Imprecise Probabilistic Graphical Models
 Credal Networks and Other Guys

Alessandro Antonucci \& Cassio de Campos \& Giorgio Corani

$$
\text { \{alessandro,cassio,giorgio\}@idsia.ch }
$$

SISPTA School on Imprecise Probability
Durham, September 5, 2010

Imprecise Probability Group @ IDSIA

- IDSIA = Dalle Molle Institute for AI

Imprecise Probability Group @ IDSIA

- IDSIA = Dalle Molle Institute for AI

Imprecise Probability Group @ IDSIA

- IDSIA = Dalle Molle Institute for AI

Imprecise Probability Group @ IDSIA

- IDSIA = Dalle Molle Institute for AI

Imprecise Probability Group @ IDSIA

- IDSIA = Dalle Molle Institute for AI

Imprecise Probability Group @ IDSIA

- IDSIA = Dalle Molle Institute for AI
- Imprecise Probability Group
(1 professor, 4 researchers, 1 phd)
- Theory of imprecise probability
- Probabilistic graphical models
- Data mining and classification
- Observations modelling (missing data)
- Data fusion and filtering
- Applications to environmental modelling, military decision making, risk analysis, bioinformatics, biology, tracking, vision, ...

Probabilistic Graphical Models

aka Decomposable Multivariate Probabilistic Models
(whose decomposability is induced by independence)

Probabilistic Graphical Models

aka Decomposable Multivariate Probabilistic Models (whose decomposability is induced by independence)

Probabilistic Graphical Models

aka Decomposable Multivariate Probabilistic Models (whose decomposability is induced by independence)

global model

$$
\phi\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8}\right)
$$

Probabilistic Graphical Models

aka Decomposable Multivariate Probabilistic Models
(whose decomposability is induced by independence)

$$
\phi\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}\right)=\phi\left(x_{1}, x_{2}, x_{4}\right) \otimes \phi\left(x_{2}, x_{3}, x_{5}\right) \otimes \phi\left(x_{4}, x_{6}, x_{7}\right) \otimes \phi\left(x_{5}, x_{7}, x_{8}\right)
$$

Probabilistic Graphical Models

aka Decomposable Multivariate Probabilistic Models (whose decomposability is induced by independence)
undirected graphs
precise/imprecise Markov random fields

Probabilistic Graphical Models

aka Decomposable Multivariate Probabilistic Models (whose decomposability is induced by independence)

directed graphs

Bayesian/credal networks

Probabilistic Graphical Models

aka Decomposable Multivariate Probabilistic Models (whose decomposability is induced by independence)

mixed graphs

chain graphs

[Exe \#1] Fault trees (Vesely et al, 1981)

brake fails $=[$ pads $\vee($ sensor \wedge controller \wedge actuator $)]$

[Exe \#1] Fault trees (Vesely et al, 1981)

$$
\begin{gathered}
\text { brake fails }=[\text { pads } \vee(\text { sensor } \wedge \text { controller } \wedge \text { actuator })] \\
\\
\text { devices failures are independent }
\end{gathered}
$$

[Exe \#1] Fault trees (Vesely et al, 1981)

$$
\begin{gathered}
\text { brake fails }=[\text { pads } \vee(\text { sensor } \wedge \text { controller } \wedge \text { actuator })] \\
\\
\text { devices failures are independent }
\end{gathered}
$$

[Exe \#1] Fault trees (Vesely et al, 1981)

$$
\begin{gathered}
\text { brake fails }=[\text { pads } \vee(\text { sensor } \wedge \text { controller } \wedge \text { actuator })] \\
\\
\text { devices failures are independent }
\end{gathered}
$$

[Exe \#1] Fault trees (Vesely et al, 1981)

$$
\begin{gathered}
\text { brake fails }=[\text { pads } \vee(\text { sensor } \wedge \text { controller } \wedge \text { actuator })] \\
\\
\text { devices failures are independent }
\end{gathered}
$$

[Exe \#1] Fault trees (Vesely et al, 1981)

$$
\begin{gathered}
\text { brake fails }=[\text { pads } \vee(\text { sensor } \wedge \text { controller } \wedge \text { actuator })] \\
\\
\text { devices failures are independent }
\end{gathered}
$$

[Exe \#1] Fault trees (Vesely et al, 1981)

$$
\begin{gathered}
\text { brake fails }=[\text { pads } \vee(\text { sensor } \wedge \text { controller } \wedge \text { actuator })] \\
\\
\text { devices failures are independent }
\end{gathered}
$$

[Exe \#1] Fault trees (Vesely et al, 1981)

$$
\begin{gathered}
\text { brake fails }=[\text { pads } \vee(\text { sensor } \wedge \text { controller } \wedge \text { actuator })] \\
\\
\text { devices failures are independent }
\end{gathered}
$$

[Exe \#1] Fault trees (Vesely et al, 1981)

$$
\begin{gathered}
\text { brake fails }=[\text { pads } \vee(\text { sensor } \wedge \text { controller } \wedge \text { actuator })] \\
\\
\text { devices failures are independent }
\end{gathered}
$$

[Exe \#1] Fault trees (Vesely et al, 1981)

$$
\begin{gathered}
\text { brake fails }=[\text { pads } \vee(\text { sensor } \wedge \text { controller } \wedge \text { actuator })] \\
\\
\text { devices failures are independent }
\end{gathered}
$$

[Exe \#1] Fault trees (Vesely et al, 1981)

$$
\begin{gathered}
\text { brake fails }=[\text { pads } \vee(\text { sensor } \wedge \text { controller } \wedge \text { actuator })] \\
\\
\text { devices failures are independent }
\end{gathered}
$$

[Exe \#1] Fault trees (Vesely et al, 1981)

$$
\begin{gathered}
\text { brake fails }=[\text { pads } \vee(\text { sensor } \wedge \text { controller } \wedge \text { actuator })] \\
\\
\text { devices failures are independent }
\end{gathered}
$$

[Exe \#1] Fault trees (Vesely et al, 1981)

$$
\begin{gathered}
\text { brake fails }=[\text { pads } \vee(\text { sensor } \wedge \text { controller } \wedge \text { actuator })] \\
\\
\text { devices failures are independent }
\end{gathered}
$$

[Exe \#1] Fault trees (Vesely et al, 1981)

$$
\begin{gathered}
\text { brake fails }=[\text { pads } \vee(\text { sensor } \wedge \text { controller } \wedge \text { actuator })] \\
\\
\text { devices failures are independent }
\end{gathered}
$$

[Exe \#1] Fault trees (Vesely et al, 1981)

> brake fails $=[$ pads $\vee($ sensor \wedge controller \wedge actuator $)]$ devices failures are independent

Outline

- Motivations for imprecise probability
- Credal sets (basic concepts and operations)
- Independence relations
- Credal networks
- Modelling observations/missingness
- Decision making
- Inference algorithms
- Other probabilistic graphical models
- Conclusions

Three different levels of knowledge

- FIFA'10 final match between Holland and Spain
- Result of Holland after the regular time? Win, draw or loss?

The Dutch goalkeeper is unbeatable and Holland always makes a goal

Holland (certainly) wins

$$
\begin{aligned}
& P(\text { Win }) \\
& P(\text { Draw }) \\
& P(\text { Loss })
\end{aligned}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Win is two times more probable than draw, and this being three times more probable than loss

Win is more probable than draw, and this is more probable than loss

$$
\begin{aligned}
& P(\text { Win })>P(\text { Draw }) \\
& P(\text { Draw })>P(\text { Loss })
\end{aligned}
$$

Three different levels of knowledge

- FIFA'10 final match between Holland and Spain
- Result of Holland after the regular time? Win, draw or loss?

DETERMINISM
The Dutch goalkeeper is unbeatable and Holland always makes a goal

Win is two times more
probable than draw, and this being three times more probable than loss

Holland (certainly) wins

$$
\begin{aligned}
& P(\text { Win })>P(\text { Draw }) \\
& P(\text { Draw })>P(\text { Loss })
\end{aligned}
$$

$$
\begin{aligned}
& P(\text { Win }) \\
& P(\text { Draw }) \\
& P(\text { Loss })
\end{aligned}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

$$
\begin{aligned}
& P(\text { Win }) \\
& P(\text { Draw }) \\
& P(\text { Loss })
\end{aligned}=\left[\begin{array}{l}
.6 \\
.3 \\
.1
\end{array}\right]
$$

Three different levels of knowledge

- FIFA'10 final match between Holland and Spain
- Result of Holland after the regular time? Win, draw or loss?

DETERMINISM
The Dutch goalkeeper is unbeatable and Holland always makes a goal

UNCERTAINTY

Win is two times more probable than draw, and
this being three times more probable than loss

Win is more probable than draw, and this is more probable than loss

$$
P(\text { Draw })>P(\text { Loss })
$$

Three different levels of knowledge

- FIFA'10 final match between Holland and Spain
- Result of Holland after the regular time? Win, draw or loss?

DETERMINISM

The Dutch goalkeeper is unbeatable and Holland always makes a goal

Holland (certainly) wins

$$
\begin{aligned}
& P(\text { Win }) \\
& P(\text { Draw }) \\
& P(\text { Loss })
\end{aligned}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

UNCERTAINTY

Win is two times more probable than draw, and this being three times more probable than loss

IMPRECISION

Win is more probable than draw, and this is more probable than loss

$$
\begin{aligned}
& P(\text { Win })>P(\text { Draw }) \\
& P(\text { Draw })>P(\text { Loss }) \\
& P(\text { Win }) \\
& P(\text { Draw })=\left[\begin{array}{l}
\frac{\alpha}{3}+\beta+\frac{\gamma}{2} \\
\frac{\alpha}{3}+\frac{\gamma}{2} \\
\frac{\alpha}{3}
\end{array}\right] \\
& \forall \alpha, \beta, \gamma \text { Loss }) \\
& \alpha>0, \beta>0, \gamma>0, \\
& \alpha+\beta+\gamma=1
\end{aligned}
$$

Three different levels of knowledge (ii)

Three different levels of knowledge (ii)

INFORMATIVENESS

Three different levels of knowledge (ii)

UNCERTAINTY

IMPRECISION

EXPRESSIVENESS

Three different levels of knowledge (ii)

Three different levels of knowledge (ii)

IMPRECISION

Limit when learning from
large (complete) data sets

Three different levels of knowledge (ii)

From CLPs to Credal Sets

Modelling knowledge about X, taking values in \mathcal{X}

From CLPs to Credal Sets

Modelling knowledge about X, taking values in \mathcal{X}

Bayesian / precise

probability distribution $p: \mathcal{X} \rightarrow \mathbb{R}$
$\left\{\begin{array}{l}p(x) \geq 0 \forall x \in \mathcal{X} \\ \sum_{x \in \mathcal{X}} p(x)=1\end{array}\right.$
coherent linear prevision
$P: \mathcal{L}(\mathcal{X}) \rightarrow \mathbb{R}$
$\left\{\begin{array}{l}P(f+g)=P(f)+P(g) \\ P(f) \geq \text { inf } f, \forall f, g \in \mathcal{L}(\mathcal{X})\end{array}\right.$

From CLPs to Credal Sets

 Modelling knowledge about X, taking values in \mathcal{X}
Bayesian / precise

$$
\underline{P}(f)=\sum_{x \in \mathcal{X}} p(x) f(x)
$$

probability distribution $p: \mathcal{X} \rightarrow \mathbb{R}$
$\left\{\begin{array}{l}p(x) \geq 0 \forall x \in \mathcal{X} \\ \sum_{x \in \mathcal{X}} p(x)=1\end{array}\right.$
coherent linear prevision
$P: \mathcal{L}(\mathcal{X}) \rightarrow \mathbb{R}$

$$
\left\{\begin{array}{l}
P(f+g)=P(f)+P(g) \\
P(f) \geq \inf f, \forall f, g \in \mathcal{L}(\mathcal{X})
\end{array}\right.
$$

From CLPs to Credal Sets

Modelling knowledge about X, taking values in \mathcal{X}

Bayesian / precise

$$
\underline{P}(f)=\sum_{x \in \mathcal{X}} p(x) f(x)
$$

probability distribution $p: \mathcal{X} \rightarrow \mathbb{R}$

$$
P(x)=\underline{P}\left(\mathcal{I}_{\{x\}}\right)
$$

coherent linear prevision
$P: \mathcal{L}(\mathcal{X}) \rightarrow \mathbb{R}$

$$
\left\{\begin{array}{l}
P(f+g)=P(f)+P(g) \\
P(f) \geq \inf f, \forall f, g \in \mathcal{L}(\mathcal{X})
\end{array}\right.
$$

coherent lower prevision
$\underline{P}: \mathcal{L}(\mathcal{X}) \rightarrow \mathbb{R}$
$\left\{\begin{array}{l}\underline{P}(f) \geq \min f \forall f \in \mathcal{L}(\mathcal{X}) \\ \vec{P}(\lambda f)=\lambda \underline{P}(f) \forall \lambda>0 \\ \underline{P}(f+g) \geq \underline{P}(f)+\underline{P}(g)\end{array}\right.$

From CLPs to Credal Sets

Modelling knowledge about X, taking values in \mathcal{X}

Bayesian / precise

$$
\underline{P}(f)=\sum_{x \in \mathcal{X}} p(x) f(x)
$$

probability distribution $p: \mathcal{X} \rightarrow \mathbb{R}$

$$
P(x)=\underline{P}\left(I_{\{x\}}\right)
$$

coherent linear prevision
$P: \mathcal{L}(\mathcal{X}) \rightarrow \mathbb{R}$

$$
\left\{\begin{array}{l}
P(f+g)=P(f)+P(g) \\
P(f) \geq \inf f, \forall f, g \in \mathcal{L}(\mathcal{X})
\end{array}\right.
$$

Credal / imprecise
set of distributions
$K(X)=\{p(X) \mid$ constraints $\}$

\exists set \mathcal{M} of linear previsions s.t. $\underline{P}(f)=\inf _{P \in \mathcal{M}} P(f) \forall f \in \mathcal{L}(\mathcal{X})$
coherent lower prevision
$\underline{P}: \mathcal{L}(\mathcal{X}) \rightarrow \mathbb{R}$
$\left\{\begin{array}{l}\underline{P}(f) \geq \min f \forall f \in \mathcal{L}(\mathcal{X}) \\ \bar{P}(\lambda f)=\lambda \underline{P}(f) \forall \lambda>0 \\ \underline{P}(f+g) \geq \underline{P}(f)+\underline{P}(g)\end{array}\right.$

From CLPs to Credal Sets

Modelling knowledge about X, taking values in \mathcal{X}

Bayesian / precise

$$
\underline{P}(f)=\sum_{x \in \mathcal{X}} p(x) f(x)
$$

probability distribution $p: \mathcal{X} \rightarrow \mathbb{R}$

$$
P(x)=\underline{P}\left(I_{\{x\}}\right)
$$

$\left\{\begin{array}{l}p(x) \geq 0 \forall x \in \mathcal{X} \\ \sum_{x \in \mathcal{X}} p(x)=1\end{array}\right.$
coherent linear prevision
$P: \mathcal{L}(\mathcal{X}) \rightarrow \mathbb{R}$

$$
\left\{\begin{array}{l}
P(f+g)=P(f)+P(g) \\
P(f) \geq \inf f, \forall f, g \in \mathcal{L}(\mathcal{X})
\end{array}\right.
$$

Credal / imprecise
set of distributions
$K(X)=\{p(X) \mid$ constraints $\}$
I

coherent lower prevision

$$
\begin{aligned}
& \underline{P}: \mathcal{L}(\mathcal{X}) \rightarrow \mathbb{R} \\
& \left\{\begin{array}{l}
\underline{P}(f) \geq \min f \forall f \in \mathcal{L}(\mathcal{X}) \\
\bar{P}(\lambda f)=\lambda \underline{P}(f) \forall \lambda>0 \\
\underline{P}(f+g) \geq \underline{P}(f)+\underline{P}(g)
\end{array}\right.
\end{aligned}
$$

\exists set \mathcal{M} of linear previsions s.t. $\underline{P}(f)=\inf _{P \in \mathcal{M}} P(f) \forall f \in \underset{\text { lower }}{\mathcal{L}(\mathcal{X})}$ envelope Theorem
(a set and its convex closure have the same lower envelope!)

From CLPs to Credal Sets

Modelling knowledge about X, taking values in \mathcal{X}

Bayesian / precise

$$
\underline{P}(f)=\sum_{x \in \mathcal{X}} p(x) f(x)
$$

probability distribution $p: \mathcal{X} \rightarrow \mathbb{R}$

$$
P(x)=\underline{P}\left(\mathcal{I}_{\{x\}}\right)
$$

$\left\{\begin{array}{l}p(x) \geq 0 \forall x \in \mathcal{X} \\ \sum_{x \in \mathcal{X}} p(x)=1\end{array}\right.$
coherent linear prevision
$P: \mathcal{L}(\mathcal{X}) \rightarrow \mathbb{R}$

$$
\left\{\begin{array}{l}
P(f+g)=P(f)+P(g) \\
P(f) \geq \inf f, \forall f, g \in \mathcal{L}(\mathcal{X})
\end{array}\right.
$$

Credal / imprecise
set of distributions convex closed $K(X)=\{p(X) \mid$ constraints $\}$
t

coherent lower prevision

$$
\begin{aligned}
& \underline{P}: \mathcal{L}(\mathcal{X}) \rightarrow \mathbb{R} \\
& \left\{\begin{array}{l}
\underline{P}(f) \geq \min f \forall f \in \mathcal{L}(\mathcal{X}) \\
\underline{P}(\lambda f)=\lambda \underline{P}(f) \forall \lambda>0 \\
\underline{P}(f+g) \geq \underline{P}(f)+\underline{P}(g)
\end{array}\right.
\end{aligned}
$$

\exists set \mathcal{M} of linear previsions s.t.

$$
\underline{P}(f)=\inf _{P \in \mathcal{M}} P(f) \forall f \in \underset{\text { Lower }}{\mathcal{L}}(\mathcal{X})_{\text {envelope }} \text { Theorem }
$$

(a set and its convex closure have the same lower envelope!)

