

assumption holds

Conservative inference rule (CIR)

P(xq |xE , ∗) = minxM∈ΩXM
P(xq |xE , xM)

near-ignorance about the process

preventing some variable from being

observed (de Cooman & Zaffalon, 2004)

CIR on CNs?

Add a (dummy) binary child for each

missing, with vacuous quantification

Use standard updating algorithms

X1

X2 X3

X4

Temperature

Holland result

Goalkeeper’s

fitness

Attackers’

fitness

K (O2|x2) vacuous CS

O2

P(x4|X1 = warm,X2 = ∗)

= min{P(x4|warm, good), P(x4|warm, bad)}

= P(x4|warm,O2 = 1)



Introduction Credal sets Credal networks Modelling observations Decision making Inference algorithms Other guys

Updating with incomplete observations

P(Xq = xq |XE = xE ,XM = ∗)
= P(Xq = xq |XE = xE )

right only if missing at random

assumption holds

Conservative inference rule (CIR)

P(xq |xE , ∗) = minxM∈ΩXM
P(xq |xE , xM)

near-ignorance about the process

preventing some variable from being

observed (de Cooman & Zaffalon, 2004)

CIR on CNs?

Add a (dummy) binary child for each

missing, with vacuous quantification

Use standard updating algorithms

X1

X2 X3

X4

Temperature

Holland result

Goalkeeper’s

fitness

Attackers’

fitness

K (O2|x2) vacuous CS

O2

P(x4|X1 = warm,X2 = ∗)

= min{P(x4|warm, good), P(x4|warm, bad)}

= P(x4|warm,O2 = 1)



Introduction Credal sets Credal networks Modelling observations Decision making Inference algorithms Other guys

Updating with incomplete observations

P(Xq = xq |XE = xE ,XM = ∗)
= P(Xq = xq |XE = xE )

right only if missing at random

assumption holds

Conservative inference rule (CIR)

P(xq |xE , ∗) = minxM∈ΩXM
P(xq |xE , xM)

near-ignorance about the process

preventing some variable from being

observed (de Cooman & Zaffalon, 2004)

CIR on CNs?

Add a (dummy) binary child for each

missing, with vacuous quantification

Use standard updating algorithms

X1

X2 X3

X4

Temperature

Holland result

Goalkeeper’s

fitness

Attackers’

fitness

K (O2|x2) vacuous CS

O2

P(x4|X1 = warm,X2 = ∗)
= min{P(x4|warm, good), P(x4|warm, bad)}

= P(x4|warm,O2 = 1)



Introduction Credal sets Credal networks Modelling observations Decision making Inference algorithms Other guys

Updating with incomplete observations

P(Xq = xq |XE = xE ,XM = ∗)
= P(Xq = xq |XE = xE )

right only if missing at random

assumption holds

Conservative inference rule (CIR)

P(xq |xE , ∗) = minxM∈ΩXM
P(xq |xE , xM)

near-ignorance about the process

preventing some variable from being

observed (de Cooman & Zaffalon, 2004)

CIR on CNs?

Add a (dummy) binary child for each

missing, with vacuous quantification

Use standard updating algorithms

X1

X2 X3

X4

Temperature

Holland result

Goalkeeper’s

fitness

Attackers’

fitness

K (O2|x2) vacuous CS

O2

P(x4|X1 = warm,X2 = ∗)
= min{P(x4|warm, good), P(x4|warm, bad)}

= P(x4|warm,O2 = 1)



Introduction Credal sets Credal networks Modelling observations Decision making Inference algorithms Other guys

Updating with incomplete observations

P(Xq = xq |XE = xE ,XM = ∗)
= P(Xq = xq |XE = xE )

right only if missing at random

assumption holds

Conservative inference rule (CIR)

P(xq |xE , ∗) = minxM∈ΩXM
P(xq |xE , xM)

near-ignorance about the process

preventing some variable from being

observed (de Cooman & Zaffalon, 2004)

CIR on CNs?

Add a (dummy) binary child for each

missing, with vacuous quantification

Use standard updating algorithms

X1

X2 X3

X4

Temperature

Holland result

Goalkeeper’s

fitness

Attackers’

fitness

K (O2|x2) vacuous CS

O2

P(x4|X1 = warm,X2 = ∗)
= min{P(x4|warm, good), P(x4|warm, bad)}

= P(x4|warm,O2 = 1)



Introduction Credal sets Credal networks Modelling observations Decision making Inference algorithms Other guys

Updating with incomplete observations

P(Xq = xq |XE = xE ,XM = ∗)
= P(Xq = xq |XE = xE )

right only if missing at random

assumption holds

Conservative inference rule (CIR)

P(xq |xE , ∗) = minxM∈ΩXM
P(xq |xE , xM)

near-ignorance about the process

preventing some variable from being

observed (de Cooman & Zaffalon, 2004)

CIR on CNs?