Credal sets (Levi, 1980)

- A closed convex set $K(X)$ of probability mass functions
- Equivalently described by its extreme points ext[K(X)]
- Focus on categorical variables $(|\mathcal{X}|<+\infty)$ and finitely generated CSs (polytopes, $|\operatorname{ext}[K(X)]|<+\infty)$ $\begin{array}{lcc}\text { V-representation } \\ \text { enumerate the } & \stackrel{\text { LRS software }}{ } & \begin{array}{c}\text { H-representation } \\ \text { linear constraints }\end{array} \\ \text { extreme points } & \text { (Avis \& Fukuda) } & \text { on the probabilities }\end{array}$
- Given a function (gamble) $f(X)$, lower expectation:
$E[f(X)]:=\min _{P(X) \in K(X)} \sum_{x \in \mathcal{X}} P(x) f(x)$
- LP task: the optimum is on an extreme!
$\underline{E}[f(X)]=\min _{P(X) \in \operatorname{ext}[K(X)]} \sum_{x \in \mathcal{X}} P(x) f(x)$

Credal sets (Levi, 1980)

- A closed convex set $K(X)$ of probability mass functions
- Equivalently described by its extreme points $\operatorname{ext}[K(X)]$
- Focus on categorical variables $(|\mathcal{X}|<+\infty)$ and finitely generated CSs (polytopes, $|\operatorname{ext}[K(X)]|<+\infty$)

V-representation enumerate the extreme points

(Avis \& Fukuda)

H-representation
linear constraints
on the probabilities

- Given a function (gamble) $f(X)$, lower expectation:
$\underline{E}[f(X)]:=\min _{P(X) \in K(X)} \sum_{x \in \mathcal{X}} P(x) f(x)$
- LP task: the optimum is on an extreme!
$E[f(X)]=\min _{P(X) \in \operatorname{ext}[K(X)]} \sum_{x \in \mathcal{X}} P(x) f(x)$

Credal sets (Levi, 1980)

- A closed convex set $K(X)$ of probability mass functions
- Equivalently described by its extreme points $\operatorname{ext}[K(X)]$
- Focus on categorical variables $(|\mathcal{X}|<+\infty)$

enumerate the
extreme points

H-representation
linear constraints
on the probabilities

- Given a function (gamble) $f(X)$, lower expectation:
$\underline{E}[f(X)]:=\min _{P(X) \in K(X)} \sum_{x \in \mathcal{X}} P(x) f(x)$
- LP task: the optimum is on an extreme!
$E[f(X)]=\min _{P(X) \in \operatorname{ext}[K(X)]} \sum_{x \in \mathcal{X}} P(x) f(x)$

Credal sets (Levi, 1980)

- A closed convex set $K(X)$ of probability mass functions
- Equivalently described by its extreme points ext[$K(X)$]
- Focus on categorical variables $(|\mathcal{X}|<+\infty)$ and finitely generated CSs (polytopes, $|\operatorname{ext}[K(X)]|<+\infty)$

V-representation
enumerate the
extreme points

H-representation
linear constraints
on the probabilities

- Given a function (gamble) $f(X)$, lower expectation:
$E[f(X)]:=\min _{P(X) \in K(X)} \sum_{x \in \mathcal{X}} P(x) f(x)$
- LP task: the optimum is on an extreme!
$\underline{E}[f(X)]=\min _{P(X) \in \operatorname{ext}[K(X)]} \sum_{x \in \mathcal{X}} P(x) f(x)$

Credal sets (Levi, 1980)

- A closed convex set $K(X)$ of probability mass functions
- Equivalently described by its extreme points ext[$K(X)$]
- Focus on categorical variables $(|\mathcal{X}|<+\infty)$ and finitely generated CSs (polytopes, $|\operatorname{ext}[K(X)]|<+\infty)$

V-representation	$\stackrel{\text { LRS software }}{ }$	H-representation linear constraints
enumerate the		
extreme points	(Avis \& Fukuda)	on the probabilities

- Given a function (gamble) $f(X)$, lower expectation: $\underline{E}[f(X)]:=\min _{P(X) \in K(X)} \sum_{x \in \mathcal{X}} P(x) f(x)$
- LP task: the optimum is on an extreme!
$\underline{E}[f(X)]=\min _{P(X) \in \operatorname{ext}[K(X)]} \sum_{x \in \mathcal{X}} P(x) f(x)$

Credal sets (Levi, 1980)

- A closed convex set $K(X)$ of probability mass functions
- Equivalently described by its extreme points ext[$K(X)$]
- Focus on categorical variables $(|\mathcal{X}|<+\infty)$ and finitely generated CSs (polytopes, $|\operatorname{ext}[K(X)]|<+\infty)$

V-representation		
enumerate the	$\stackrel{\text { LRS software }}{ }$	H-representation linear constraints
extreme points	(Avis \& Fukuda)	on the probabilities

- Given a function (gamble) $f(X)$, lower expectation:
$\underline{E}[f(X)]:=\min _{P(X) \in K(X)} \sum_{x \in \mathcal{X}} P(x) f(x)$
- LP task: the optimum is on an extreme!
$\underline{E}[f(X)]=\min _{P(X) \in \operatorname{ex[}[K(X)]} \sum_{x \in \mathcal{X}} P(x) f(x)$

Credal sets (Levi, 1980)

- A closed convex set $K(X)$ of probability mass functions
- Equivalently described by its extreme points $\operatorname{ext}[K(X)]$
- Focus on categorical variables $(|\mathcal{X}|<+\infty)$ and finitely generated CSs (polytopes, $|\operatorname{ext}[K(X)]|<+\infty)$

V-representation	$\stackrel{\text { H-representation }}{ }$		
enumerate the software		\quad	linear constraints
:---:			
extreme points	(Avis \& Fukuda) \quad on the probabilities		

- Given a function (gamble) $f(X)$, lower expectation:
$\underline{E}[f(X)]:=\min _{P(X) \in K(X)} \sum_{x \in \mathcal{X}} P(x) f(x)$
- LP task: the optimum is on an extreme!
$\underline{E}[f(X)]=\min _{P(X) \in \operatorname{ext}[K(X)]} \sum_{x \in \mathcal{X}} P(x) f(x)$

Credal Sets over Boolean Variables

Credal Sets over Boolean Variables

- Boolean X, values in $\mathcal{X}=\{x, \neg X\}$

Credal Sets over Boolean Variables

- Boolean X, values in $\mathcal{X}=\{x, \neg x\}$
- Determinism \equiv degenerate mass \mathfrak{f} E.g., $X=x \Longleftrightarrow P(X)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$

Credal Sets over Boolean Variables

- Boolean X, values in $\mathcal{X}=\{x, \neg x\}$
- Determinism \equiv degenerate mass \mathfrak{f} E.g., $X=x \Longleftrightarrow P(X)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$

Credal Sets over Boolean Variables

- Boolean X, values in $\mathcal{X}=\{x, \neg x\}$
- Determinism \equiv degenerate mass \mathfrak{f} E.g., $X=x \Longleftrightarrow P(X)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
- Uncertainty \equiv prob mass function $P(X)=\left[\begin{array}{c}p \\ 1-p\end{array}\right]$ with $p \in[0,1]$

Credal Sets over Boolean Variables

- Boolean X, values in $\mathcal{X}=\{x, \neg x\}$
- Determinism \equiv degenerate mass \mathfrak{f} E.g., $X=x \Longleftrightarrow P(X)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
- Uncertainty \equiv prob mass function $P(X)=\left[\begin{array}{c}p \\ 1-p\end{array}\right]$ with $p \in[0,1]$

Credal Sets over Boolean Variables

- Boolean X, values in $\mathcal{X}=\{x, \neg x\}$
- Determinism \equiv degenerate mass \mathfrak{f} E.g., $X=x \Longleftrightarrow P(X)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
- Uncertainty \equiv prob mass function $P(X)=\left[\begin{array}{c}p \\ 1-p\end{array}\right]$ with $p \in[0,1]$

Credal Sets over Boolean Variables

- Boolean X, values in $\mathcal{X}=\{x, \neg x\}$
- Determinism \equiv degenerate mass \mathfrak{f} E.g., $X=x \Longleftrightarrow P(X)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
- Uncertainty \equiv prob mass function $P(X)=\left[\begin{array}{c}p \\ 1-p\end{array}\right]$ with $p \in[0,1]$
- Imprecision credal set on the probability simplex

Credal Sets over Boolean Variables

- Boolean X, values in $\mathcal{X}=\{x, \neg X\}$
- Determinism \equiv degenerate mass \mathfrak{f} E.g., $X=x \Longleftrightarrow P(X)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
- Uncertainty \equiv prob mass function $P(X)=\left[\begin{array}{c}p \\ 1-p\end{array}\right]$ with $p \in[0,1]$
- Imprecision credal set on the probability simplex

$$
K(X) \equiv\left\{\left.P(X)=\left[\begin{array}{c}
p \\
1-p
\end{array}\right] \right\rvert\, .4 \leq p \leq .7\right\}
$$

Credal Sets over Boolean Variables

- Boolean X, values in $\mathcal{X}=\{x, \neg X\}$
- Determinism \equiv degenerate mass \mathfrak{f} E.g., $X=x \Longleftrightarrow P(X)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
- Uncertainty \equiv prob mass function $P(X)=\left[\begin{array}{c}p \\ 1-p\end{array}\right]$ with $p \in[0,1]$
- Imprecision credal set on the probability simplex

$$
K(X) \equiv\left\{\left.P(X)=\left[\begin{array}{c}
p \\
1-p
\end{array}\right] \right\rvert\, \cdot 4 \leq p \leq .7\right\}
$$

- A CS over a Boolean variable cannot have more than two vertices!

$$
\operatorname{ext}[K(X)]=\left\{\left[\begin{array}{c}
.7 \\
.3
\end{array}\right],\left[\begin{array}{l}
.4 \\
.6
\end{array}\right]\right\}
$$

Geometric Representation of CSs (ternary variables)

- Ternary X (e.g., $\mathcal{X}=\{$ win,draw,loss $\}$)
- $P(X) \equiv$ point in the space (simplex)
- No bounds to |ext[K(X)]|
- Modelling ignorance
- Uniform models indifference
- Vacuous credal set
- Expert qualitative knowledge
- Win is more probable than draw, which more probable than loss

- Learning from small datasets
- Learning with multiple priors (e.g., IDM with $s=2$)
- Learning from incomplete data
- Considering all the possible explanation of the missing data

Geometric Representation of CSs (ternary variables)

- Ternary X (e.g., $\mathcal{X}=\{$ win,draw,loss $\}$)
- $P(X) \equiv$ point in the space (simplex)
- No bounds to $|\operatorname{ext}[K(X)]|$
- Modelling ianorance
- Uniform models indifference
- Vacuous credal set
- Expert qualitative knowledge
- Win is more probable than draw, which more probable than loss

- Learning from small datasets
- Learning with multiple priors (e.g., IDM with $s=2$)
- Learning from incomplete data
- Considering all the possible explanation of the missing data

Geometric Representation of CSs (ternary variables)

- Ternary X (e.g., $\mathcal{X}=\{$ win,draw,loss $\}$)
- $P(X) \equiv$ point in the space (simplex)
- No bounds to |ext[K(X)]|
- Modelling ignorance
- Uniform models indifference
- Vacuous credal set
- Expert qualitative knowledge
- Win is more probable than draw, which more probable than loss
- Learning from small datasets
- Learning with multiple priors

$$
P(X)=\left[\begin{array}{l}
.6 \\
.3 \\
.1
\end{array}\right]
$$ (e.g., IDM with $s=2$)

- Learning from incomplete data
- Considering all the possible explanation of the missing data

Geometric Representation of CSs (ternary variables)

- Ternary X (e.g., $\mathcal{X}=\{$ win,draw,loss $\}$)
- $P(X) \equiv$ point in the space (simplex)
- No bounds to |ext $[K(X)] \mid$
- Modelling ignorance
- Uniform models indifference
- Vacuous credal set
- Expert qualitative knowledge
- Win is more probable than draw, which more probable than loss

- Learning from small datasets
- Learning with multiple priors (e.g., IDM with $s=2$)
- Learning from incomplete data
- Considering all the possible explanation of the missing data

Geometric Representation of CSs (ternary variables)

- Ternary X (e.g., $\mathcal{X}=\{$ win,draw,loss $\}$)
- $P(X) \equiv$ point in the space (simplex)
- No bounds to |ext $[K(X)] \mid$
- Modelling ignorance
- Uniform models indifference
- Vacuous credal set
- Expert qualitative knowledge
- Win is more probable than draw, which more probable than loss

- Learning from small datasets
- Learning with multiple priors (e.g., IDM with $s=2$)
- Learning from incomplete data
- Considering all the possible explanation of the missing data

Geometric Representation of CSs (ternary variables)

- Ternary X (e.g., $\mathcal{X}=\{$ win,draw,loss $\}$)
- $P(X) \equiv$ point in the space (simplex)
- No bounds to $|\operatorname{ext}[K(X)]|$
- Modelling ignorance
- Uniform models indifference
- Vacuous credal set
- Expert qualitative knowledge
- Win is more probable than draw, which more probable than loss
- Learning from small datasets
- Learning with multiple priors
 (e.g., IDM with $s=2$)
- Learning from incomplete data
- Considering all the possible explanation of the missing data

$$
P_{0}(x)=\frac{1}{\left|\Omega_{x}\right|}
$$

Geometric Representation of CSs (ternary variables)

- Ternary X (e.g., $\mathcal{X}=\{$ win,draw,loss $\}$)
- $P(X) \equiv$ point in the space (simplex)
- No bounds to |ext $[K(X)] \mid$
- Modelling ignorance
- Uniform models indifference
- Vacuous credal set
- Expert qualitative knowledge
- Win is more probable than draw, which more probable than loss
- Learning from small datasets
- Learning with multiple priors (e.g., IDM with $s=2$)
- Learning from incomplete data
- Considering all the possible explanation of the missing data

$K_{0}(X)=\left\{\begin{array}{l|l}P(X) & \begin{array}{l}\sum_{x} P(x)=1, \\ P(x) \geq 0\end{array}\end{array}\right\}$

Geometric Representation of CSs (ternary variables)

- Ternary X (e.g., $\mathcal{X}=\{$ win,draw,loss $\}$)
- $P(X) \equiv$ point in the space (simplex)
- No bounds to $|\operatorname{ext}[K(X)]|$
- Modelling ignorance
- Uniform models indifference
- Vacuous credal set
- Expert qualitative knowledge
- Win is more probable than draw, which more probable than loss

- Learning from small datasets
- Learning with multiple priors (e.g., IDM with $s=2$)
- Learning from incomplete data
- Considering all the possible explanation of the missing data

Geometric Representation of CSs (ternary variables)

- Ternary X (e.g., $\mathcal{X}=\{$ win,draw,loss $\}$)
- $P(X) \equiv$ point in the space (simplex)
- No bounds to $|\operatorname{ext}[K(X)]|$
- Modelling ignorance
- Uniform models indifference
- Vacuous credal set
- Expert qualitative knowledge
- Win is more probable than draw, which more probable than loss

- Learning from small datasets
- Learning with multiple priors (e.g., IDM with $s=2$)
- Learning from incomplete data
- Considering all the possible explanation of the missing data

Geometric Representation of CSs (ternary variables)

- Ternary X (e.g., $\mathcal{X}=\{$ win,draw,loss $\}$)
- $P(X) \equiv$ point in the space (simplex)
- No bounds to $|\operatorname{ext}[K(X)]|$
- Modelling ignorance
- Uniform models indifference
- Vacuous credal set
- Expert qualitative knowledge
- Win is more probable than draw, which more probable than loss

- Learning from small datasets
- Learning with multiple priors (e.g., IDM with $s=2$)
- Learning from incomplete data
- Considering all the possible explanation of the missing data

Geometric Representation of CSs (ternary variables)

- Ternary X (e.g., $\mathcal{X}=\{$ win,draw,loss $\}$)
- $P(X) \equiv$ point in the space (simplex)
- No bounds to |ext[$[K(X)] \mid$
- Modelling ignorance
- Uniform models indifference
- Vacuous credal set
- Expert qualitative knowledge
- Win is more probable than draw, which more probable than loss
- Learning from
- Learning with multiple priors (e.g., IDM with $s=2$)
- Learning from incomplete data
- Considering all the possible explanation of the missing data

From natural language to linear contraints on probabilities
(Walley, 1991)
extremely probable $P(x) \geq 0.98$
very high probability $P(x) \geq 0.9$ highly probable $P(x) \geq 0.85$ very probable $P(x) \geq 0.75$ has a very good chance $P(x) \geq 0.65$ quite probable $P(x) \geq 0.6$

$$
P(x) \geq 0.5
$$

has a good chance $0.4 \leq P(x) \leq 0.85$
is improbable (unlikely) $P(x) \leq 0.5$
is somewhat unlikely $P(x) \leq 0.4$
is very unlikely $P(x) \leq 0.25$
has little chance $P(x) \leq 0.2$
is highly improbable $P(x) \leq 0.15$
is has very low probability $P(x) \leq 0.1$ is extremely unlikely $P(x) \leq 0.02$

Geometric Representation of CSs (ternary variables)

- Ternary X (e.g., $\mathcal{X}=\{$ win,draw,loss $\}$)
- $P(X) \equiv$ point in the space (simplex)
- No bounds to |ext $[K(X)] \mid$
- Modelling ignorance
- Uniform models indifference
- Vacuous credal set
- Expert qualitative knowledge
- Win is more probable than draw, which more probable than loss
- Learning from small datasets
- Learning with multiple priors (e.g., IDM with $s=2$)
- Learning from incomplete data
- Considering all the possible explanation of the missing data

Previous matches:
Holland 4 wins,
Draws 1,
Spain 3 wins

Geometric Representation of CSs (ternary variables)

- Ternary X (e.g., $\mathcal{X}=\{$ win,draw,loss $\}$)
- $P(X) \equiv$ point in the space (simplex)
- No bounds to |ext $[K(X)] \mid$
- Modelling ignorance
- Uniform models indifference
- Vacuous credal set
- Expert qualitative knowledge
- Win is more probable than draw, which more probable than loss
- Learning from small datasets
- Learning with multiple priors (e.g., IDM with $s=2$)
- Learning from incomplete data
- Considering all the possible explanation of the missing data


```
1957: Spain vs. Holland 5-1
1973: Holland vs. Spain 3-2
1980: Spain vs. Holland 1-0
1983: Spain vs. Holland 1-0
1983: Holland vs. Spain 2-1
1987: Spain vs. Holland 1-1
2000: Spain vs. Holland 1-2
2001: Holland vs. Spain 1-0
2005: Spain vs. Holland *-* (missing)
2008: Holland vs. Spain *-* (missing)
```


Basic operations with credal sets

PRECISE
 Mass functions

Joint

Marginalization

Conditioning

$$
\begin{array}{cc}
P(X) \text { s.t. } & \begin{array}{c}
K(X)= \\
p(x)=\sum_{y} p(x, y)
\end{array} \\
\left.\begin{array}{cc}
P(x)=\sum_{y} P(x, y) \\
P(X, Y) \in K(X, Y)
\end{array}\right\} \\
P(X \mid y) \text { s.t. } & \{P(X \mid y)= \\
p(x \mid y)=\frac{P(x, y)}{\sum_{y} P(x, y)} & \left\{P(X \mid y) \left\lvert\, \begin{array}{l}
P(x \mid y)=\frac{P(x, y)}{\sum_{y} P(x, y)} \\
P(X, Y) \in K(X, Y)
\end{array}\right.\right\}
\end{array}
$$

Combination

$$
P(X, Y) \quad K(X, Y)
$$

$$
P(x, y)=P(x \mid y) P(y) \quad K(X \mid Y) \otimes K(Y)=
$$

$$
\left\{\begin{array}{l|l}
P(X, Y) & \begin{array}{l}
P(x, y)=P(x \mid y) P(y) \\
P(X \mid y) \in K(X \mid y) \\
P(Y) \in K(Y)
\end{array}
\end{array}\right\}
$$

Basic operations with credal sets

Joint

Marginalization

Conditioning

$$
\begin{array}{cc}
P(X) \text { s.t. } & K(X)= \\
p(x)=\sum_{y} p(x, y) & \left\{P(X) \left\lvert\, \begin{array}{l}
P(x)=\sum_{y} P(x, y) \\
P(X, Y) \in K(X, Y)
\end{array}\right.\right\} \\
\begin{array}{c}
P(X \mid y) \text { s.t. } \\
M(X \mid y)== \\
\sum_{y} P(x \mid y) P(x, y)
\end{array} & \left\{P(X \mid y) \left\lvert\, \begin{array}{l}
P(x \mid y)=\frac{P(x, y)}{\sum_{y} P(x, y)} \\
P(X, Y) \in K(X, Y)
\end{array}\right.\right\}
\end{array}
$$

Combination

$$
\begin{aligned}
& \left.P(x, y)=P(x \mid y) P(y) \begin{array}{c|l}
K(X \mid Y) \otimes K(Y)= \\
P(X, Y) & \begin{array}{l}
P(x, y)=P(x \mid y) P(y) \\
P(X \mid y) \in K(X \mid y) \\
P(Y) \in K(Y)
\end{array}
\end{array}\right\}
\end{aligned}
$$

Basic operations with credal sets

Joint

Marginalization

Conditioning

$$
\begin{aligned}
& P(X) \text { set. } \\
& p(x)=\sum_{y} p(x, y) \\
& \begin{array}{c}
P(X \mid y) \text { set. } \\
p(x \mid y)=\sum_{\sum_{y} P(x, y)}^{P(x, y)}
\end{array} \\
& \left.\begin{array}{l}
K(X \mid y) \quad=\quad= \\
\begin{array}{l}
P(x \mid y)=\frac{P(x, y)}{\sum_{y}(x, y)} \\
P(X, Y) \in K(X, Y)
\end{array}
\end{array}\right\}
\end{aligned}
$$

Combination

$$
\begin{aligned}
& \left.P(x, y)=P(x \mid y) P(y) \begin{array}{c|l}
K(X \mid Y) \otimes K(Y)= \\
P(X, Y) & \begin{array}{l}
P(x, y)=P(x \mid y) P(y) \\
P(X \mid y) \in K(X \mid y) \\
P(Y) \in K(Y)
\end{array}
\end{array}\right\}
\end{aligned}
$$

Basic operations with credal sets

Joint
$P(X, Y)$
$K(X, Y)$

Marginalization

$$
K(X)=
$$

Conditioning

$$
\begin{gathered}
P(X) \text { s.t. } \\
p(x) \stackrel{\sum_{y} p(x, y)}{=}
\end{gathered}
$$

$$
\{P(X) \mid
$$

$$
\left.\begin{array}{l}
P(x)=\sum_{y} P(X, y) \\
P(X, Y) \in K(X, Y)
\end{array}\right\}
$$

$$
\begin{gathered}
P(X \mid y) \text { s.t. } \\
p(x \mid y)=\sum_{\sum_{y} P(x, y)}^{=}(x, y)
\end{gathered}
$$

$$
\begin{aligned}
& \left.K(X \mid y)=\begin{array}{l}
= \\
\left\{\begin{array}{l}
P(x \mid y)=\frac{P(x, y)}{\sum_{y} P(x, y)} \\
P(X, Y) \in K(X, Y)
\end{array}\right.
\end{array}\right\} .
\end{aligned}
$$

Combination

$$
P(x, y)=P(x \mid y) P(y)
$$

Basic operations with credal sets

Joint

Marginalization

Conditioning

$$
p(x) \stackrel{P(X) \text { s.t. }}{=\sum_{y} p(x, y)} \quad\left\{P(X) \left\lvert\, \begin{array}{l}
K(X)= \\
P(X)=\sum_{y} P(x, y) \\
P(X, Y) \in K(X, Y)
\end{array}\right.\right\}
$$

$$
\begin{gathered}
P(X \mid y) \text { s.t. } \\
p(x \mid y)=\frac{P(x, y)}{\sum_{y} P(x, y)}
\end{gathered}
$$

$$
\begin{aligned}
& K(X \mid y)=\quad= \\
& \left.\begin{array}{l}
P(x \mid y)=\frac{P(x, y)}{\sum_{y} P(X, y)} \\
P(X, Y) \in K(X, Y)
\end{array}\right\}
\end{aligned}
$$

Combination

$$
K(X, Y)
$$

$$
\{P(X \mid y) \mid
$$

$$
P(x, y)=P(x \mid y) P(y)
$$

IMPRECISE

 Credal sets$$
\left\{\begin{array}{c|l}
K(X \mid Y) \otimes K(Y)= \\
P(X, Y) & \begin{array}{l}
P(x, y)=P(x \mid y) P(y) \\
P(X \mid y) \in K(X \mid y) \\
P(Y) \in K(Y)
\end{array}
\end{array}\right\}
$$

Basic operations with credal sets

PRECISE
 Mass functions

Joint

Marginalization

Conditioning
$P(X, Y) \quad K(X, Y)$

$$
p(x) \stackrel{P(X) \text { s.t. }}{=\sum_{y} p(x, y)} \quad\left\{P(X) \left\lvert\, \begin{array}{l}
K(X)= \\
P(x)=\sum_{y} P(x, y) \\
P(X, Y) \in K(X, Y)
\end{array}\right.\right\}
$$

$$
P(x, y)=P(x \mid y) P(y)
$$

$$
K(X, Y)
$$

$$
\begin{gathered}
P(X \mid y) \text { s.t. } \\
p(x \mid y)=\underset{P(x, y)}{\sum_{y} P(x, y)}
\end{gathered}\left\{P(X \mid y) \left\lvert\, \begin{array}{l}
K(X \mid y)=\underset{P(x, y)}{=} \\
P(X, Y) \in K(X, Y)
\end{array}\right.\right\}
$$

IMPRECISE

 Credal setsCombination

Basic operations with credal sets

PRECISE
 Mass functions

Joint

Marginalization

Conditioning

$$
p(x) \stackrel{P(X) \text { s.t. }}{=\sum_{y} p(x, y)} \quad\left\{P(X) \left\lvert\, \begin{array}{l}
K(X)= \\
P(X)=\sum_{y} P(x, y) \\
P(X, Y) \in K(X, Y)
\end{array}\right.\right\}
$$

$$
\begin{gathered}
P(X \mid y) \text { s.t. } \\
p(x \mid y)=\underset{P(X, y)}{\sum_{y} P(x, y)}
\end{gathered} \quad\left\{\begin{array}{c}
\left.K(X \mid y)=\underset{P(X \mid y)}{=} \begin{array}{l}
P(x \mid y)=\frac{P}{\sum_{y}(x, y)} \\
P(X, Y) \in K(X, Y)
\end{array}\right\}
\end{array}\right.
$$

Combination

$$
P(x, y)=P(x \mid y) P(y)
$$

Basic operations with credal sets

PRECISE
 Mass functions

Joint

Marginalization

Conditioning

$$
\begin{array}{cc}
P(X) \text { s.t. } & \begin{array}{c}
K(X)= \\
p(x)=\sum_{y} p(x, y)
\end{array}
\end{array}\left\{\begin{array}{l}
\left.P(X) \left\lvert\, \begin{array}{l}
P(x)=\sum_{y} P(x, y) \\
P(X, Y) \in K(X, Y)
\end{array}\right.\right\}
\end{array}\right\}
$$

Combination

$$
P(x, y)=P(x \mid y) P(y)
$$

Basic operations with credal sets

PRECISE
 Mass functions

Joint

Marginalization

Conditioning

$$
\begin{array}{cc}
P(X) \text { s.t. } & \begin{array}{c}
K(X)= \\
p(x)=\sum_{y} p(x, y)
\end{array}
\end{array}\left\{\begin{array}{l}
\left.P(X) \left\lvert\, \begin{array}{l}
P(x)=\sum_{y} P(x, y) \\
P(X, Y) \in K(X, Y)
\end{array}\right.\right\}
\end{array}\right\}
$$

Combination

$$
\begin{aligned}
& \left.P(x, y)=P(x \mid y) P(y) \begin{array}{c|l}
K(X \mid Y) \otimes K(Y)= \\
P(X, Y) & \begin{array}{l}
P(x, y)=P(x \mid y) P(y) \\
P(X \mid y) \in K(X \mid y) \\
P(Y) \in K(Y)
\end{array}
\end{array}\right\}
\end{aligned}
$$

Basic operations with credal sets (vertices)

IMPRECISE
Credal sets

Joint

$$
K(X, Y)
$$

$K(X)=$
Marginalization $\left\{\begin{array}{l|l}P(X) & \begin{array}{l}P(X)=\sum_{y} P(x, y) \\ P(X, Y) \in K(X, Y)\end{array}\end{array}\right\}$
$K(X \mid y)=$
Conditioning $\quad\left\{\begin{array}{l|l}P(X \mid y) & \begin{array}{l}P(x \mid y)=\frac{P(X, y)}{\sum_{Y} P(X, y)} \\ P(X, Y) \in K(X, Y)\end{array}\end{array}\right\}$

Combination

$$
K(X \mid Y) \otimes K(Y)=
$$

$$
\left\{\begin{array}{l|l}
P(X, Y) & \begin{array}{l}
P(x, y)=P(x \mid y) P(y) \\
P(X \mid y) \in K(X \mid y) \\
P(Y) \in K(Y)
\end{array}
\end{array}\right\}
$$

Basic operations with credal sets (vertices)

IMPRECISE
Credal sets

IMPRECISE

Extremes
$=\mathrm{CH}\left\{P_{j}(X, Y)\right\}_{j=1}^{n_{v}}$

$$
=\mathrm{CH}\left\{P_{j}(X, Y)\right\}_{j=1}^{n_{v}}
$$

Joint

$$
K(X, Y)
$$

Marginalization $\left\{P(X) \left\lvert\, \begin{array}{l}K(X)= \\ P(x)=\sum_{y} P(x, y) \\ P(X, Y) \in K(X, Y)\end{array}\right.\right\}\left\{P(X) \left\lvert\, \begin{array}{l}P(X)=\sum_{y} P(X, y) \\ P(X, Y) \in \operatorname{ext}[K(X, Y)]\end{array}\right.\right\}$

Combination

$$
\left.\left\{\begin{array}{c|l}
K(X \mid Y) \otimes K(Y)= \\
P(X, Y) & \begin{array}{l}
P(X, y)=P(x \mid y) P(y) \\
P(X \mid y) \in K(X \mid y) \\
P(Y) \in K(Y)
\end{array}
\end{array}\right\} \begin{array}{l|l}
=(X, Y) & \begin{array}{l}
P(x, y)=P(x \mid y) P(y) \\
P(X \mid y) \in \operatorname{ext}[K X|Y| y)] \\
P(Y) \in \operatorname{ext}[K(Y)]
\end{array}
\end{array}\right\}
$$

Basic operations with credal sets (vertices)

IMPRECISE
Credal sets

IMPRECISE

Extremes

Joint

$$
K(X, Y) \quad=\mathrm{CH}\left\{P_{j}(X, Y)\right\}_{j=1}^{n_{v}}
$$

[EXE]
$K(X)=$ Prove it! $=\mathrm{CH}$
Marginalization $\left\{P(X) \left\lvert\, \begin{array}{l}P(X)=\sum_{y} P(x, y) \\ P(X, Y) \in K(X, Y)\end{array}\right.\right\}\left\{\begin{array}{l|l}P(X) \left\lvert\, \begin{array}{l}P(x)=\sum_{y} P(X, y) \\ P(X, Y) \in \operatorname{ext}[K(X, Y)]\end{array}\right.\end{array}\right\}$
Conditioning $\quad\left\{P(X \mid y) \left\lvert\, \begin{array}{l|l}K(X \mid y) \\ P(x \mid y)=\frac{P(X, y)}{\sum_{y} P(X, y)} \\ P(X, Y) \in K(X, Y)\end{array}\right.\right\}\left\{\begin{array}{l|l}= \\ P(X \mid y) & \begin{array}{l}P(x \mid y)=\frac{P(X, y)}{\sum_{y}(X, y)} \\ P(X, Y) \in \operatorname{ext}[K(X, Y)]\end{array}\end{array}\right\}$

Combination

$$
\left.\left.\begin{array}{c|l}
K(X \mid Y) \otimes K(Y)= \\
P(X, Y) & \begin{array}{l}
P(X, y)=P(x \mid y) P(y) \\
P(X \mid y) \in K(X \mid y) \\
P(Y) \in K(Y)
\end{array}
\end{array}\right\} \begin{array}{ll}
P(X, Y) & \begin{array}{l}
P(x, y)=P(x \mid y) P(y) \\
P(X \mid y) \in \operatorname{ext}[K X|y| y)] \\
P(Y) \in \operatorname{ext}[K(Y)]
\end{array}
\end{array}\right\}
$$

[Exe \#2] An imprecise bivariate (graphical?) model

- Two Boolean variables: Smoker, Lung Cancer

[Exe \#2] An imprecise bivariate (graphical?) model

- Two Boolean variables: Smoker, Lung Cancer
- Eight "Bayesian" phisicians, each one assessing $P_{j}(S, C)$

j	$P_{j}(s, c)$	$P_{j}(s, \neg c)$	$P_{j}(\neg s, c)$	$P_{j}(\neg s, \neg c)$
1	$1 / 8$	$1 / 8$	$3 / 8$	$3 / 8$
2	$1 / 8$	$1 / 8$	$9 / 16$	$3 / 16$
3	$3 / 16$	$1 / 16$	$3 / 8$	$3 / 8$
4	$3 / 16$	$1 / 16$	$9 / 16$	$3 / 16$
5	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$
6	$1 / 4$	$1 / 4$	$3 / 8$	$1 / 8$
7	$3 / 8$	$1 / 8$	$1 / 4$	$1 / 4$
8	$3 / 8$	$1 / 8$	$3 / 8$	$1 / 8$

[Exe \#2] An imprecise bivariate (graphical?) model

- Two Boolean variables: Smoker, Lung Cancer
- Eight "Bayesian" phisicians, each one assessing $P_{j}(S, C)$
- $K(S, C)=\mathrm{CH}\left\{P_{j}(S, C)\right\}_{j=1}^{8}$

j	$P_{j}(s, c)$	$P_{j}(s, \neg c)$	$P_{j}(\neg s, c)$	$P_{j}(\neg s, \neg c)$
1	$1 / 8$	$1 / 8$	$3 / 8$	$3 / 8$
2	$1 / 8$	$1 / 8$	$9 / 16$	$3 / 16$
3	$3 / 16$	$1 / 16$	$3 / 8$	$3 / 8$
4	$3 / 16$	$1 / 16$	$9 / 16$	$3 / 16$
5	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$
6	$1 / 4$	$1 / 4$	$3 / 8$	$1 / 8$
7	$3 / 8$	$1 / 8$	$1 / 4$	$1 / 4$
8	$3 / 8$	$1 / 8$	$3 / 8$	$1 / 8$

[Exe \#2] An imprecise bivariate (graphical?) model

- Two Boolean variables: Smoker, Lung Cancer
- Eight "Bayesian" phisicians, each one assessing $P_{j}(S, C)$
- $K(S, C)=\mathrm{CH}\left\{P_{j}(S, C)\right\}_{j=1}^{8}$
- Compute:
- Marginal $K(S)$
- Conditioning

$$
K(C \mid S):=\{K(C \mid s), K(C \mid s)\}
$$

- Combination (marg ext)

$$
K^{\prime}(C, S):=K(C \mid S) \otimes K(S)
$$

j	$P_{j}(s, c)$	$P_{j}(s, \neg c)$	$P_{j}(\neg s, c)$	$P_{j}(\neg s, \neg c)$
1	$1 / 8$	$1 / 8$	$3 / 8$	$3 / 8$
2	$1 / 8$	$1 / 8$	$9 / 16$	$3 / 16$
3	$3 / 16$	$1 / 16$	$3 / 8$	$3 / 8$
4	$3 / 16$	$1 / 16$	$9 / 16$	$3 / 16$
5	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$
6	$1 / 4$	$1 / 4$	$3 / 8$	$1 / 8$
7	$3 / 8$	$1 / 8$	$1 / 4$	$1 / 4$
8	$3 / 8$	$1 / 8$	$3 / 8$	$1 / 8$

$(0,0,1,0)$

[Exe \#2] An imprecise bivariate (graphical?) model

- Two Boolean variables: Smoker, Lung Cancer
- Eight "Bayesian" phisicians, each one assessing $P_{j}(S, C)$
- $K(S, C)=\mathrm{CH}\left\{P_{j}(S, C)\right\}_{j=1}^{8}$
- Compute:
- Marginal $K(S)$
- Conditioning

$$
K(C \mid S):=\{K(C \mid s), K(C \mid s)\}
$$

- Combination (marg ext)

$$
K^{\prime}(C, S):=K(C \mid S) \otimes K(S)
$$

- Is this a (I)PGM?

j	$P_{j}(s, c)$	$P_{j}(s, \neg c)$	$P_{j}(\neg s, c)$	$P_{j}(\neg s, \neg c)$
1	$1 / 8$	$1 / 8$	$3 / 8$	$3 / 8$
2	$1 / 8$	$1 / 8$	$9 / 16$	$3 / 16$
3	$3 / 16$	$1 / 16$	$3 / 8$	$3 / 8$
4	$3 / 16$	$1 / 16$	$9 / 16$	$3 / 16$
5	$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$
6	$1 / 4$	$1 / 4$	$3 / 8$	$1 / 8$
7	$3 / 8$	$1 / 8$	$1 / 4$	$1 / 4$
8	$3 / 8$	$1 / 8$	$3 / 8$	$1 / 8$

$(0,0,1,0)$

Cano-Cano-Moral Transformation

Cano-Cano-Moral Transformation

Cano-Cano-Moral Transformation

- Joint variable $X:=(C, S), K(X)=\left\{P_{j}(X)\right\}_{j=1}^{n_{v}}\left(|\mathcal{X}=4|\right.$ and $\left.n_{v}=8\right)$

$$
X \equiv(C, S)
$$

Cano-Cano-Moral Transformation

- Joint variable $X:=(C, S), K(X)=\left\{P_{j}(X)\right\}_{j=1}^{n_{v}}\left(|\mathcal{X}=4|\right.$ and $\left.n_{v}=8\right)$
- Auxiliary variable D to enumerate elements of ext $[K(X)]$

Cano-Cano-Moral Transformation

- Joint variable $X:=(C, S), K(X)=\left\{P_{j}(X)\right\}_{j=1}^{n_{v}}\left(|\mathcal{X}=4|\right.$ and $\left.n_{v}=8\right)$
- Auxiliary variable D to enumerate elements of ext $[K(X)]$
- Precise $K(X \mid D)$, with $P\left(X \mid d_{j}\right):=P_{j}(X)$ with $|\mathcal{D}|=8$

Cano-Cano-Moral Transformation

- Joint variable $X:=(C, S), K(X)=\left\{P_{j}(X)\right\}_{j=1}^{n_{v}}\left(|\mathcal{X}=4|\right.$ and $\left.n_{v}=8\right)$
- Auxiliary variable D to enumerate elements of ext $[K(X)]$
- Precise $K(X \mid D)$, with $P\left(X \mid d_{j}\right):=P_{j}(X)$ with $|\mathcal{D}|=8$
- Vacuous $K(D)$ (8 vertices)

unconditional
vacuous

Cano-Cano-Moral Transformation

- Joint variable $X:=(C, S), K(X)=\left\{P_{j}(X)\right\}_{j=1}^{n_{v}}\left(|\mathcal{X}=4|\right.$ and $\left.n_{v}=8\right)$
- Auxiliary variable D to enumerate elements of $\operatorname{ext}[K(X)]$
- Precise $K(X \mid D)$, with $P\left(X \mid d_{j}\right):=P_{j}(X)$ with $|\mathcal{D}|=8$
- Vacuous $K(D)$ (8 vertices)
- Marginal extension $K(X, D)=K(X \mid D) \otimes K(D)$

Cano-Cano-Moral Transformation

- Joint variable $X:=(C, S), K(X)=\left\{P_{j}(X)\right\}_{j=1}^{n_{v}}\left(|\mathcal{X}=4|\right.$ and $\left.n_{v}=8\right)$
- Auxiliary variable D to enumerate elements of ext $[K(X)]$
- Precise $K(X \mid D)$, with $P\left(X \mid d_{j}\right):=P_{j}(X)$ with $|\mathcal{D}|=8$
- Vacuous $K(D)$ (8 vertices)
- Marginal extension $K(X, D)=K(X \mid D) \otimes K(D)$
- After marginalization of $D, K(X, D)$ becomes $K(X)$

Cano-Cano-Moral Transformation

- Joint variable $X:=(C, S), K(X)=\left\{P_{j}(X)\right\}_{j=1}^{n_{v}}\left(|\mathcal{X}=4|\right.$ and $\left.n_{v}=8\right)$
- Auxiliary variable D to enumerate elements of $\operatorname{ext}[K(X)]$
- Precise $K(X \mid D)$, with $P\left(X \mid d_{j}\right):=P_{j}(X)$ with $|\mathcal{D}|=8$
- Vacuous $K(D)$ (8 vertices)
- Marginal extension $K(X, D)=K(X \mid D) \otimes K(D)$
- After marginalization of $D, K(X, D)$ becomes $K(X)$
- IP models as combination of precise models and vacuous priors
- Hyerarchical model with a vacuous second order knowledge

Cano-Cano-Moral Transformation

- Joint variable $X:=(C, S), K(X)=\left\{P_{j}(X)\right\}_{j=1}^{n_{v}}\left(|\mathcal{X}=4|\right.$ and $\left.n_{v}=8\right)$
- Auxiliary variable D to enumerate elements of $\operatorname{ext}[K(X)]$
- Precise $K(X \mid D)$, with $P\left(X \mid d_{j}\right):=P_{j}(X)$ with $|\mathcal{D}|=8$
- Vacuous $K(D)$ (8 vertices)
- Marginal extension $K(X, D)=K(X \mid D) \otimes K(D)$
- After marginalization of $D, K(X, D)$ becomes $K(X)$
- IP models as combination of precise models and vacuous priors
- Hyerarchical model with a vacuous second order knowledge

Independence

Independence

Stochastic independence/irrelevance (precise case)

- X and Y stochastically independent: $P(x, y)=P(x) P(y)$
- Y stochastically irrelevant to $X: P(X \mid y)=P(X)$
- independence \Rightarrow irrelevance

Independence

Stochastic independence/irrelevance (precise case)