Add a (dummy) binary child for each

missing, with vacuous quantification

Use standard updating algorithms

X1

X2 X3

X4

Temperature

Holland result

Goalkeeper’s

fitness

Attackers’

fitness

K (O2|x2) vacuous CS

O2

P(x4|X1 = warm,X2 = ∗)
= min{P(x4|warm, good), P(x4|warm, bad)}

= P(x4|warm,O2 = 1)



Introduction Credal sets Credal networks Modelling observations Decision making Inference algorithms Other guys

Updating with incomplete observations

P(Xq = xq |XE = xE ,XM = ∗)
= P(Xq = xq |XE = xE )

right only if missing at random

assumption holds

Conservative inference rule (CIR)

P(xq |xE , ∗) = minxM∈ΩXM
P(xq |xE , xM)

near-ignorance about the process

preventing some variable from being

observed (de Cooman & Zaffalon, 2004)

CIR on CNs?

Add a (dummy) binary child for each

missing, with vacuous quantification

Use standard updating algorithms

X1

X2 X3

X4

Temperature

Holland result

Goalkeeper’s

fitness

Attackers’

fitness

K (O2|x2) vacuous CS

O2

P(x4|X1 = warm,X2 = ∗)
= min{P(x4|warm, good), P(x4|warm, bad)}

= P(x4|warm,O2 = 1)



Introduction Credal sets Credal networks Modelling observations Decision making Inference algorithms Other guys

Modelling the observational process

Each X as a latent variable

For each X a manifest variable OX

modelling the observation

ΩO = ΩX ∪ {∗}

Conditional independence, given X

between O and the other variables

(or weaker conditions)

Quantifying link between O and X

(observational process)

A CS K (O|x) might a realistic model!

(better than P(O|X ))

Standard updating problem

P(Xq |OE = xE )

X1

X2 X3

X4

Temperature

Holland result

Goalkeeper’s

fitness

Attackers’

fitness
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Modelling the observational process (ii)

Manifest variables reduced to binary

variables (coarsen to {o,¬o})

Elicit only lower/upper likelihoods of
observation given the latent
P(o|x) ≤ P(o|x) ≤ P(o|x)

Perfect observation:

P(o|x) = P(o|x) = δo,x

MAR: P(o|x) = P(o|x) = k

CIR: P(o|x) = 0,P(o|x) = 1

Imprecise likelihood ratio

(and Jeffrey’s rule)

Hard evidence? Drop leaving arcs!

Only the subnet connected to the

query node

X1

X2 X3

X4

O1

O2

O3

O4

O4

O3

O1

X2 X3

X4

O2
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observation given the latent
P(o|x) ≤ P(o|x) ≤ P(o|x)

Perfect observation:

P(o|x) = P(o|x) = δo,x

MAR: P(o|x) = P(o|x) = k

CIR: P(o|x) = 0,P(o|x) = 1

Imprecise likelihood ratio

(and Jeffrey’s rule)

Hard evidence? Drop leaving arcs!

Only the subnet connected to the

query node

X1
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[Exe # 3] Is the ball in or out?

B, with B = {1,0}, means the
ball was in
R, L1, L2 are the
opinions/observation of the
referee/linesmen
A CN over these variables
Given B, the three opinions
are independent? Not really,
the referee has an influence
on the linesmen
Compute bounds of
P(B = 1|R = 1, L1 = 1, L2 = 1)
∈ [.896, .962]
P(B = 1|R = 0, L1 = 1, L2 = 1)
P(B = 1|R = 1, L1 = 0, L2 = 0)
P(B = 1|R = 0, L1 = 0, L2 = 1)

P(B = 1) = .50
P(R = 1|B = 1) ∈ [.80, .90]
P(R = 1|B = 0) ∈ [.20, .30]
P(Lj = 1|B = 1,R = 1) ∈ [.90, .95]
P(Lj = 1|B = 1,R = 0) ∈ [.50, .60]
P(Lj = 1|B = 0,R = 1) ∈ [.40, .50]
P(Lj = 1|B = 0,R = 0) ∈ [.10, .20]

B

RL1 L2
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No-fly zones surveyed by the Air Force

Around important potential targets
(eg. WEF, dams, nuke plants)

Twofold circle wraps the target

External no-fly zone (sensors)

Internal no-fly zone (anti-air units)

An aircraft entering the zone
(to be called intruder)
Its presence, speed, height, and
other features revealed by the
sensors
A team of military experts decides:

what the intruder intends to do
(external zone / credal level)
what to do with the intruder
(internal zone / pignistic level)

Target
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Identifying intruder’s goal

Four possible (exclusive, exhaustive) options for intruder’s goal

renegade provocateur damaged erroneous

This identification is difficult

Sensors reliabilities are affected by geo/meteo conditions

Information fusion from several sensors
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Why credal networks?