- X and Y stochastically independent: $P(x, y)=P(x) P(y)$
- Y stochastically irrelevant to $X: P(X \mid y)=P(X)$
- independence \Rightarrow irrelevance

Strong independence/irrelevance (imprecise case)

- X and Y strongly independent: stochastic independence $\forall P(X, Y) \in \operatorname{ext}[K(X, Y)]$
- Y strongly irrelevant to $X: K(X \mid y)=K(X)$
- independence \Rightarrow irrelevance

Independence

Stochastic independence/irrelevance (precise case)

- X and Y stochastically independent: $P(x, y)=P(x) P(y)$
- Y stochastically irrelevant to $X: P(X \mid y)=P(X)$
- independence \Rightarrow irrelevance

Strong independence/irrelevance (imprecise case)

- X and Y strongly independent: stochastic independence $\forall P(X, Y) \in \operatorname{ext}[K(X, Y)]$
- Y strongly irrelevant to $X: K(X \mid y)=K(X)$
- independence \Rightarrow irrelevance

Every notion admits a conditional formulation
Other IP independence concepts (epistemic, Kuznetzov, strict)

A tri-variate example

- 3 Boolean variables: Smoker, Lung Cancer, X-rays

A tri-variate example

- 3 Boolean variables: Smoker, Lung Cancer, X-rays
- Given cancer, no relation between smoker and X-rays
- IP language: given C, S and X strongly independent

A tri-variate example

- 3 Boolean variables: Smoker, Lung Cancer, X-rays
- Given cancer, no relation between smoker and X-rays
- IP language: given C, S and X strongly independent
- Marginal extension (iterated two times) $K(S, C, X)=K(X \mid C, S) \otimes K(C, S)=K(X \mid C, S) \otimes K(C \mid S) \otimes K(S)$

$K(S)$

$K(C \mid S)$

A tri-variate example

- 3 Boolean variables: Smoker, Lung Cancer, X-rays
- Given cancer, no relation between smoker and X-rays
- IP language: given C, S and X strongly independent
- Marginal extension (iterated two times)

$$
K(S, C, X)=K(X \mid C, S) \otimes K(C, S)=K(X \mid C, S) \otimes K(C \mid S) \otimes K(S)
$$

- Independence implies irrelevance: given C, S irrelevant to X

$$
K(S, C, X)=K(X \mid C) \otimes K(C \mid S) \otimes K(S)
$$

K(S)

$K(C \mid S)$

$K(X \mid C)$

A tri-variate example

- 3 Boolean variables: Smoker, Lung Cancer, X-rays
- Given cancer, no relation between smoker and X-rays
- IP language: given C, S and X strongly independent
- Marginal extension (iterated two times) $K(S, C, X)=K(X \mid C, S) \otimes K(C, S)=K(X \mid C, S) \otimes K(C \mid S) \otimes K(S)$
- Independence implies irrelevance: given C, S irrelevant to X

$$
K(S, C, X)=K(X \mid C) \otimes K(C \mid S) \otimes K(S)
$$

- Global model decomposed in 3 "local" models

K(S)

$K(C \mid S)$

$K(X \mid C)$

A tri-variate example

- 3 Boolean variables: Smoker, Lung Cancer, X-rays
- Given cancer, no relation between smoker and X-rays
- IP language: given C, S and X strongly independent
- Marginal extension (iterated two times)

$$
K(S, C, X)=K(X \mid C, S) \otimes K(C, S)=K(X \mid C, S) \otimes K(C \mid S) \otimes K(S)
$$

- Independence implies irrelevance: given C, S irrelevant to X

$$
K(S, C, X)=K(X \mid C) \otimes K(C \mid S) \otimes K(S)
$$

- Global model decomposed in 3 "local" models
- A true PGM! Needed: language to express independencies

Markov Condition

- Probabilistic model over set of variables $\left(X_{1}, \ldots, X_{n}\right)$ in one-to-one correspondence with the nodes of a graph

Markov Condition

- Probabilistic model over set of variables $\left(X_{1}, \ldots, X_{n}\right)$ in one-to-one correspondence with the nodes of a graph

Undirected Graphs

X and Y are independent given Z if any path between X and Y containts an element of Z

Markov Condition

- Probabilistic model over set of variables $\left(X_{1}, \ldots, X_{n}\right)$ in one-to-one correspondence with the nodes of a graph

Undirected Graphs

X and Y are independent given Z if any path between X and Y containts an element of Z

Markov Condition

- Probabilistic model over set of variables $\left(X_{1}, \ldots, X_{n}\right)$ in one-to-one correspondence with the nodes of a graph

Undirected Graphs

X and Y are independent given Z if any path between X and Y containts an element of Z

Directed Graphs

Given its parents, every node is independent of its non-descendants non-parents

Markov Condition

- Probabilistic model over set of variables $\left(X_{1}, \ldots, X_{n}\right)$ in one-to-one correspondence with the nodes of a graph

Undirected Graphs

X and Y are independent given Z if any path between X and Y containts an element of Z

Directed Graphs

Given its parents, every node is independent of its non-descendants non-parents
X and Y are d-separated by Z if, along every path between
X and Y there is a W such that either W has converging arrows and is not in Z and none of its descendants are in Z, or W has no converging arrows and is in Z

Markov Condition

- Probabilistic model over set of variables $\left(X_{1}, \ldots, X_{n}\right)$ in one-to-one correspondence with the nodes of a graph

Undirected Graphs

X and Y are independent given Z if any path between X and Y containts an element of Z

Directed Graphs

Given its parents, every node is independent of its non-descendants non-parents
X and Y are d-separated by Z if, along every path between X and Y there is a W such that either W has converging arrows and is not in Z and none of its descendants are in Z,
 or W has no converging arrows and is in Z

Credal networks

Credal networks

- A directed acyclic graph \mathcal{G} whose nodes are in 1-to-1 correspondence with a set of (categorical) variables $\left(X_{1}, \ldots, X_{n}\right)$

Credal networks

- A directed acyclic graph \mathcal{G} whose nodes are in 1-to-1 correspondence with a set of (categorical) variables (X_{1}, \ldots, X_{n})
- Graph semantics by Markov condition (for directed graphs, strong independence)

Credal networks

- A directed acyclic graph \mathcal{G} whose nodes are in 1-to-1 correspondence with a set of (categorical) variables (X_{1}, \ldots, X_{n})
- Graph semantics by Markov condition (for directed graphs, strong independence)
- Variables in topological order (X_{j} descendant of X_{i} implies $j>i$)

$$
K\left(X_{1}, \ldots, X_{n}\right)=\otimes_{j=n}^{1} K\left(X_{j} \mid X_{j-1}, \ldots, X_{1}\right)=\otimes_{j=n}^{1} K\left(X_{j} \mid \operatorname{Pa}\left(X_{j}\right)\right)
$$

Credal networks

- A directed acyclic graph \mathcal{G} whose nodes are in 1-to-1 correspondence with a set of (categorical) variables (X_{1}, \ldots, X_{n})
- Graph semantics by Markov condition (for directed graphs, strong independence)
- Variables in topological order (X_{j} descendant of X_{i} implies $j>i$)

$$
K\left(X_{1}, \ldots, X_{n}\right)=\otimes_{j=n}^{1} K\left(X_{j} \mid X_{j-1}, \ldots, X_{1}\right)=\otimes_{j=n}^{1} K\left(X_{j} \mid \operatorname{Pa}\left(X_{j}\right)\right)
$$

directed graph
(with Markov condition)

$$
\mathcal{G}
$$

conditional credal sets
$\left\{K\left(X_{i} \mid \operatorname{Pa}\left(X_{i}\right)\right\}_{i=1}^{n}\right\}$
credal network
specification

Credal networks

- A directed acyclic graph \mathcal{G} whose nodes are in 1-to-1 correspondence with a set of (categorical) variables (X_{1}, \ldots, X_{n})
- Graph semantics by Markov condition (for directed graphs, strong independence)
- Variables in topological order (X_{j} descendant of X_{i} implies $j>i$)

$$
K\left(X_{1}, \ldots, X_{n}\right)=\otimes_{j=n}^{1} K\left(X_{j} \mid X_{j-1}, \ldots, X_{1}\right)=\otimes_{j=n}^{1} K\left(X_{j} \mid \operatorname{Pa}\left(X_{j}\right)\right)
$$

directed graph
(with Markov condition) \mathcal{G}
conditional credal sets
$\left\{K\left(X_{i} \mid \operatorname{Pa}\left(X_{i}\right)\right\}_{i=1}^{n}\right\}$
credal network
specification
joint credal set

$$
K\left(X_{1}, \ldots, X_{n}\right)=\otimes_{i=1}^{n} K\left(X_{i} \mid \operatorname{Pa}\left(X_{i}\right)\right.
$$

Medical diagnosis by CNs (a simple example of)

Medical diagnosis by CNs (a simple example of)

- Five Boolean vars

Medical diagnosis by CNs (a simple example of)

- Five Boolean vars
- Conditional independence relations by a DAG

Medical diagnosis by CNs (a simple example of)

- Five Boolean vars
- Conditional independence relations by a DAG
- Elicitation of the local (conditional) CSs

Medical diagnosis by CNs (a simple example of)

- Five Boolean vars
- Conditional independence relations by a DAG
- Elicitation of the local (conditional) CSs
- This is a CN specification

Medical diagnosis by CNs (a simple example of)

- Five Boolean vars
- Conditional independence relations by a DAG
- Elicitation of the local (conditional) CSs
- This is a CN specification
- The strong extension $K(S, C, B, X, D)=$

$\mathrm{CH}\{P(S, C, B, X, D) \mid$
$P(s, c, b, x, d)=P(s) P(c \mid s) P(b \mid s) P(x \mid c) P(d \mid c, b)$
$P(S) \in K(S)$
$P(C \mid s) \in K(C \mid s), P(C \mid \neg s) \in K(C \mid \neg s)$

Medical diagnosis by CNs (a simple example of)

- Five Boolean vars
- Conditional independence relations by a DAG
- Elicitation of the local (conditional) CSs
- This is a CN specification
- The strong extension $K(S, C, B, X, D)=$

$\mathrm{CH}\{P(S, C, B, X, D) \mid$
$P(s, c, b, x, d)=P(s) P(c \mid s) P(b \mid s) P(x \mid c) P(d \mid c, b))$
$P(S) \in K(S)$
$P(C \mid s) \in K(C \mid s), P(C \mid \neg s) \in K(C \mid \neg s)$

Inside the strong extension

- A CN whose conditional credal sets are all precise?
$K\left(X \mid \mathrm{pa}\left(X_{i}\right)\right)=\left\{P\left(X \mid \mathrm{pa}\left(X_{i}\right)\right\}\right.$

Inside the strong extension

- A CN whose conditional credal sets are all precise? $K\left(X \mid \mathrm{pa}\left(X_{i}\right)\right)=\left\{P\left(X \mid \mathrm{pa}\left(X_{i}\right)\right\}\right.$
- This is a Bayesian network (Pearl, 1988). Its SE still precise: $P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)$

Inside the strong extension

- A CN whose conditional credal sets are all precise? $K\left(X \mid \mathrm{pa}\left(X_{i}\right)\right)=\left\{P\left(X \mid \mathrm{pa}\left(X_{i}\right)\right\}\right.$
- This is a Bayesian network (Pearl, 1988). Its SE still precise: $P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)$
- "Operational" definition of SE of a CN:K $\left(X_{1}, \ldots, X_{n}\right)=$

$$
\mathrm{CH}\left\{\begin{array}{l|l}
P\left(X_{1}, \ldots, X_{n}\right) \left\lvert\, \begin{array}{l}
P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right) \\
P\left(X_{i} \mid \operatorname{pa}\left(X_{i}\right)\right) \in \operatorname{ext}\left[K\left(X_{i} \mid \operatorname{pa}\left(X_{i}\right)\right)\right]
\end{array}\right.
\end{array}\right\}
$$

Inside the strong extension

- A CN whose conditional credal sets are all precise?
$K\left(X \mid \mathrm{pa}\left(X_{i}\right)\right)=\left\{P\left(X \mid \mathrm{pa}\left(X_{i}\right)\right\}\right.$
- This is a Bayesian network (Pearl, 1988). Its SE still precise: $P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)$
- "Operational" definition of SE of a CN:K $\left(X_{1}, \ldots, X_{n}\right)=$

$$
\mathrm{CH}\left\{\begin{array}{l|l}
P\left(X_{1}, \ldots, X_{n}\right) & \begin{array}{l}
P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right) \\
P\left(X_{i} \mid \operatorname{pa}\left(X_{i}\right)\right) \in \operatorname{ext}\left[K\left(X_{i} \mid \operatorname{pa}\left(X_{i}\right)\right)\right]
\end{array}
\end{array}\right\}
$$

- The vertices of the SE correspond to Bayesian networks!
- A CN = collection of BN (all with the same graph) n exponential
- Sensitivity analysis interpretation $\operatorname{ext}\left[K\left(X_{1}, \ldots, X_{n}\right)\right]=\left\{P_{j}\left(X_{1}, \ldots, X_{n}\right)\right\}_{j=1}^{n}$

Non-separately specified CNs

- Constraints among different conditional mass functions of a CN
- Explicit enumeration of the relative BNs
- Auxiliary parent selecting the conditional probabilities (Cano, Cano, Moral, 1994) with a vacuous prior
- "Extensive" specification
- Constraints among conditional mass functions of the same variable
- Each CPT takes values from a set of tables an auxiliary parent selecting the tables
- An unconstrained (i.e., separated) specification is always possible (Antonucci \& Zaffalon, IJAR, 2008)

Non-separately specified CNs

- Constraints among different conditional mass functions of a CN
- Explicit enumeration of the relative BNs
- Auxiliary parent selecting the conditional probabilities (Cano, Cano, Moral, 1994) with a vacuous prior
- "Extensive" specification
- Constraints among conditional mass functions of the same variable
- Each CPT takes values from a set of tables an auxiliary parent selecting the tables

- An unconstrained (i.e., separated) specification is always possible (Antonucci \& Zaffalon, IJAR, 2008)

Non-separately specified CNs

- Constraints among different conditional mass functions of a CN
- Explicit enumeration of the relative BNs
- Auxiliary parent selecting the conditional probabilities (Cano, Cano, Moral, 1994) with a vacuous prior
- "Extensive" specification
- Constraints among conditional mass functions of the same variable
- Each CPT takes values from a set of tables an auxiliary parent selecting the tables
- An unconstrained (i.e., separated)
 specification is always possible (Antonucci \& Zaffalon, IJAR, 2008)

Non-separately specified CNs

- Constraints among different conditional mass functions of a CN
- Explicit enumeration of the relative BNs
- Auxiliary parent selecting the conditional probabilities (Cano, Cano, Moral, 1994) with a vacuous prior
- "Extensive" specification
- Constraints among conditional mass functions of the same variable
- Each CPT takes values from a set of tables an auxiliary parent selecting the tables
- An unconstrained (i.e., separated)
 specification is always possible (Antonucci \& Zaffalon, IJAR, 2008)

Non-separately specified CNs

- Constraints among different conditional mass functions of a CN
- Explicit enumeration of the relative BNs
- Auxiliary parent selecting the conditional probabilities (Cano, Cano, Moral, 1994) with a vacuous prior
- "Extensive" specification
- Constraints among conditional mass functions of the same variable
- Each CPT takes values from a set of tables an auxiliary parent selecting the tables
- An unconstrained (i.e., separated) specification is always possible
 (Antonucci \& Zaffalon, IJAR, 2008)

Non-separately specified CNs

- Constraints among different conditional mass functions of a CN
- Explicit enumeration of the relative BNs
- Auxiliary parent selecting the conditional probabilities (Cano, Cano, Moral, 1994) with a vacuous prior
- "Extensive" specification
- Constraints among conditional mass functions of the same variable
- Each CPT takes values from a set of tables an auxiliary parent selecting the tables
- An unconstrained (i.e., separated) specification is always possible
 (Antonucci \& Zaffalon, IJAR, 2008)

Non-separately specified CNs

- Constraints among different conditional mass functions of a CN
- Explicit enumeration of the relative BNs
- Auxiliary parent selecting the conditional probabilities (Cano, Cano, Moral, 1994) with a vacuous prior
- "Extensive" specification
- Constraints among conditional mass functions of the same variable
- Each CPT takes values from a set of tables an auxiliary parent selecting the tables
- An unconstrained (i.e., separated) specification is always possible (Antonucci \& Zaffalon, IJAR, 2008)

$P_{j}(X \mid \mathrm{pa}(X))$

Non-separately specified CNs

- Constraints among different conditional mass functions of a CN
- Explicit enumeration of the relative BNs
- Auxiliary parent selecting the conditional probabilities (Cano, Cano, Moral, 1994) with a vacuous prior
- "Extensive" specification
- Constraints among conditional mass functions of the same variable
- Each CPT takes values from a set of tables an auxiliary parent selecting the tables
- An unconstrained (i.e., separated) specification is always possible (Antonucci \& Zaffalon, IJAR, 2008)

Non-separately specified CNs

- Constraints among different conditional mass functions of a CN
- Explicit enumeration of the relative BNs
- Auxiliary parent selecting the conditional probabilities (Cano, Cano, Moral, 1994) with a vacuous prior
- "Extensive" specification
- Constraints among conditional mass functions of the same variable
- Each CPT takes values from a set of tables an auxiliary parent selecting the tables

- An unconstrained (i.e., separated) specification is always possible (Antonucci \& Zaffalon, IJAR, 2008)

Non-separately specified CNs

- Constraints among different conditional mass functions of a CN
- Explicit enumeration of the relative BNs
- Auxiliary parent selecting the conditional probabilities (Cano, Cano, Moral, 1994) with a vacuous prior
- "Extensive" specification
- Constraints among conditional mass functions of the same variable
- Each CPT takes values from a set of tables an auxiliary parent selecting the tables

- An unconstrained (i.e., separated) specification is always possible (Antonucci \& Zaffalon, IJAR, 2008)

Updating credal nets

- A variable of interest X_{q} (query)
- Information x_{E} about the state of some other variables X_{E} (evidence)
- Updating posterior beliefs about the queried variable given the available evidence
- Bayesian case:
$P\left(x_{q} \mid x_{E}\right)=\frac{\sum_{x_{M} \in \Omega_{X_{M}}} \Pi_{i=1}^{n} P\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)}{\sum_{x_{M} \in \Omega_{X_{M}} \times x_{G} \in \Omega_{X_{G}}} \prod_{i=1}^{n} P\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)}$
with $X_{M}=\left(X_{1}, \ldots, X_{n}\right) \backslash\left(X_{q}, X_{E}\right)$
- Fast algorithm for singly-connected BNs

- Credal case:
$\underline{P}\left(x_{q} \mid x_{E}\right)=\min _{j=1, \ldots, v}, \sum_{\sum_{x_{M} \in \Omega_{X_{M}} \times x_{M}} \prod_{q} \in \Omega_{X_{q}} \Pi_{i=1}^{n} P_{j}\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)}$
- Fast algorithm for binary singly-connected CNs

Updating credal nets

- A variable of interest X_{q} (query)
- Information x_{E} about the state of some other variables X_{E} (evidence)
- Updating posterior beliefs about the queried variable given the available evidence
- Bayesian case:
$P\left(x_{q} \mid x_{E}\right)=\frac{\sum_{x_{M} \in \Omega_{x_{M}}} \Pi_{\eta=1}^{n} P\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)}{\sum_{x_{M} \in \Omega_{X_{M}} \cdot x_{q} \in \Omega_{X_{q}}} \Pi_{i=1}^{P} P\left(x_{i} \mid \operatorname{pa}\left(x_{i}\right)\right)}$
with $X_{M}=\left(X_{1}, \ldots, X_{n}\right) \backslash\left(X_{q}, X_{E}\right)$
- Fast algorithm for singly-connected BNs

- Credal case:
$\underline{P}\left(x_{q} \mid X_{E}\right)=\min _{j=1, \ldots, v}, \frac{\sum_{x_{M} \in \Omega x_{M}} \prod_{X_{M} \in \Omega_{X_{M}}} x_{q} \in \Omega_{X_{q}} P_{j}\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)}{} P\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)$
- Fast algorithm for binary singly-connected CNs

Updating credal nets

- A variable of interest X_{q} (query)
- Information x_{E} about the state of some other variables X_{E} (evidence)
- Updating posterior beliefs about the queried variable given the available evidence
- Bayesian case:
$P\left(x_{q} \mid x_{E}\right)=\frac{\sum_{X_{M} \in \Omega_{X_{M}}} \Pi_{i=1}^{n} P\left(x_{i} \mid \operatorname{pa}\left(X_{i}\right)\right)}{\sum_{x_{M} \in \Omega_{X_{M}} \times \Omega_{q} \in \Omega_{X_{q}}} \Pi_{i=1}^{P} P\left(x_{i} \mid \operatorname{pa}\left(X_{i}\right)\right)}$
with $X_{M}=\left(X_{1}, \ldots, X_{n}\right) \backslash\left(X_{q}, X_{E}\right)$
- Fast algorithm for singly-connected BNs

- Credal case:
$\underline{P}\left(x_{q} \mid X_{E}\right)=\min _{j=1, \ldots, v} \frac{\sum_{x_{M} \in \Omega_{x_{M}}} \prod_{i=1}^{n} P_{i}\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)}{\sum_{x_{M} \in \Omega_{X_{M}} \cdot x_{q} \in \Omega_{X_{q}}} \prod_{i=1}^{n} P\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)}$
- Fast algorithm for binary singly-connected CNs

Updating credal nets

- A variable of interest X_{q} (query)
- Information x_{E} about the state of some other variables X_{E} (evidence)
- Updating posterior beliefs about the queried variable given the available evidence
- Bayesian case:
$P\left(x_{q} \mid x_{E}\right)=\frac{\sum_{x_{M} \in \Omega_{X_{M}}} \Pi_{i=1}^{n} P\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)}{\sum_{x_{M} \in \Omega_{X_{M}} \times x_{G} \in \Omega_{X_{G}}} \prod_{i=1}^{n} P\left(x_{i} \mid \mathrm{Pa}\left(X_{i}\right)\right)}$
with $X_{M}=\left(X_{1}, \ldots, X_{n}\right) \backslash\left(X_{q}, X_{E}\right)$
- Fast algorithm for singly-connected BNs

- Credal case:
$\underline{P}\left(x_{q} \mid X_{E}\right)=\min _{j=1, \ldots, v}, v \sum_{\sum_{x_{M} \in \Omega_{X_{M}}, x_{q} \in \Omega_{X_{q}}} \Pi_{j=1}^{1} P\left(x_{i} \mid \mathrm{pa}\left(X_{X}\right)\right)}$
- Fast algorithm for binary singly-connected CNs

Updating credal nets

- A variable of interest X_{q} (query)
- Information x_{E} about the state of some other variables X_{E} (evidence)
- Updating posterior beliefs about the queried variable given the available evidence
- Bayesian case:
$P\left(x_{q} \mid x_{E}\right)=\frac{\sum_{x_{M} \in \Omega_{x_{M}}} \prod_{i=1}^{n} P\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)}{\sum_{x_{M} \in \Omega_{x_{M}}, x_{q} \in \Omega_{X_{q}}} \prod_{i=1}^{n} P\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)}$
with $X_{M}=\left(X_{1}, \ldots, X_{n}\right) \backslash\left(X_{q}, X_{E}\right)$
- Fast algorithm for singly-connected BNs
- Credal case:
$\underline{P}\left(x_{q} \mid X_{E}\right)=\min _{j=1, \ldots, v}, v \sum_{\sum_{x_{M} \in \Omega_{X_{M}} \times \Omega_{X_{M}} \in \Omega_{X_{q}}} \Pi_{i=1}^{n} P_{i}\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)} P\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)$

- Fast algorithm for binary singly-connected CNs

Updating credal nets

- A variable of interest X_{q} (query)
- Information x_{E} about the state of some other variables X_{E} (evidence)
- Updating posterior beliefs about the queried variable given the available evidence
- Bayesian case:
$P\left(x_{q} \mid x_{E}\right)=\frac{\sum_{x_{M} \in \Omega_{X_{M}}} \prod_{i=1}^{n} P\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)}{\sum_{x_{M} \in \Omega_{X_{M}}, x_{q} \in \Omega_{X_{q}}} \Pi_{i=1}^{n} P\left(x_{i} \mid \mathrm{Pa}\left(X_{i}\right)\right)}$
with $X_{M}=\left(X_{1}, \ldots, X_{n}\right) \backslash\left(X_{q}, X_{E}\right)$
- Fast algorithm for singly-connected BNs
- Credal case:
$\underline{P}\left(x_{q} \mid x_{E}\right)=\min _{j=1, \ldots, v}, \frac{\sum_{x_{M} \in \Omega x_{M}} \prod_{\sum_{1}=1}^{n} P_{i}\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)}{\sum_{x_{M} \in x_{M}} \times x_{q} \in \Omega_{X_{q}} \Pi_{j=1}^{1} P\left(x_{i} \mid \operatorname{pa}\left(X_{i}\right)\right)}$

- Fast algorithm for binary singly-connected CNs

Updating credal nets

- A variable of interest X_{q} (query)
- Information x_{E} about the state of some other variables X_{E} (evidence)
- Updating posterior beliefs about the queried variable given the available evidence
- Bayesian case:
$P\left(x_{q} \mid x_{E}\right)=\frac{\sum_{x_{M} \in \Omega_{X_{M}}} \prod_{i=1}^{n} P\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)}{\sum_{x_{M} \in \Omega_{X_{M}}, x_{q} \in \Omega_{X_{q}}} \prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{pa}\left(X_{i}\right)\right)}$ with $X_{M}=\left(X_{1}, \ldots, X_{n}\right) \backslash\left(X_{q}, X_{E}\right)$
- Fast algorithm for singly-connected BNs

$$
P\left(x_{4} \mid x_{1}\right)=\frac{\sum_{x_{2}, x_{3}, x_{4}} P(\ldots)}{\sum_{x_{2}, x_{3}} P(\ldots)}
$$

$\underline{P}\left(x_{q} \mid x_{E}\right)=\min _{j=1, \ldots, v} \frac{\sum_{x_{M} \in \Omega_{x_{M}}} \prod_{i=1}^{n} P_{i}\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)}{\sum_{x_{M} \in \Omega_{X_{M}} \cdot x_{q} \in \Omega_{X_{q}}} \prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{pa}\left(X_{i}\right)\right)}$

Updating credal nets

- A variable of interest X_{q} (query)
- Information x_{E} about the state of some other variables X_{E} (evidence)
- Updating posterior beliefs about the queried variable given the available evidence
- Bayesian case:
$P\left(x_{q} \mid x_{E}\right)=\frac{\sum_{x_{M} \in \Omega_{X_{M}}} \prod_{i=1}^{n} P\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)}{\sum_{x_{M} \in \Omega_{x_{M}}, x_{q} \in \Omega_{X_{G}}} \prod_{i=1}^{n} P\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)}$ with $X_{M}=\left(X_{1}, \ldots, X_{n}\right) \backslash\left(X_{q}, X_{E}\right)$
- Fast algorithm for singly-connected BNs
- Credal case:
$\underline{P}\left(x_{q} \mid x_{E}\right)=\min _{j=1, \ldots, v} \frac{\sum_{x_{M} \in \Omega_{x_{M}}} \prod_{i=1}^{n} P_{j}\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)}{\sum_{x_{M} \in \Omega_{X_{M}}, x_{q} \in \Omega_{X_{q}}} \prod_{i=1}^{n} P\left(x_{i} \mid \mathrm{Pa}\left(X_{i}\right)\right)}$

- Fast algorithm for binary singly-connected CNs

Updating credal nets

- A variable of interest X_{q} (query)
- Information x_{E} about the state of some other variables X_{E} (evidence)
- Updating posterior beliefs about the queried variable given the available evidence
- Bayesian case:
$P\left(x_{q} \mid x_{E}\right)=\frac{\sum_{x_{M} \in \Omega_{X_{M}}} \prod_{i=1}^{n} P\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)}{\sum_{x_{M} \in \Omega_{x_{M}}, x_{q} \in \Omega_{X_{G}}} \prod_{i=1}^{n} P\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)}$ with $X_{M}=\left(X_{1}, \ldots, X_{n}\right) \backslash\left(X_{q}, X_{E}\right)$
- Fast algorithm for singly-connected BNs
- Credal case:
$\underline{P}\left(x_{q} \mid x_{E}\right)=\min _{j=1, \ldots, v} \frac{\sum_{x_{M} \in \Omega_{X_{M}}} \prod_{i=1}^{n} P_{j}\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)}{\sum_{x_{M} \in \Omega_{X_{M}}, x_{q} \in \Omega_{X_{q}}} \prod_{i=1}^{n} P\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)}$

- Fast algorithm for binary singly-connected CNs

Updating credal nets

- A variable of interest X_{q} (query)
- Information x_{E} about the state of some other variables X_{E} (evidence)
- Updating posterior beliefs about the queried variable given the available evidence
- Bayesian case:
$P\left(x_{q} \mid x_{E}\right)=\frac{\sum_{x_{M} \in \Omega_{X_{M}}} \prod_{i=1}^{n} P\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)}{\sum_{x_{M} \in \Omega_{X_{M}}, x_{q} \in \Omega_{x_{q}}} \prod_{i=1}^{n} P\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)}$
with $X_{M}=\left(X_{1}, \ldots, X_{n}\right) \backslash\left(X_{q}, X_{E}\right)$
- Fast algorithm for singly-connected BNs

- Credal case:
$\underline{P}\left(x_{q} \mid x_{E}\right)=\min _{j=1, \ldots, v} \frac{\sum_{x_{M} \in \Omega_{X_{M}}} \prod_{i=1}^{n} P_{j}\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)}{\sum_{x_{M} \in \Omega_{X_{M}}, x_{q} \in \Omega_{X_{q}}} \prod_{i=1}^{n} P\left(x_{i} \mid \mathrm{pa}\left(X_{i}\right)\right)}$

$$
\underline{P}\left(x_{4} \mid x_{1}\right)=\min _{j} \frac{\sum_{x_{2}, x_{3}, x_{4}} P_{j}(\cdots)}{\sum_{x_{2}, x_{3}} P_{j}(\cdots)}
$$

- Fast algorithm for binary singly-connected CNs

Updating with incomplete observations

- $\underline{P}\left(X_{q}=x_{q} \mid X_{E}=x_{E}, X_{M}=*\right)$
$=\underline{P}\left(X_{q}=x_{q} \mid X_{E}=x_{E}\right)$
right only if missing at random assumption holds
- Conservative inference rule (CIR)
$\underline{P}\left(x_{q} \mid x_{E}, *\right)=\min _{x_{M} \in \Omega_{x_{M}}} P\left(x_{q} \mid x_{E}, x_{M}\right)$
near-ignorance about the process
preventing some variable from being
observed (de Cooman \& Zaffalon, 2004)
- CIR on CNs?
- Add a (dummy) binary child for each

$$
\underline{P}\left(x_{4} \mid X_{1}=\text { warm, } X_{2}=*\right)
$$ missing, with vacuous quantification

- Use standard updating algorithms

Updating with incomplete observations

- $\underline{P}\left(X_{q}=x_{q} \mid X_{E}=x_{E}, X_{M}=*\right)$
$=\underline{P}\left(X_{q}=x_{q} \mid X_{E}=x_{E}\right)$
right only if missing at random assumption holds
- Conservative inference rule (CIR)
$\underline{P}\left(x_{q} \mid x_{E}, *\right)=\min _{x_{M} \in \Omega_{x_{M}}} P\left(x_{q} \mid x_{E}, x_{M}\right)$
near-ignorance about the process
preventing some variable from being

observed (de Cooman \& Zaffalon, 2004)
- CIR on CNs?
- Add a (dummy) binary child for each

$$
\underline{P}\left(x_{4} \mid X_{1}=\text { warm, } X_{2}=*\right)
$$ missing, with vacuous quantification

- Use standard updating algorithms

Updating with incomplete observations

- $\underline{P}\left(X_{q}=x_{q} \mid X_{E}=X_{E}, X_{M}=*\right)$
$=\underline{P}\left(X_{q}=x_{q} \mid X_{E}=x_{E}\right)$
right only if missing at random
assumption holds
- Conservative inference rule (CIR) $\underline{P}\left(x_{q} \mid x_{E}, *\right)=\min _{x_{M} \in \Omega x_{M}} P\left(x_{q} \mid x_{E}, x_{M}\right)$ near-ignorance about the process preventing some variable from being observed (de Cooman \& Zaffalon, 2004)
- CIR on CNs?
- Add a (dummy) binary child for each

$$
\begin{gathered}
\underline{P}\left(x_{4} \mid X_{1}=\text { warm, } X_{2}=*\right) \\
= \\
\min \left\{\underline{P}\left(x_{4} \mid \text { warm, good }\right), \underline{P}\left(x_{4} \mid \text { warm, bad }\right)\right\}
\end{gathered}
$$

Updating with incomplete observations

- $\underline{P}\left(X_{q}=x_{q} \mid X_{E}=X_{E}, X_{M}=*\right)$
$=\underline{P}\left(X_{q}=x_{q} \mid X_{E}=x_{E}\right)$
right only if missing at random assumption holds
- Conservative inference rule (CIR)
$\underline{P}\left(x_{q} \mid x_{E}, *\right)=\min _{x_{M} \in \Omega_{x_{M}}} P\left(x_{q} \mid x_{E}, x_{M}\right)$ near-ignorance about the process preventing some variable from being
 observed (de Cooman \& Zaffalon, 2004)

- Add a (dummy) binary child for each

$$
\begin{aligned}
& \underline{P}\left(x_{4} \mid X_{1}=\text { warm }, X_{2}=*\right) \\
= & \min \left\{\underline{P}\left(x_{4} \mid \text { warm }, \text { good }\right), \underline{P}\left(x_{4} \mid \text { warm }, \text { bad }\right)\right\}
\end{aligned}
$$

Updating with incomplete observations

- $\underline{P}\left(X_{q}=x_{q} \mid X_{E}=X_{E}, X_{M}=*\right)$
$=\underline{P}\left(X_{q}=x_{q} \mid X_{E}=x_{E}\right)$
right only if missing at random assumption holds
- Conservative inference rule (CIR)
$\underline{P}\left(x_{q} \mid x_{E}, *\right)=\min _{x_{M} \in \Omega_{x_{M}}} P\left(x_{q} \mid x_{E}, x_{M}\right)$ near-ignorance about the process
preventing some variable from being
 observed (de Cooman \& Zaffalon, 2004)
- CIR on CNs?
- Add a (dummy) binary child for each

$$
\begin{gathered}
\quad \underline{P}\left(x_{4} \mid X_{1}=\text { warm, } X_{2}=*\right) \\
=\min \left\{\underline{P}\left(x_{4} \mid \text { warm, good }\right), \underline{P}\left(x_{4} \mid \text { warm, bad }\right)\right\}
\end{gathered}
$$

Updating with incomplete observations

- $\underline{P}\left(X_{q}=x_{q} \mid X_{E}=X_{E}, X_{M}=*\right)$
$=\underline{P}\left(X_{q}=x_{q} \mid X_{E}=x_{E}\right)$
right only if missing at random
assumption holds
- Conservative inference rule (CIR)
$\underline{P}\left(x_{q} \mid x_{E}, *\right)=\min _{x_{M} \in \Omega_{x_{M}}} P\left(x_{q} \mid x_{E}, x_{M}\right)$ near-ignorance about the process preventing some variable from being observed (de Cooman \& Zaffalon, 2004)
- CIR on CNs?
- Add a (dummy) binary child for each missing, with vacuous quantification

$\underline{K}\left(O_{2} \mid x_{2}\right)$ vacuous CS

$$
\underset{=}{\underline{P}\left(x_{4} \mid X_{1}=\text { warm, } X_{2}=*\right)}
$$

Updating with incomplete observations

- $\underline{P}\left(X_{q}=x_{q} \mid X_{E}=X_{E}, X_{M}=*\right)$
$=\underline{P}\left(X_{q}=x_{q} \mid X_{E}=x_{E}\right)$
right only if missing at random
assumption holds
- Conservative inference rule (CIR)
$\underline{P}\left(x_{q} \mid x_{E}, *\right)=\min _{x_{M} \in \Omega x_{M}} P\left(x_{q} \mid x_{E}, x_{M}\right)$ near-ignorance about the process preventing some variable from being observed (de Cooman \& Zaffalon, 2004)
- CIR on CNs?
- Add a (dummy) binary child for each missing, with vacuous quantification

- Use standard updating algorithms

Modelling the observational process

- Each X as a latent variable
- For each X a manifest variable O_{X} modelling the observation $\Omega_{O}=\Omega_{X} \cup\{*\}$
- Conditional independence, given X between O and the other variables (or weaker conditions)
- Quantifying link between O and X
 (observational process)
- A CS $K(O \mid x)$ might a realistic model! (better than $P(O \mid X)$)
- Standard updating problem
$\underline{P}\left(X_{q} \mid O_{E}=x_{E}\right)$

Modelling the observational process

- Each X as a latent variable
- For each X a manifest variable O_{X} modelling the observation $\Omega_{O}=\Omega_{X} \cup\{*\}$
- Conditional independence, given X between O and the other variables (or weaker conditions)
- Quantifying link between O and X
 (observational process)
- A CS $K(O \mid x)$ might a realistic model! (better than $P(O \mid X)$)
- Standard updating problem
$\underline{P}\left(X_{q} \mid O_{E}=X_{E}\right)$

Modelling the observational process

- Each X as a latent variable
- For each X a manifest variable O_{X} modelling the observation $\Omega_{O}=\Omega_{X} \cup\{*\}$
- Conditional independence, given X between O and the other variables (or weaker conditions)
- Quantifying link between O and X (observational process)
- A CS K (O|x) might a realistic model!
(better than $P(O \mid X)$)
- Standard updating problem

$\underline{P}\left(X_{q} \mid O_{E}=x_{E}\right)$

Modelling the observational process

- Each X as a latent variable
- For each X a manifest variable O_{X} modelling the observation
$\Omega_{O}=\Omega_{X} \cup\{*\}$
- Conditional independence, given X between O and the other variables (or weaker conditions)
- Quantifying link between O and X (observational process)
- A CS $K(O \mid x)$ might a realistic model! (better than $P(O \mid X)$)
- Standard updating problem

$\underline{P}\left(X_{q} \mid O_{E}=x_{E}\right)$

Modelling the observational process

- Each X as a latent variable
- For each X a manifest variable O_{X} modelling the observation
$\Omega_{O}=\Omega_{X} \cup\{*\}$
- Conditional independence, given X between O and the other variables (or weaker conditions)
- Quantifying link between O and X (observational process)
- A CS $K(O \mid x)$ might a realistic model!
(better than $P(O \mid X)$)
- Standard updating problem
 $\underline{P}\left(X_{q} \mid O_{E}=x_{E}\right)$

Modelling the observational process

- Each X as a latent variable
- For each X a manifest variable O_{X} modelling the observation
$\Omega_{O}=\Omega_{X} \cup\{*\}$
- Conditional independence, given X between O and the other variables (or weaker conditions)
- Quantifying link between O and X (observational process)
- A CS $K(O \mid x)$ might a realistic model!
(better than $P(O \mid X)$)
- Standard updating problem

$\underline{P}\left(X_{q} \mid O_{E}=x_{E}\right)$

Modelling the observational process

- Each X as a latent variable
- For each X a manifest variable O_{X} modelling the observation
$\Omega_{O}=\Omega_{X} \cup\{*\}$
- Conditional independence, given X between O and the other variables (or weaker conditions)
- Quantifying link between O and X (observational process)
- A CS K (O|x) might a realistic mode!! (better than $P(O \mid X)$)
- Standard updating problem
 $\underline{P}\left(X_{q} \mid O_{E}=x_{E}\right)$

Modelling the observational process

- Each X as a latent variable
- For each X a manifest variable O_{X} modelling the observation $\Omega_{O}=\Omega_{X} \cup\{*\}$
- Conditional independence, given X between O and the other variables (or weaker conditions)
- Quantifying link between O and X (observational process)
- A CS $K(O \mid x)$ might a realistic model! (better than $P(O \mid X)$)
- Standard updating problem
 $\underline{P}\left(X_{q} \mid O_{E}=x_{E}\right)$