Why a probabilistic model?

No deterministic relations between the different variables

Pervasive uncertainty in the observations

Why a graphical model?

Many independence relations among the different variables

Why an imprecise (probabilistic) model?

Expert evaluations are mostly based on qualitative judgements

The model should be (over)cautious
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Network core

Intruder’s goal and features
as categorical variables

Independencies depicted by a
directed graph (acyclic)

Experts provide
interval-valued probabilistic
assessments, we compute
credal sets

A (small) credal network

Complex observation
process!

Intruder’s

Goal

Type of

Aircraft

Height

Changes
Transponder

Height
Reaction

to ATC

Absolute

Speed

Reaction

to ADDC

Reaction to

Interception
Flight Path

P(Baloon|Renegade)
∈ [.2, .3]
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Observations Modeling and Fusion by Credal Nets

Each sensor modeled by an
auxiliary child of the (ideal)
variable to be observed
P(sensor|ideal) models
sensor reliability
(eg. identity matrix = perfectly
reliable sensor)
Many sensors? Many
children!
(conditional independence
between sensors given the
ideal)

Speed

(ideal)

Speed

(3D radar)

Speed

(2D radar)

Speed (air

observation)

Speed

(ground)
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The whole network

We conclude a huge multiply-connected credal network
Approximate algorithm:

1 Local specification [Antonucci and Zaffalon, PGM’06]

2 Binarization [Antonucci, Zaffalon, Ide and Cozman, STAIRS 2006]

3 L2U [Ide and Cozman, STAIRS 2004]
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Decision Making with CNs

BN updating compute P(Xq |xE )

What about the state of Xq =?
x∗q = arg maxxq∈ΩXq

P(xq |xE )

CN updating should compute K (Xq |xE )
In practice algorithms only compute
P(Xq |xE )

What about the state of Xq =?
State(s) of Xq by interval dominance
Ω∗Xq =

{
xq

∣∣∣ 6 ∃x ′q s.t.P(x ′q |xE ) > P(xq |xE )
}

More informative criterion: maximality{
xq

∣∣∣ 6 ∃x ′q s.t.P(x ′q |xE ) > P(xq |xE )∀P(Xq |xE ) ∈ K (Xq |xE )
}

X1 X2

X3 X4 X5

X6

X7 X8

queryevi

evi

P(X8|x1, x7) =

 .3
.5
.2



.0

.5

1.0

x ′8 x ′′8 x ′′′8

P(X8|x1, x7) ∈
[.3, .6]
[.4, .7]
[.1, .2]

Maximality in CNs by auxiliary Boolean child

Px′q ,x′′q (Y |xq) =
δxq ,x′q

−δxq ,x′′q
+1

2
Px′q ,x

′′
q

(Y = 1|xE ) > 1
2 ⇔ P(x ′q |xE ) > P(x ′′q |xE ) ∀P(Xq |xE ) ∈ K (Xq |xE )
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Simulations (military application)
Simulating a dam in the Swiss Alps, with no
interceptors, relatively good coverage for
other sensors, discontinuous low clouds
and daylight
Sensors return:

Height = very low / very low / very low / low

Type = helicopter / helicopter

Flight Path = U-path / U-path / U-path / U-path / U-path / missing

Height Changes = descent / descent / descent / descent / missing

Speed = slow / slow / slow / slow / slow

ADDC reaction = positive / positive / positive / positive / positive / positive

We reject renegade and damaged, but
indecision between provocateur and
erroneous

Assuming higher levels of reliability
We conclude the aircraft is a provocateur!
Same conclusion with maximality
(no need of higher reliability)
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An application: debris flows risk assessment

Debris flows are very destructive natural hazards

Still partially understood

Human expertize is still fundamental!

An artificial expert system supporting human experts?
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Debris flow hazard assessment by CNs

Extensive simulations in a debris flow prone watershed
Acquarossa Creek Basin (area 1.6 Km2, length 3.1 Km)
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Inference based on message propagation
BAYESIAN NETS

Pearl’s message propagation
Efficient for polytrees
Multiply connected BNs?
Loopy belief propagation

CREDAL NETS

Only outer approximation for
general polytrees
(Tessem, 1992)
(da Rocha & Cozman, A/R+, 2005)

Exact for binary polytrees
(2U, Zaffalon, 1998)

Loopy version of 2U for
binary multiply connected

(Ide & Cozman, 2004)

p(x|e) = αΛ(x)π(x),

Λ(x) = ΛX (x)
∏

j ΛYi
(x),

π(x) =
∑

u p(x|u)
∏

k πX (uk ),

ΛX (ui ) =

α
∑

x Λ(x)
∑

uk :k 6=i p(x|u)
∏

k 6=i πX (uk ),

πYj
(x) = απ(x)ΛX (x)

∏
k 6=j ΛYk

(x)

Updating non-binary CNs?
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Binarizing non-binary credal nets

State of a variable as a joint state of a number of “bits”
X = x ⇐⇒ (X̃ 1 = x̃1) ∧ (X̃ 2 = x̃2) ∧ . . .