Modelling the observational process

- Each X as a latent variable
- For each X a manifest variable O_{X} modelling the observation $\Omega_{O}=\Omega_{X} \cup\{*\}$
- Conditional independence, given X between O and the other variables (or weaker conditions)
- Quantifying link between O and X (observational process)
- A CS $K(O \mid x)$ might a realistic model! (better than $P(O \mid X)$)
- Standard updating problem

$\underline{P}\left(X_{q} \mid O_{E}=x_{E}\right)$

Modelling the observational process (ii)

- Manifest variables reduced to binary variables (coarsen to $\{0, \neg 0\}$)
- Elicit only lower/upper likelihoods of observation given the latent $\underline{P}(o \mid x) \leq P(o \mid x) \leq \bar{P}(o \mid x)$
- Perfect observation:

$$
\underline{P}(o \mid x)=\bar{P}(o \mid x)=\delta_{o, x}
$$

- MAR: $\underline{P}(o \mid x)=\bar{P}(o \mid x)=k$
- CIR: $\underline{P}(o \mid x)=0, \bar{P}(o \mid x)=1$
- Imprecise likelihood ratio (and Jeffrey's rule)
- Hard evidence? Drop leaving arcs!
- Only the subnet connected to the

Modelling the observational process (ii)

- Manifest variables reduced to binary variables (coarsen to $\{0, \neg 0\}$)
- Elicit only lower/upper likelihoods of observation given the latent $\underline{P}(o \mid x) \leq P(o \mid x) \leq \bar{P}(o \mid x)$
- Perfect observation:

$$
\underline{P}(o \mid x)=\bar{P}(o \mid x)=\delta_{o, x}
$$

- MAR: $\underline{P}(o \mid x)=\bar{P}(o \mid x)=k$
- CIR: $\underline{P}(o \mid x)=0, \bar{P}(o \mid x)=1$
- Imprecise likelihood ratio (and Jeffrey's rule)
- Hard evidence? Drop leaving arcs!
- Only the subnet connected to the

Modelling the observational process (ii)

- Manifest variables reduced to binary variables (coarsen to $\{0, \neg 0\}$)
- Elicit only lower/upper likelihoods of observation given the latent $\underline{P}(o \mid x) \leq P(o \mid x) \leq \bar{P}(o \mid x)$
- Perfect observation:

$$
\underline{P}(o \mid x)=\bar{P}(o \mid x)=\delta_{o, x}
$$

- MAR: $\underline{P}(o \mid x)=\bar{P}(o \mid x)=k$
- CIR: $\underline{P}(o \mid x)=0, \bar{P}(o \mid x)=1$
- Imprecise likelihood ratio (and Jeffrey's rule)
- Hard evidence? Drop leaving arcs!
- Only the subnet connected to the

Modelling the observational process (ii)

- Manifest variables reduced to binary variables (coarsen to $\{0, \neg 0\}$)
- Elicit only lower/upper likelihoods of observation given the latent $\underline{P}(o \mid x) \leq P(o \mid x) \leq \bar{P}(o \mid x)$
- Perfect observation:

$$
\underline{P}(o \mid x)=\bar{P}(o \mid x)=\delta_{o, x}
$$

- MAR: $\underline{P}(o \mid x)=\bar{P}(o \mid x)=k$
- CIR: $\underline{P}(o \mid x)=0, \bar{P}(o \mid x)=1$
- Imprecise likelihood ratio (and Jeffrey's rule)
- Hard evidence? Drop leaving arcs!
- Only the subnet connected to the

Modelling the observational process (ii)

- Manifest variables reduced to binary variables (coarsen to $\{0, \neg 0\}$)
- Elicit only lower/upper likelihoods of observation given the latent $\underline{P}(o \mid x) \leq P(o \mid x) \leq \bar{P}(o \mid x)$
- Perfect observation:

$$
\underline{P}(o \mid x)=\bar{P}(o \mid x)=\delta_{0, x}
$$

- MAR: $\underline{P}(o \mid x)=\bar{P}(o \mid x)=k$
- CIR: $\underline{P}(o \mid x)=0, \bar{P}(o \mid x)=1$
- Imprecise likelihood ratio (and Jeffrey's rule)
- Hard evidence? Drop leaving arcs!
- Only the subnet connected to the

Modelling the observational process (ii)

- Manifest variables reduced to binary variables (coarsen to $\{0, \neg 0\}$)
- Elicit only lower/upper likelihoods of observation given the latent $\underline{P}(o \mid x) \leq P(o \mid x) \leq \bar{P}(o \mid x)$
- Perfect observation:

$$
\underline{P}(o \mid x)=\bar{P}(o \mid x)=\delta_{0, x}
$$

- MAR: $\underline{P}(o \mid x)=\bar{P}(o \mid x)=k$
- CIR: $\underline{P}(o \mid x)=0, \bar{P}(o \mid x)=1$
- Imprecise likelihood ratio (and Jeffrey's rule)
- Hard evidence? Drop leaving arcs!
- Only the subnet connected to the

Modelling the observational process (ii)

- Manifest variables reduced to binary variables (coarsen to $\{0, \neg 0\}$)
- Elicit only lower/upper likelihoods of observation given the latent $\underline{P}(o \mid x) \leq P(o \mid x) \leq \bar{P}(o \mid x)$
- Perfect observation:

$$
\underline{P}(o \mid x)=\bar{P}(o \mid x)=\delta_{0, x}
$$

- MAR: $\underline{P}(o \mid x)=\bar{P}(o \mid x)=k$
- CIR: $\underline{P}(o \mid x)=0, \bar{P}(o \mid x)=1$
- Imprecise likelihood ratio (and Jeffrey's rule)
- Hard evidence? Drop leaving arcs!
- Only the subnet connected to the

Modelling the observational process (ii)

- Manifest variables reduced to binary variables (coarsen to $\{0, \neg 0\}$)
- Elicit only lower/upper likelihoods of observation given the latent $\underline{P}(o \mid x) \leq P(o \mid x) \leq \bar{P}(o \mid x)$
- Perfect observation:

$$
\underline{P}(o \mid x)=\bar{P}(o \mid x)=\delta_{0, x}
$$

- MAR: $\underline{P}(o \mid x)=\bar{P}(o \mid x)=k$
- CIR: $\underline{P}(o \mid x)=0, \bar{P}(o \mid x)=1$
- Imprecise likelihood ratio (and Jeffrey's rule)
- Hard evidence? Drop leaving arcs!
- Only the subnet connected to the

Modelling the observational process (ii)

- Manifest variables reduced to binary variables (coarsen to $\{0, \neg 0\}$)

- Elicit only lower/upper likelihoods of observation given the latent $\underline{P}(o \mid x) \leq P(o \mid x) \leq \bar{P}(o \mid x)$
- Perfect observation:

$$
\underline{P}(o \mid x)=\bar{P}(o \mid x)=\delta_{0, x}
$$

- MAR: $\underline{P}(o \mid x)=\bar{P}(o \mid x)=k$
- CIR: $\underline{P}(o \mid x)=0, \bar{P}(o \mid x)=1$
- Imprecise likelihood ratio
(and Jeffrey's rule)
- Hard evidence? Drop leaving arcs!
- Only the subnet connected to the

Modelling the observational process (ii)

- Manifest variables reduced to binary variables (coarsen to $\{0, \neg 0\}$)
- Elicit only lower/upper likelihoods of observation given the latent $\underline{P}(o \mid x) \leq P(o \mid x) \leq \bar{P}(o \mid x)$
- Perfect observation:

$$
\underline{P}(o \mid x)=\bar{P}(o \mid x)=\delta_{0, x}
$$

- MAR: $\underline{P}(o \mid x)=\bar{P}(o \mid x)=k$
- CIR: $\underline{P}(o \mid x)=0, \bar{P}(o \mid x)=1$
- Imprecise likelihood ratio
(and Jeffrey's rule)
- Hard evidence? Drop leaving arcs!

- Only the subnet connected to the query node

[Exe \# 3] Is the ball in or out?

- B, with $\mathcal{B}=\{1,0\}$, means the ball was in
- R, L_{1}, L_{2} are the opinions/observation of the referee/linesmen
- A CN over these variables
- Given B, the three opinions are independent? Not really, the referee has an influence on the linesmen
- Compute bounds of
$P\left(B=1 \mid R=1, L_{1}=1, L_{2}=1\right)$
\in [.896, .962]
$P\left(B=1 \mid R=0, L_{1}=1, L_{2}=1\right)$
$P\left(B=1 \mid R=1, L_{1}=0, L_{2}=0\right)$
$P\left(B=1 \mid R=0, L_{1}=0, L_{2}=1\right)$

$$
\begin{aligned}
& P(B=1)=.50 \\
& P(R=1 \mid B=1) \in[.80, .90] \\
& P(R=1 \mid B=0) \in[.20, .30] \\
& P\left(L_{j}=1 \mid B=1, R=1\right) \in[.90, .95] \\
& P\left(L_{j}=1 \mid B=1, R=0\right) \in[.50, .60] \\
& P\left(L_{j}=1 \mid B=0, R=1\right) \in[.40, .50] \\
& P\left(L_{j}=1 \mid B=0, R=0\right) \in[.10, .20]
\end{aligned}
$$

No-fly zones surveyed by the Air Force

- Around important potential targets (eg. WEF, dams, nuke plants)
- Twofold circle wraps the target
- External no-fly zone (sensors)
- Internal no-fly zone (anti-air units)
- An aircraft entering the zone (to be called intruder)
- Its presence, speed, height, and other features revealed by the
 sensors
- A team of military experts decides:
- what the intruder intends to do (external zone / credal level)
- what to do with the intruder (internal zone / pignistic level)

Identifying intruder's goal

- Four possible (exclusive, exhaustive) options for intruder's goal

renegade

provocateur

damaged

erroneous
- This identification is difficult
- Sensors reliabilities are affected by geo/meteo conditions
- Information fusion from several sensors

Identifying intruder's goal

- Four possible (exclusive, exhaustive) options for intruder's goal

renegade

provocateur

damaged

erroneous
- This identification is difficult
- Sensors reliabilities are affected by geo/meteo conditions
- Information fusion from several sensors

Why credal networks?

- Why a probabilistic model?
- No deterministic relations between the different variables
- Pervasive uncertainty in the observations
- Why a graphical model?
- Many independence relations among the different variables
- Why an imprecise (probabilistic) model?
- Expert evaluations are mostly based on qualitative judgements
- The model should be (over)cautious

Why credal networks?

- Why a probabilistic model?
- No deterministic relations between the different variables
- Pervasive uncertainty in the observations
- Why a graphical model?
- Many independence relations among the different variables
- Why an imprecise (probabilistic) model?
- Expert evaluations are mostly based on qualitative judgements
- The model should be (over)cautious

Why credal networks?

- Why a probabilistic model?
- No deterministic relations between the different variables
- Pervasive uncertainty in the observations
- Why a graphical model?
- Many independence relations among the different variables
- Why an imprecise (probabilistic) model?
- Expert evaluations are mostly based on qualitative judgements
- The model should be (over)cautious

Why credal networks?

- Why a probabilistic model?
- No deterministic relations between the different variables
- Pervasive uncertainty in the observations
- Why a graphical model?
- Many independence relations among the different variables
- Why an imprecise (probabilistic) model?
- Expert evaluations are mostly based on qualitative judgements
- The model should be (over)cautious

Why credal networks?

- Why a probabilistic model?
- No deterministic relations between the different variables
- Pervasive uncertainty in the observations
- Why a graphical model?
- Many independence relations among the different variables
- Why an imprecise (probabilistic) model?
- Expert evaluations are mostly based on qualitative judgements
- The model should be (over)cautious

Why credal networks?

- Why a probabilistic model?
- No deterministic relations between the different variables
- Pervasive uncertainty in the observations
- Why a graphical model?
- Many independence relations among the different variables
- Why an imprecise (probabilistic) model?
- Expert evaluations are mostly based on qualitative judgements
- The model should be (over)cautious

Why credal networks?

- Why a probabilistic model?
- No deterministic relations between the different variables
- Pervasive uncertainty in the observations
- Why a graphical model?
- Many independence relations among the different variables
- Why an imprecise (probabilistic) model?
- Expert evaluations are mostly based on qualitative judgements
- The model should be (over)cautious

Why credal networks?

- Why a probabilistic model?
- No deterministic relations between the different variables
- Pervasive uncertainty in the observations
- Why a graphical model?
- Many independence relations among the different variables
- Why an imprecise (probabilistic) model?
- Expert evaluations are mostly based on qualitative judgements
- The model should be (over)cautious

Why credal networks?

- Why a probabilistic model?
- No deterministic relations between the different variables
- Pervasive uncertainty in the observations
- Why a graphical model?
- Many independence relations among the different variables
- Why an imprecise (probabilistic) model?
- Expert evaluations are mostly based on qualitative judgements
- The model should be (over)cautious

Network core

- Intruder's goal and features as categorical variables
- Independencies depicted by a directed graph (acyclic)
- Experts provide interval-valued probabilistic assessments, we compute credal sets
- A (small) credal network
- Complex observation process!

Network core

- Intruder's goal and features as categorical variables
- Independencies depicted by a directed graph (acyclic)
- Experts provide
interval-valued probabilistic assessments, we compute credal sets
- A (small) credal network
- Complex observation process!

Network core

- Intruder's goal and features as categorical variables
- Independencies depicted by a directed graph (acyclic)
- Experts provide interval-valued probabilistic assessments, we compute credal sets
- A (small) credal network
- Complex observation process!

Network core

- Intruder's goal and features as categorical variables
- Independencies depicted by a directed graph (acyclic)
- Experts provide interval-valued probabilistic assessments, we compute credal sets
- A (small) credal network
- Complex observation process!

Network core

- Intruder's goal and features as categorical variables
- Independencies depicted by a directed graph (acyclic)
- Experts provide interval-valued probabilistic assessments, we compute credal sets
- A (small) credal network
- Complex observation process!

Network core

- Intruder's goal and features as categorical variables
- Independencies depicted by a directed graph (acyclic)
- Experts provide interval-valued probabilistic assessments, we compute credal sets
- A (small) credal network
- Complex observation process!

Network core

- Intruder's goal and features as categorical variables
- Independencies depicted by a directed graph (acyclic)
- Experts provide interval-valued probabilistic assessments, we compute credal sets
- A (small) credal network
- Complex observation process!

Network core

- Intruder's goal and features as categorical variables
- Independencies depicted by a directed graph (acyclic)
- Experts provide interval-valued probabilistic assessments, we compute credal sets
- A (small) credal network
- Complex observation process!

Observations Modeling and Fusion by Credal Nets

- Each sensor modeled by an auxiliary child of the (ideal) variable to be observed
- P (sensor|ideal) models sensor reliability
(eg. identity matrix = perfectly reliable sensor)
- Manv sensors? Many children!
(conditional independence between sensors given the ideal)

Observations Modeling and Fusion by Credal Nets

- Each sensor modeled by an auxiliary child of the (ideal) variable to be observed
- P(sensor|ideal) models sensor reliability (eg. identity matrix = perfectly reliable sensor)
- Many sensors? Many children!
(conditional independence between sensors given the ideal)

Observations Modeling and Fusion by Credal Nets

- Each sensor modeled by an auxiliary child of the (ideal) variable to be observed
- P (sensor|ideal) models sensor reliability
(eg. identity matrix $=$ perfectly reliable sensor)
- Many sensors? Many children!
(conditional independence between sensors given the ideal)

Observations Modeling and Fusion by Credal Nets

- Each sensor modeled by an auxiliary child of the (ideal) variable to be observed
- P (sensorlideal) models sensor reliability
(eg. identity matrix $=$ perfectly reliable sensor)
- Many sensors? Many children!
(conditional independence between sensors given the ideal)

Observations Modeling and Fusion by Credal Nets

- Each sensor modeled by an auxiliary child of the (ideal) variable to be observed
- P (sensor|ideal) models sensor reliability
(eg. identity matrix $=$ perfectly reliable sensor)
- Many sensors? Many children!
(conditional independence between sensors given the ideal)

Observations Modeling and Fusion by Credal Nets

- Each sensor modeled by an auxiliary child of the (ideal) variable to be observed
- P (sensorlideal) models sensor reliability (eg. identity matrix $=$ perfectly reliable sensor)
- Many sensors? Many children!
(conditional independence between sensors given the ideal)

Observations Modeling and Fusion by Credal Nets

- Each sensor modeled by an auxiliary child of the (ideal) variable to be observed
- P(sensor|ideal) models sensor reliability (eg. identity matrix $=$ perfectly reliable sensor)
- Many sensors? Many children! (conditional independence between sensors given the ideal)

The whole network

- We conclude a huge multiply-connected credal network
- Approximate algorithm:
- Local specification [Antonucci and Zaffalon, $\mathrm{PGM}{ }^{\circ} 06$]
(2) Binarization (Antonucoi, Zaftaon, Ide and Cozman, STARIS 2008)

L2U (Ide and Cozman, STARAS 2004]

The whole network

- We conclude a huge multiply-connected credal network
- Approximate algorithm:

The whole network

- We conclude a huge multiply-connected credal network
- Approximate algorithm:
- Local specification [Antonucci and Zatalaon, pam0es]
(2) Binarization [Antonucoci, Zattaon, Ide and Cozman, STARRS 2006]
(3) L2U [Ide and Cozman, STARS 2004]

Decision Making with CNs

- BN updating compute $P\left(X_{q} \mid x_{E}\right)$
- What about the state of $X_{q}=$?
$x_{q}^{*}=\arg \max _{x_{q} \in \Omega_{X_{q}}} P\left(x_{q} \mid x_{E}\right)$
- CN updating should compute $K\left(X_{q} \mid X_{E}\right)$ In practice algorithms only compute $\underline{P}\left(X_{q} \mid X_{E}\right)$
- What about the state of $X_{q}=$?
- State(s) of X_{q} by interval dominance $\Omega_{x_{q}}^{*}=\left\{x_{q} \mid \nexists x_{q}^{\prime}\right.$ s.t. $\left.\underline{P}\left(x_{q}^{\prime} \mid x_{E}\right)>\bar{P}\left(x_{q} \mid x_{E}\right)\right\}$
- More informative criterion: maximality
 $\left\{x_{q} \mid \nexists x_{q}^{\prime}\right.$ s.t. $\left.P\left(x_{q}^{\prime} \mid x_{E}\right)>P\left(x_{q} \mid x_{E}\right) \forall P\left(X_{q} \mid x_{E}\right) \in K\left(X_{q} \mid x_{E}\right)\right\}$

Decision Making with CNs

- BN updating compute $P\left(X_{q} \mid X_{E}\right)$
- What about the state of $X_{q}=$? $x_{q}^{*}=\arg \max _{x_{q} \in \Omega_{X_{q}}} P\left(x_{q} \mid x_{E}\right)$
- CN updating should compute $K\left(X_{q} \mid X_{E}\right)$ In practice algorithms only compute $\underline{P}\left(X_{q} \mid X_{E}\right)$
- What about the state of $X_{q}=$?
- State(s) of X_{q} by interval dominance $\Omega_{x_{q}}^{*}=\left\{x_{q} \mid \nexists x_{q}^{\prime}\right.$ s.t. $\left.\underline{P}\left(x_{q}^{\prime} \mid x_{E}\right)>\bar{P}\left(x_{q} \mid X_{E}\right)\right\}$
- More informative criterion: maximality
 $\left\{x_{q} \mid \nexists x_{q}^{\prime}\right.$ s.t. $\left.P\left(x_{q}^{\prime} \mid x_{E}\right)>P\left(x_{q} \mid x_{E}\right) \forall P\left(x_{q} \mid x_{E}\right) \in K\left(x_{q} \mid x_{E}\right)\right\}$

Decision Making with CNs

- BN updating compute $P\left(X_{q} \mid X_{E}\right)$
- What about the state of $X_{q}=$?
$x_{q}^{*}=\arg \max _{x_{q} \in \Omega_{x_{q}}} P\left(x_{q} \mid x_{E}\right)$
- CN updating should compute $K\left(X_{q} \mid X_{E}\right)$ In practice algorithms only compute $\underline{P}\left(X_{q} \mid X_{E}\right)$
- What about the state of $X_{q}=$?
- State(s) of X_{q} by interval dominance $\Omega_{x_{q}}^{*}=\left\{x_{q} \mid \nexists x_{q}^{\prime}\right.$ s.t. $\left.\underline{P}\left(x_{q}^{\prime} \mid x_{E}\right)>\bar{P}\left(x_{q} \mid X_{E}\right)\right\}$
- More informative criterion: maximality