For each arc between two variables, all the relative bits are
linked, bits of the same variable are completely connected
Local computations for the probabilities
A “binarized” equivalent CN is obtained
L2U can update it (GL2U, Antonucci et al. 2010)

X1

X2 X3

X4

8 states

4 states 2 states

4 states

BINARIZATION

⇒

X̃1
1 X̃2

1 X̃3
1

X̃1
2 X̃2

2 X̃1
3

X̃1
4 X̃2

4
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Exact inference: Variable elimination

BAYESIAN NETS

Choose an ordering of the
variables (query last)

Create a pool of functions
with all local distributions
For each X :

Insert all functions that contain X
in a structure called bucket of X
and remove them from the pool

Multiply these functions and
marginalize out X

Insert the results in the pool

bucket elimination (Dechter, 1996)
fusion algorithm for valuation algebras

(Shenoy & Kohlas, 1994)

Compute P(X4) with ordering X1, X2, X3, X4
Pool≡ {P(X1), p(X2|X1), p(X3|X1), p(X4|X2, X3)
Bucket(X1):

∑
X1

P(X2|X1)p(X3|X1)p(X1) = p(X2, X3) → pool

Bucket(X2):
∑

X2
P(X4|X2, X3)p(X2, X3) = p(X3, X4) → pool

Bucket(X3):
∑

X3
P(X4, X3) = p(X4) → pool

Bucket(X4): just get P(X4) from the pool

X1

X2 X3

X4

CREDAL NETS

Symbolic variable elimination
multilinear constraints

Updating ≡ multilinear optimization
(de Campos & Cozman, 2004)
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Other algorithms for inference on CNs

Inner approximation by iterative local search

Choose a BN consistent with the CN,

vary parameters of a single node to improve the solution

(da Rocha, Campos & Cozman, 2003)

Outer approximation with probability trees (Cano & Moral, 2002)

Integer linear programming (de Campos & Cozman, 2007)

Branch and bound techniques on vertices

Instead of propagating all the elements in the convex hull

only the elements in the Pareto set (reduce complexity!)

(de Campos, 2010)
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Other guys

Other IPGMs
CNs with epistemic irrelevance (de Cooman)
and epistemic independence (Cozman)
Imprecise Markov Chains (Skulj)
Hierarchical models (Cattaneo)
Imprecise Markov decision processes (MDP) (Cozman)
Qualitative probabilistic nets (Van der Gaag)
Possibilistic networks (PGM with BFs)
Imprecise decision Trees (Ekenberg, Jaffray)

Still to be formalized
Imprecise Markov random fields and iHMM
Imprecise influence diagrams

Links with CNs
Precise influence diagrams, MAP problems on BNs, . . .
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CRALC probabilistic logic with IPs (Cozman, 2008)

Description logic with interval of probabilities
N individuals (I1, . . . , In),
P(smoker(Ii )) ∈ [.3, .5], P(friend(Ij , Ii )) ∈ [.0, .5],
P(disease(Ii )|smoker(Ii ), ∀friend(Ij , Ii ).smoker(Ii )) = ...

P(disease)? Inference ≡ updating of a (large) binary CN
In a sens symbolic (or OO) CNs

FRIEND(I1, I1 )

FRIEND(I2, I1 )

FRIEND(I3, I1 )

SMOKER(I1 )

∀FRIEND(I1 ).SMOKER

DISEASE(I1 )

FRIEND(I1, I2 )

FRIEND(I2, I2 )

FRIEND(I3, I2 )

SMOKER(I2 )

∀FRIEND(I2 ).SMOKER

DISEASE(d2 )

FRIEND(I1, I3 )

FRIEND(I2, I3 )

FRIEND(I3, I3 )

SMOKER(d3 )

∀FRIEND(I3 ).SMOKER

DISEASE(I3 )
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Future directions for CNs

Inference algorithms
Inference based on Pareto set (de Campos)
Gibb’s sampling
Joint tree

Learning CNs from data
Structural learning (next talk)
Imprecise EM

More “bridges” with BNs world
Continuous variables (Benavoli)
Undirected Models (random Markov fields with imprecision)
Applications, applications, applications, applications, applications
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