Decision Making with CNs

- BN updating compute $P\left(X_{q} \mid X_{E}\right)$
- What about the state of $X_{q}=$?
$x_{q}^{*}=\arg \max _{x_{q} \in \Omega_{X_{q}}} P\left(x_{q} \mid x_{E}\right)$
- CN updating should compute $K\left(X_{q} \mid x_{E}\right)$ In practice algorithms only compute $\underline{P}\left(X_{q} \mid X_{E}\right)$
- What about the state of $X_{q}=$?
- State(s) of X_{q} by interval dominance $\Omega_{x_{q}}^{*}=\left\{x_{q} \mid \nexists x_{q}^{\prime}\right.$ s.t. $\left.\underline{P}\left(x_{q}^{\prime} \mid X_{E}\right)>\bar{P}\left(x_{q} \mid X_{E}\right)\right\}$
- More informative criterion: maximality

- Maximality in CNs by auxiliary Boolean child

$$
\begin{aligned}
& P_{x_{q}^{\prime}, x_{\prime}^{\prime \prime}}\left(Y \mid x_{q}\right)=\frac{\delta_{x_{q}, x_{q}^{\prime}}-\delta_{x_{q}, x_{q}^{\prime \prime}}+1}{2} \\
& \underline{P}_{x_{q}, x_{q}^{\prime \prime}}\left(Y=1 \mid x_{E}\right)>\frac{1}{2} \Leftrightarrow P\left(x_{q}^{\prime} \mid x_{E}\right)>P\left(x_{q}^{\prime \prime} \mid x_{E}\right) \forall P\left(X_{q} \mid x_{E}\right) \in K\left(X_{q} \mid X_{E}\right)
\end{aligned}
$$

Decision Making with CNs

- BN updating compute $P\left(X_{q} \mid X_{E}\right)$
- What about the state of $X_{q}=$? $x_{q}^{*}=\arg \max _{x_{q} \in \Omega_{X_{q}}} P\left(x_{q} \mid x_{E}\right)$
- CN updating should compute $K\left(X_{q} \mid x_{E}\right)$ In practice algorithms only compute $\underline{P}\left(X_{q} \mid X_{E}\right)$
- What about the state of $X_{q}=$?
- State(s) of X_{q} by interval dominance $\Omega_{x_{q}}^{*}=\left\{x_{q} \mid \nexists x_{q}^{\prime}\right.$ s.t. $\left.\underline{P}\left(x_{q}^{\prime} \mid X_{E}\right)>\bar{P}\left(x_{q} \mid X_{E}\right)\right\}$
- More informative criterion: maximality $\left\{x_{q} \mid \nexists x_{q}^{\prime} \text { s.t. } P\left(x_{q}^{\prime} \mid x_{E}\right)>P\left(x_{q} \mid x_{E}\right) \forall P\left(X_{q} \mid x_{E}\right) \in K\left(X_{q} \mid x_{E}\right)\right\}^{\delta}$
- Maximality in CNs by auxiliary Boolean child

```
P
    \mp@subsup{P}{\mp@subsup{X}{q}{\prime}}{\prime\prime\prime}
```


Decision Making with CNs

- BN updating compute $P\left(X_{q} \mid X_{E}\right)$
- What about the state of $X_{q}=$? $x_{q}^{*}=\arg \max _{x_{q} \in \Omega_{X_{q}}} P\left(x_{q} \mid x_{E}\right)$
- CN updating should compute $K\left(X_{q} \mid x_{E}\right)$ In practice algorithms only compute $\underline{P}\left(X_{q} \mid X_{E}\right)$
- What about the state of $X_{q}=$?
- State(s) of X_{q} by interval dominance $\Omega_{x_{q}}^{*}=\left\{x_{q} \mid \nexists x_{q}^{\prime}\right.$ s.t. $\left.\underline{P}\left(x_{q}^{\prime} \mid X_{E}\right)>\bar{P}\left(x_{q} \mid X_{E}\right)\right\}$
- More informative criterion: maximality $\left\{x_{q} \mid \nexists x_{q}^{\prime} \text { s.t. } P\left(x_{q}^{\prime} \mid x_{E}\right)>P\left(x_{q} \mid x_{E}\right) \forall P\left(X_{q} \mid x_{E}\right) \in K\left(X_{q} \mid x_{E}\right)\right\}^{\delta}$
- Maximality in CNs by auxiliary Boolean child

```
P
    \mp@subsup{P}{\mp@subsup{X}{q}{\prime}}{\prime\prime}\mp@subsup{X}{q}{\prime\prime}}(Y=1|\mp@subsup{X}{E}{})>\frac{1}{2}\LeftrightarrowP(\mp@subsup{X}{q}{\prime}|\mp@subsup{X}{E}{})>P(\mp@subsup{X}{q}{\prime\prime}|\mp@subsup{X}{E}{\prime})\forallP(\mp@subsup{X}{q}{}|\mp@subsup{X}{E}{})\inK(\mp@subsup{X}{q}{}|\mp@subsup{X}{E}{}
```


Decision Making with CNs

- BN updating compute $P\left(X_{q} \mid X_{E}\right)$
- What about the state of $X_{q}=$? $x_{q}^{*}=\arg \max _{x_{q} \in \Omega_{X_{q}}} P\left(x_{q} \mid x_{E}\right)$
- CN updating should compute $K\left(X_{q} \mid x_{E}\right)$ In practice algorithms only compute $\underline{P}\left(X_{q} \mid X_{E}\right)$
- What about the state of $X_{q}=$?
- State(s) of X_{q} by interval dominance $\Omega_{x_{q}}^{*}=\left\{x_{q} \mid \nexists x_{q}^{\prime}\right.$ s.t. $\left.\underline{P}\left(x_{q}^{\prime} \mid x_{E}\right)>\bar{P}\left(x_{q} \mid X_{E}\right)\right\}$
- More informative criterion: maximality $\left\{x_{q} \mid \nexists x_{q}^{\prime} \text { s.t. } P\left(x_{q}^{\prime} \mid x_{E}\right)>P\left(x_{q} \mid x_{E}\right) \forall P\left(X_{q} \mid x_{E}\right) \in K\left(X_{q} \mid x_{E}\right)\right\}^{\delta}$
- Maximality in CNs by auxiliary Boolean child

Decision Making with CNs

- BN updating compute $P\left(X_{q} \mid X_{E}\right)$
- What about the state of $X_{q}=$?
$x_{q}^{*}=\arg \max _{x_{q} \in \Omega_{X_{q}}} P\left(x_{q} \mid x_{E}\right)$
- CN updating should compute $K\left(X_{q} \mid x_{E}\right)$ In practice algorithms only compute $\underline{P}\left(X_{q} \mid X_{E}\right)$
- What about the state of $X_{q}=$?
- State(s) of X_{q} by interval dominance $\Omega_{x_{q}}^{*}=\left\{x_{q} \mid \nexists x_{q}^{\prime}\right.$ s.t. $\left.\underline{P}\left(x_{q}^{\prime} \mid x_{E}\right)>\bar{P}\left(x_{q} \mid X_{E}\right)\right\}$
- More informative criterion: maximality

- Maximality in CNs by auxiliary Boolean child

Decision Making with CNs

- BN updating compute $P\left(X_{q} \mid X_{E}\right)$
- What about the state of $X_{q}=$?
$x_{q}^{*}=\arg \max _{x_{q} \in \Omega_{x_{q}}} P\left(x_{q} \mid x_{E}\right)$
- CN updating should compute $K\left(X_{q} \mid x_{E}\right)$ In practice algorithms only compute $\underline{P}\left(X_{q} \mid X_{E}\right)$
- What about the state of $X_{q}=$?
- State(s) of X_{q} by interval dominance

$$
\Omega_{x_{q}}^{*}=\left\{x_{q} \mid \nexists x_{q}^{\prime} \text { s.t. } \underline{P}\left(x_{q}^{\prime} \mid x_{E}\right)>\bar{P}\left(x_{q} \mid x_{E}\right)\right\}
$$

- More informative criterion: maximality

- Maximality in CNs by auxiliary Boolean child

$$
\begin{aligned}
& P_{x_{q}^{\prime}, x_{q}^{\prime \prime}}\left(Y \mid x_{q}\right)=\frac{\delta_{x_{q}, x_{q}^{\prime}}-\delta_{x_{q}, x_{q}^{\prime \prime}}+1}{2} \\
& \underline{P}_{x_{q}^{\prime}, x_{q}^{\prime \prime}}\left(Y=1 \mid x_{E}\right)>\frac{1}{2} \Leftrightarrow P\left(x_{q}^{\prime} \mid x_{E}\right)>P\left(x_{q}^{\prime \prime} \mid x_{E}\right) \forall P\left(X_{q} \mid x_{E}\right) \in K\left(X_{q} \mid x_{E}\right)
\end{aligned}
$$

Simulations (military application)

- Simulating a dam in the Swiss Alps, with no interceptors, relatively good coverage for other sensors, discontinuous low clouds and daylight
- Sensors return:
- Height = very low / very low / very low / low
- Type $=$ helicopter $/$ helicopter
- Flight Path $=$ U-path $/$ U-path / U-path / U-path / U-path / missing
- Height Changes $=$ descent $/$ descent $/$ descent $/$ descent $/$ missing
- Speed = slow / slow / slow / slow / slow
- ADDC reaction = positive / positive / positive / positive / positive / positive
- We reject renegade and damaged, but indecision between provocateur and erroneous
- Assuming higher levels of reliability
- We conclude the aircraft is a provocateur!
- Same conclusion with maximality (no need of higher reliability)

Simulations (military application)

- Simulating a dam in the Swiss Alps, with no interceptors, relatively good coverage for other sensors, discontinuous low clouds and daylight
- Sensors return:
- Height $=$ very low / very low / very low / low
- Type $=$ helicopter $/$ helicopter
- Flight Path $=$ U-path / U-path / U-path / U-path / U-path / missing
- Height Changes $=$ descent $/$ descent $/$ descent $/$ descent $/$ missing
- Speed = slow / slow / slow / slow / slow
- ADDC reaction = positive / positive / positive / positive / positive / positive
- We reject renegade and damaged, but indecision between provocateur and erroneous
- Assuming higher levels of reliability
- We conclude the aircraft is a provocateur!
- Same conclusion with maximality (no need of higher reliability)

Simulations (military application)

- Simulating a dam in the Swiss Alps, with no interceptors, relatively good coverage for other sensors, discontinuous low clouds and daylight
- Sensors return:
- Height = very low / very low / very low / low
- Type $=$ helicopter $/$ helicopter
- Flight Path $=$ U-path / U-path / U-path / U-path / U-path / missing
- Height Changes = descent / descent / descent / descent / missing
- Speed = slow / slow / slow / slow / slow
- ADDC reaction $=$ positive $/$ positive $/$ positive $/$ positive $/$ positive $/$ positive
- We reject renegade and damaged, but indecision between provocateur and erroneous
- Assuming higher levels of reliability
- We conclude the aircraft is a provocateur!
- Same conclusion with maximality (no need of higher reliability)

Simulations (military application)

- Simulating a dam in the Swiss Alps, with no interceptors, relatively good coverage for other sensors, discontinuous low clouds and daylight
- Sensors return:
- Height = very low / very low / very low / low
- Type = helicopter / helicopter
- Flight Path = U-path / U-path / U-path / U-path / U-path / missing
- Height Changes = descent / descent / descent / descent / missing
- Speed = slow / slow / slow / slow / slow
- ADDC reaction = positive / positive / positive / positive / positive / positive
- We reject renegade and damaged, but indecision between provocateur and erroneous

- Assuming higher levels of reliability
- We conclude the aircraft is a provocateur!
- Same conclusion with maximality (no need of higher reliability)

Simulations (military application)

- Simulating a dam in the Swiss Alps, with no interceptors, relatively good coverage for other sensors, discontinuous low clouds and daylight
- Sensors return:
- Height = very low / very low / very low / low
- Type $=$ helicopter $/$ helicopter
- Flight Path = U-path / U-path / U-path / U-path / U-path / missing
- Height Changes = descent / descent / descent / descent / missing
- Speed = slow / slow / slow / slow / slow
- ADDC reaction = positive / positive / positive / positive / positive / positive
- We reject renegade and damaged, but indecision between provocateur and erroneous

- Assuming higher levels of reliability
- We conclude the aircraft is a provocateur!
- Same conclusion with maximality (no need of higher reliability)

Simulations (military application)

- Simulating a dam in the Swiss Alps, with no interceptors, relatively good coverage for other sensors, discontinuous low clouds and daylight
- Sensors return:
- Height = very low / very low / very low / low
- Type $=$ helicopter $/$ helicopter
- Flight Path = U-path / U-path / U-path / U-path / U-path / missing
- Height Changes = descent / descent / descent / descent / missing
- Speed = slow / slow / slow / slow / slow
- ADDC reaction = positive / positive / positive / positive / positive / positive
- We reject renegade and damaged, but indecision between provocateur and erroneous

- Assuming higher levels of reliability
- We conclude the aircraft is a provocateur!
- Same conclusion with maximality (no need of higher reliability)

Simulations (military application)

- Simulating a dam in the Swiss Alps, with no interceptors, relatively good coverage for other sensors, discontinuous low clouds and daylight
- Sensors return:
- Height = very low / very low / very low / low
- Type $=$ helicopter $/$ helicopter
- Flight Path $=$ U-path / U-path / U-path / U-path / U-path / missing
- Height Changes $=$ descent $/$ descent $/$ descent $/$ descent $/$ missing
- Speed = slow / slow / slow / slow / slow
- ADDC reaction = positive / positive / positive / positive / positive / positive
- We reject renegade and damaged, but indecision between provocateur and erroneous

- Assuming higher levels of reliability
- We conclude the aircraft is a provocateur!
- Same conclusion with maximality (no need of higher reliability)

Simulations (military application)

- Simulating a dam in the Swiss Alps, with no interceptors, relatively good coverage for other sensors, discontinuous low clouds and daylight
- Sensors return:
- Height = very low / very low / very low / low
- Type $=$ helicopter $/$ helicopter
- Flight Path $=$ U-path / U-path / U-path / U-path / U-path / missing
- Height Changes $=$ descent $/$ descent $/$ descent $/$ descent $/$ missing
- Speed = slow / slow / slow / slow / slow
- ADDC reaction = positive / positive / positive / positive / positive / positive
- We reject renegade and damaged, but indecision between provocateur and erroneous

- Assuming higher levels of reliability
- We conclude the aircraft is a provocateur!
- Same conclusion with maximality (no need of higher reliability)

Simulations (military application)

- Simulating a dam in the Swiss Alps, with no interceptors, relatively good coverage for other sensors, discontinuous low clouds and daylight
- Sensors return:
- Height = very low / very low / very low / low
- Type $=$ helicopter $/$ helicopter
- Flight Path $=$ U-path / U-path / U-path / U-path / U-path / missing
- Height Changes = descent / descent / descent / descent / missing
- Speed = slow / slow / slow / slow / slow
- ADDC reaction = positive / positive / positive / positive / positive / positive
- We reject renegade and damaged, but indecision between provocateur and erroneous

- Assuming higher levels of reliability
- We conclude the aircraft is a provocateur!
- Same conclusion with maximality (no need of higher reliability)

An application: debris flows risk assessment

- Debris flows are very destructive natural hazards
- Still partially understood
- Human expertize is still fundamental!
- An artificial expert system supporting human experts?

An application: debris flows risk assessment

- Debris flows are very destructive natural hazards
- Still partially understood
- Human expertize is still fundamental!
- An artificial expert system supporting human experts?

An application: debris flows risk assessment

- Debris flows are very destructive natural hazards
- Still partially understood
- Human expertize is still fundamental!
- An artificial expert system supporting human experts?

An application: debris flows risk assessment

- Debris flows are very destructive natural hazards
- Still partially understood
- Human expertize is still fundamental!
- An artificial expert system supporting human experts?

An application: debris flows risk assessment

- Debris flows are very destructive natural hazards
- Still partially understood
- Human expertize is still fundamental!
- An artificial expert system supporting human experts?

Building the causal network

Building the causal network

Triggering Factors

Building the causal network

Debris flow hazard assessment by CNs

- Extensive simulations in a debris flow prone watershed Acquarossa Creek Basin (area $1.6 \mathrm{Km}^{2}$, length 3.1 Km)

Debris flow hazard assessment by CNs

- Extensive simulations in a debris flow prone watershed Acquarossa Creek Basin (area $1.6 \mathrm{Km}^{2}$, length 3.1 Km)

Inference based on message propagation

Bayesian nets

- Pearl's message propagation Efficient for polytrees
- Multiply connected BNs?

Loopy belief propagation

Credal nets

- Only outer approximation for general polytrees (Tessem, 1992)
(da Rocha \& Cozman, A/R+, 2005)
- Exact for binary polytrees (2U, Zaffalon, 1998)
- Loopy version of 2 U for
binary multiply connected
(Ide \& Cozman, 2004)

$$
\begin{aligned}
& p(x \mid e)=\alpha \wedge(x) \pi(x), \\
& \wedge(x)=\wedge_{X}(x) \Pi_{j} \wedge_{Y_{i}}(x), \\
& \pi(x)=\sum_{u} p(x \mid u) \Pi_{k} \pi_{X}\left(u_{k}\right), \\
& \wedge_{X}\left(u_{i}\right)= \\
& \alpha \sum_{X} \wedge(x) \sum_{u_{k}: k \neq i} p(x \mid u) \Pi_{k \neq i} \pi_{X}\left(u_{k}\right), \\
& \pi_{Y_{j}}(x)=\alpha \pi(x) \wedge_{X}(x) \Pi_{k \neq j} \wedge_{Y_{k}}(x)
\end{aligned}
$$

Inference based on message propagation

Bayesian nets

- Pearl's message propagation Efficient for polytrees
- Multiply connected BNs?

Loopy belief propagation

Credal nets

- Only outer approximation for general polytrees (Tessem, 1992)
(da Rocha \& Cozman, A/R+, 2005)
- Exact for binary polytrees (2U, Zaffalon, 1998)
- Loopy version of 2U for
binary multiply connected
(Ide \& Cozman, 2004)

$$
\begin{aligned}
& p(x \mid e)=\alpha \Lambda(x) \pi(x), \\
& \wedge(x)=\wedge_{X}(x) \prod_{j} \wedge_{Y_{i}}(x), \\
& \pi(x)=\sum_{u} p(x \mid u) \Pi_{k} \pi_{X}\left(u_{k}\right), \\
& \wedge_{X}\left(u_{i}\right)= \\
& \alpha \sum_{X} \wedge(x) \sum_{u_{k} k \neq i} p(x \mid u) \prod_{k \neq i} \pi_{X}\left(u_{k}\right), \\
& \pi_{Y_{j}}(x)=\alpha \pi(x) \wedge_{X}(x) \prod_{k \neq j} \wedge_{Y_{k}}(x)
\end{aligned}
$$

Inference based on message propagation

BAYESIAN NETS

- Pearl's message propagation Efficient for polytrees
- Multiply connected BNs?

Loopy belief propagation

Credal nets

- Only outer approximation for general polytrees

```
(Tessem, 1992)
```

(da Rocha \& Cozman, A/R+, 2005)

- Exact for binary polytrees
(2U, Zaffalon, 1998)
- Loopy version of 2U for
binary multiply connected
(Ide \& Cozman, 2004)

$$
\begin{aligned}
& p(x \mid e)=\alpha \Lambda(x) \pi(x), \\
& \wedge(x)=\wedge_{X}(x) \Pi_{j} \wedge_{Y_{i}}(x), \\
& \pi(x)=\sum_{u} p(x \mid u) \Pi_{k} \pi_{X}\left(u_{k}\right), \\
& \wedge_{X}\left(u_{i}\right)= \\
& \alpha \sum_{X} \wedge(x) \sum_{u_{k} k} k \neq i p(x \mid u) \prod_{k \neq i} \pi_{X}\left(u_{k}\right), \\
& \pi_{Y_{j}}(x)=\alpha \pi(x) \wedge_{X}(x) \prod_{k \neq j} \wedge_{Y_{k}}(x)
\end{aligned}
$$

Inference based on message propagation

BAYESIAN NETS

- Pearl's message propagation Efficient for polytrees
- Multiply connected BNs?

Loopy belief propagation

Credal nets

- Only outer approximation for general polytrees (Tessem, 1992)
(da Rocha \& Cozman, A/R+, 2005)
- Exact for binary polytrees (2U, Zaffalon, 1998)
- Loopy version of 2U for

(Ide \& Cozman, 2004)

$$
\begin{aligned}
& p(x \mid e)=\alpha \wedge(x) \pi(x), \\
& \wedge(x)=\wedge_{X}(x) \Pi_{j} \wedge_{Y_{i}}(x), \\
& \pi(x)=\sum_{u} p(x \mid u) \Pi_{k} \pi_{X}\left(u_{k}\right), \\
& \wedge_{X}\left(u_{i}\right)= \\
& \alpha \sum_{X} \wedge(x) \sum_{u_{k}: k \neq i} p(x \mid u) \Pi_{k \neq i} \pi_{X}\left(u_{k}\right), \\
& \pi_{Y_{j}}(x)=\alpha \pi(x) \wedge_{X}(x) \Pi_{k \neq j} \wedge_{Y_{k}}(x)
\end{aligned}
$$

Inference based on message propagation

BAYESIAN NETS

- Pearl's message propagation Efficient for polytrees
- Multiply connected BNs?

Loopy belief propagation

Credal nets

- Only outer approximation for general polytrees (Tessem, 1992)
(da Rocha \& Cozman, A/R+, 2005)
- Exact for binary polytrees (2U, Zaffalon, 1998)
- Loopy version of 2U for

$$
\begin{aligned}
& p(x \mid e)=\alpha \wedge(x) \pi(x), \\
& \wedge(x)=\wedge_{X}(x) \Pi_{j} \wedge_{Y_{i}}(x), \\
& \pi(x)=\sum_{u} p(x \mid u) \Pi_{k} \pi_{X}\left(u_{k}\right), \\
& \wedge_{X}\left(u_{i}\right)= \\
& \alpha \sum_{X} \wedge(x) \sum_{u_{k}: k \neq i} p(x \mid u) \Pi_{k \neq i} \pi_{X}\left(u_{k}\right), \\
& \pi_{Y_{j}}(x)=\alpha \pi(x) \wedge_{X}(x) \Pi_{k \neq j} \wedge_{Y_{k}}(x)
\end{aligned}
$$

Inference based on message propagation

BAYESIAN NETS

- Pearl's message propagation Efficient for polytrees
- Multiply connected BNs?

Loopy belief propagation

Credal nets

- Only outer approximation for general polytrees
(Tessem, 1992)
(da Rocha \& Cozman, A/R+, 2005)
- Exact for binary polytrees (2U, Zaffalon, 1998)
- Loopy version of 2 U for binary multiply connected (Ide \& Cozman, 2004)

$$
\begin{aligned}
& p(x \mid e)=\alpha \wedge(x) \pi(x), \\
& \wedge(x)=\wedge_{X}(x) \Pi_{j} \wedge_{Y_{i}}(x), \\
& \pi(x)=\sum_{u} p(x \mid u) \Pi_{k} \pi_{X}\left(u_{k}\right), \\
& \wedge_{X}\left(u_{i}\right)= \\
& \alpha \sum_{X} \wedge(x) \sum_{u_{k}: k \neq i} p(x \mid u) \Pi_{k \neq i} \pi_{X}\left(u_{k}\right), \\
& \pi_{Y_{j}}(x)=\alpha \pi(x) \wedge_{X}(x) \Pi_{k \neq j} \wedge_{Y_{k}}(x)
\end{aligned}
$$

Inference based on message propagation

BAYESIAN NETS

- Pearl's message propagation Efficient for polytrees
- Multiply connected BNs?

Loopy belief propagation

Credal nets

- Only outer approximation for general polytrees
(Tessem, 1992)
(da Rocha \& Cozman, A/R+, 2005)
- Exact for binary polytrees (2U, Zaffalon, 1998)
- Loopy version of 2 U for binary multiply connected (Ide \& Cozman, 2004)

$$
\begin{aligned}
& p(x \mid e)=\alpha \wedge(x) \pi(x), \\
& \wedge(x)=\wedge_{X}(x) \Pi_{j} \wedge_{Y_{i}}(x), \\
& \pi(x)=\sum_{u} p(x \mid u) \Pi_{k} \pi_{X}\left(u_{k}\right), \\
& \wedge_{X}\left(u_{i}\right)= \\
& \alpha \sum_{X} \wedge(x) \sum_{u_{k}: k \neq i} p(x \mid u) \Pi_{k \neq i} \pi_{X}\left(u_{k}\right), \\
& \pi_{Y_{j}}(x)=\alpha \pi(x) \wedge_{X}(x) \Pi_{k \neq j} \wedge_{Y_{k}}(x)
\end{aligned}
$$

Updating non-binary CNs?

Binarizing non-binary credal nets

- State of a variable as a joint state of a number of "bits" $X=x \Longleftrightarrow\left(\tilde{X}^{1}=\tilde{x}^{1}\right) \wedge\left(\tilde{X}^{2}=\tilde{x}^{2}\right) \wedge \ldots$
- For each arc between two variables, all the relative bits are linked, bits of the same variable are completely connected
- Local computations for the probabilities
- A "binarized" equivalent CN is obtained
- L2U can update it (GL2U, Antonucci et al. 2010)

Binarizing non-binary credal nets

- State of a variable as a joint state of a number of "bits" $X=x \Longleftrightarrow\left(\tilde{X}^{1}=\tilde{x}^{1}\right) \wedge\left(\tilde{X}^{2}=\tilde{x}^{2}\right) \wedge \ldots$
- For each arc between two variables, all the relative bits are linked, bits of the same variable are completely connected
- Local computations for the probabilities
- A "binarized" equivalent CN is obtained
- L2U can update it (GL2U, Antonucci et al. 2010)

Binarizing non-binary credal nets

- State of a variable as a joint state of a number of "bits" $X=x \Longleftrightarrow\left(\tilde{X}^{1}=\tilde{x}^{1}\right) \wedge\left(\tilde{X}^{2}=\tilde{x}^{2}\right) \wedge \ldots$
- For each arc between two variables, all the relative bits are linked, bits of the same variable are completely connected
- Local computations for the probabilities
- A "binarized" equivalent CN is obtained
- L2U can update it (GL2U, Antonucci et al. 2010)

Binarizing non-binary credal nets

- State of a variable as a joint state of a number of "bits" $X=x \Longleftrightarrow\left(\tilde{X}^{1}=\tilde{x}^{1}\right) \wedge\left(\tilde{X}^{2}=\tilde{x}^{2}\right) \wedge \ldots$
- For each arc between two variables, all the relative bits are linked, bits of the same variable are completely connected
- Local computations for the probabilities
- A "binarized" equivalent CN is obtained
- L2U can update it (GL2U, Antonucci et al. 2010)

Binarizing non-binary credal nets

- State of a variable as a joint state of a number of "bits" $X=x \Longleftrightarrow\left(\tilde{X}^{1}=\tilde{x}^{1}\right) \wedge\left(\tilde{X}^{2}=\tilde{x}^{2}\right) \wedge \ldots$
- For each arc between two variables, all the relative bits are linked, bits of the same variable are completely connected
- Local computations for the probabilities
- A "binarized" equivalent CN is obtained
- L2U can update it (GL2U, Antonucci et al. 2010)

Binarizing non-binary credal nets

- State of a variable as a joint state of a number of "bits" $X=x \Longleftrightarrow\left(\tilde{X}^{1}=\tilde{x}^{1}\right) \wedge\left(\tilde{X}^{2}=\tilde{x}^{2}\right) \wedge \ldots$
- For each arc between two variables, all the relative bits are linked, bits of the same variable are completely connected
- Local computations for the probabilities
- A "binarized" equivalent CN is obtained
- L2U can update it (GL2U, Antonucci et al. 2010)

Binarizing non-binary credal nets

- State of a variable as a joint state of a number of "bits" $X=x \Longleftrightarrow\left(\tilde{X}^{1}=\tilde{x}^{1}\right) \wedge\left(\tilde{X}^{2}=\tilde{x}^{2}\right) \wedge \ldots$
- For each arc between two variables, all the relative bits are linked, bits of the same variable are completely connected
- Local computations for the probabilities
- A "binarized" equivalent CN is obtained
- L2U can update it (GL2U, Antonucci et al. 2010)

Binarizing non-binary credal nets

- State of a variable as a joint state of a number of "bits" $X=x \Longleftrightarrow\left(\tilde{X}^{1}=\tilde{x}^{1}\right) \wedge\left(\tilde{X}^{2}=\tilde{x}^{2}\right) \wedge \ldots$
- For each arc between two variables, all the relative bits are linked, bits of the same variable are completely connected
- Local computations for the probabilities
- A "binarized" equivalent CN is obtained
- L2U can update it (GL2U, Antonucci et al. 2010)

Exact inference: Variable elimination

BAYESIAN NETS

- Choose an ordering of the variables (query last)
- Create a pool of functions with all local distributions
- For each X :

Insert all functions that contain X in a structure called bucket of X and remove them from the pool

Multiply these functions and marginalize out X

Insert the results in the pool
bucket elimination (Dechter, 1996) fusion algorithm for valuation algebras (Shenoy \& Kohlas, 1994)

Compute $P\left(X_{4}\right)$ with ordering $X_{1}, x_{2}, x_{3}, x_{4}$
Pool $\equiv\left\{P\left(x_{1}\right), p\left(x_{2} \mid x_{1}\right), p\left(x_{3} \mid x_{1}\right), p\left(x_{4} \mid x_{2}, x_{3}\right)\right.$
$\operatorname{Bucket}\left(X_{1}\right): \sum_{X_{1}} P\left(X_{2} \mid X_{1}\right) p\left(X_{3} \mid X_{1}\right) p\left(X_{1}\right)=p\left(X_{2}, X_{3}\right) \rightarrow$ pool
$\operatorname{Bucket}\left(X_{2}\right): \sum x_{2} P\left(x_{4} \mid x_{2}, x_{3}\right) p\left(x_{2}, x_{3}\right)=p\left(x_{3}, x_{4}\right) \rightarrow$ pool
$\operatorname{Bucket}\left(X_{3}\right): \sum X_{3} P\left(X_{4}, X_{3}\right)=p\left(X_{4}\right) \rightarrow$ pool
Bucket $\left(X_{4}\right)$: just get $P\left(X_{4}\right)$ from the pool

Credal nets

- Symbolic variable elimination
multilinear constraints
- Updating \equiv multilinear optimization (de Campos \& Cozman, 2004)

Exact inference: Variable elimination

BAYESIAN NETS

- Choose an ordering of the variables (query last)
- Create a pool of functions with all local distributions
- For each X :

Insert all functions that contain X in a structure called bucket of X and remove them from the pool

Multiply these functions and marginalize out X

Insert the results in the pool
bucket elimination (Dechter, 1996) fusion algorithm for valuation algebras (Shenoy \& Kohlas, 1994)

Credal nets

- Symbolic variable elimination
- Updating \equiv multilinear optimization (de Campos \& Cozman, 2004)

Exact inference: Variable elimination

BAYESIAN NETS

- Choose an ordering of the variables (query last)
- Create a pool of functions with all local distributions
- For each X :

Insert all functions that contain X in a structure called bucket of X and remove them from the pool

Multiply these functions and marginalize out X

Insert the results in the pool
bucket elimination (Dechter, 1996) fusion algorithm for valuation algebras (Shenoy \& Kohlas, 1994)

Compute $P\left(x_{4}\right)$ with ordering $X_{1}, x_{2}, x_{3}, x_{4}$ Pool $\equiv\left\{P\left(X_{1}\right), p\left(X_{2} \mid X_{1}\right), p\left(X_{3} \mid X_{1}\right), p\left(X_{4} \mid X_{2}, X_{3}\right)\right.$ $\operatorname{Bucket}\left(X_{1}\right): \sum_{X_{1}} P\left(X_{2} \mid X_{1}\right) p\left(X_{3} \mid X_{1}\right) p\left(X_{1}\right)=p\left(X_{2}, X_{3}\right) \rightarrow$ pool
Bucket $\left(X_{2}\right): \sum X_{2} P\left(X_{4} \mid X_{2}, X_{3}\right) p\left(X_{2}, X_{3}\right)=p\left(X_{3}, X_{4}\right) \rightarrow$ pool
$\operatorname{Bucket}\left(X_{3}\right): \sum_{X_{3}} P\left(X_{4}, X_{3}\right)=p\left(X_{4}\right) \rightarrow$ pool
Bucket $\left(X_{4}\right)$: just get $P\left(X_{4}\right)$ from the pool

Credal nets

- Symbolic variable elimination
- Updating \equiv multilinear optimization (de Campos \& Cozman, 2004)

Exact inference: Variable elimination

BAYESIAN NETS

- Choose an ordering of the variables (query last)
- Create a pool of functions with all local distributions
- For each X :

Insert all functions that contain X in a structure called bucket of X and remove them from the pool

Multiply these functions and marginalize out X

Insert the results in the pool
bucket elimination (Dechter, 1996) fusion algorithm for valuation algebras
(Shenoy \& Kohlas, 1994)

Compute $P\left(X_{4}\right)$ with ordering $X_{1}, x_{2}, x_{3}, x_{4}$ Pool $\equiv\left\{P\left(X_{1}\right), p\left(X_{2} \mid X_{1}\right), p\left(X_{3} \mid X_{1}\right), p\left(X_{4} \mid X_{2}, X_{3}\right)\right.$ $\operatorname{Bucket}\left(X_{1}\right): \sum_{X_{1}} P\left(X_{2} \mid X_{1}\right) p\left(X_{3} \mid X_{1}\right) p\left(X_{1}\right)=p\left(X_{2}, X_{3}\right) \rightarrow$ pool
Bucket $\left(X_{2}\right): \sum X_{2} P\left(X_{4} \mid X_{2}, X_{3}\right) p\left(X_{2}, X_{3}\right)=p\left(X_{3}, X_{4}\right) \rightarrow$ pool
$\operatorname{Bucket}\left(X_{3}\right): \sum_{X_{3}} P\left(X_{4}, X_{3}\right)=p\left(X_{4}\right) \rightarrow$ pool
Bucket $\left(X_{4}\right)$: just get $P\left(X_{4}\right)$ from the pool

CREDAL NETS

- Symbolic variable elimination
- Updating \equiv multilinear optimization (de Campos \& Cozman, 2004)

Exact inference: Variable elimination

BAYESIAN NETS

- Choose an ordering of the variables (query last)
- Create a pool of functions with all local distributions
- For each X :

Insert all functions that contain X in a structure called bucket of X and remove them from the pool

Multiply these functions and marginalize out X

Insert the results in the pool
bucket elimination (Dechter, 1996) fusion algorithm for valuation algebras
(Shenoy \& Kohlas, 1994)

Compute $P\left(X_{4}\right)$ with ordering $X_{1}, x_{2}, x_{3}, x_{4}$ Pool $\equiv\left\{P\left(X_{1}\right), p\left(X_{2} \mid X_{1}\right), p\left(X_{3} \mid X_{1}\right), p\left(X_{4} \mid X_{2}, X_{3}\right)\right.$ Bucket $\left(X_{1}\right): \sum_{X_{1}} P\left(X_{2} \mid X_{1}\right) p\left(X_{3} \mid X_{1}\right) p\left(X_{1}\right)=p\left(X_{2}, X_{3}\right) \rightarrow$ pool
Bucket $\left(X_{2}\right): \sum X_{2} P\left(X_{4} \mid X_{2}, X_{3}\right) p\left(X_{2}, X_{3}\right)=p\left(X_{3}, X_{4}\right) \rightarrow$ pool
$\operatorname{Bucket}\left(X_{3}\right): \sum_{X_{3}} P\left(X_{4}, X_{3}\right)=p\left(X_{4}\right) \rightarrow$ pool
Bucket $\left(X_{4}\right)$: just get $P\left(X_{4}\right)$ from the pool

Credal nets

- Symbolic variable elimination
- Updating \equiv multilinear optimization (de Campos \& Cozman, 2004)

Exact inference: Variable elimination

BAYESIAN NETS

- Choose an ordering of the variables (query last)
- Create a pool of functions with all local distributions
- For each X :

Insert all functions that contain X in a structure called bucket of X and remove them from the pool

Multiply these functions and marginalize out X

Insert the results in the pool
bucket elimination (Dechter, 1996) fusion algorithm for valuation algebras
(Shenoy \& Kohlas, 1994)

Compute $P\left(x_{4}\right)$ with ordering $x_{1}, x_{2}, x_{3}, x_{4}$ Pool $\equiv\left\{P\left(X_{1}\right), p\left(X_{2} \mid X_{1}\right), p\left(X_{3} \mid X_{1}\right), p\left(X_{4}^{4} \mid X_{2}, X_{3}\right)\right.$ Bucket $\left(X_{1}\right): \sum_{X_{1}} P\left(X_{2} \mid X_{1}\right) p\left(X_{3} \mid X_{1}\right) p\left(X_{1}\right)=p\left(X_{2}, X_{3}\right) \rightarrow$ pool
Bucket $\left(X_{2}\right): \sum X_{2} P\left(X_{4} \mid X_{2}, X_{3}\right) p\left(X_{2}, X_{3}\right)=p\left(X_{3}, X_{4}\right) \rightarrow$ pool
$\operatorname{Bucket}\left(X_{3}\right): \sum_{X_{3}} P\left(X_{4}, X_{3}\right)=p\left(X_{4}\right) \rightarrow$ pool
Bucket $\left(X_{4}\right)$: just get $P\left(X_{4}\right)$ from the pool

Credal nets

- Symbolic variable elimination multilinear constraints
- Updating \equiv multilinear optimization (de Campos \& Cozman, 2004)

Other algorithms for inference on CNs

- Inner approximation by iterative local search
- Choose a BN consistent with the CN, vary parameters of a single node to improve the solution (da Rocha, Campos \& Cozman, 2003)
- Outer approximation with probability trees (Cano \& Moral, 2002)
- Integer linear programming (de Campos \& Cozman, 2007)
- Branch and bound techniques on vertices
- Instead of propagating all the elements in the convex hull only the elements in the Pareto set (reduce complexity!) (de Campos, 2010)

Other algorithms for inference on CNs

- Inner approximation by iterative local search
- Choose a BN consistent with the CN, vary parameters of a single node to improve the solution (da Rocha, Campos \& Cozman, 2003)
- Outer approximation with probability trees (Cano \& Moral, 2002)
- Integer linear programming (de Campos \& Cozman, 2007)
- Branch and bound techniques on vertices
- Instead of propagating all the elements in the convex hull only the elements in the Pareto set (reduce complexity!) (de Campos, 2010)

Other algorithms for inference on CNs

- Inner approximation by iterative local search
- Choose a BN consistent with the CN, vary parameters of a single node to improve the solution (da Rocha, Campos \& Cozman, 2003)
- Outer approximation with probability trees (Cano \& Moral, 2002)
- Integer linear programming (de Campos \& Cozman, 2007)
- Branch and bound techniques on vertices
- Instead of propagating all the elements in the convex hull only the elements in the Pareto set (reduce complexity!) (de Campos, 2010)

Other algorithms for inference on CNs

- Inner approximation by iterative local search
- Choose a BN consistent with the CN, vary parameters of a single node to improve the solution (da Rocha, Campos \& Cozman, 2003)
- Outer approximation with probability trees (Cano \& Moral, 2002)
- Integer linear programming (de Campos \& Cozman, 2007)
- Branch and bound techniques on vertices
- Instead of propagating all the elements in the convex hull only the elements in the Pareto set (reduce complexity!) (de Campos, 2010)

Other algorithms for inference on CNs

- Inner approximation by iterative local search
- Choose a BN consistent with the CN, vary parameters of a single node to improve the solution (da Rocha, Campos \& Cozman, 2003)
- Outer approximation with probability trees (Cano \& Moral, 2002)
- Integer linear programming (de Campos \& Cozman, 2007)
- Branch and bound techniques on vertices
- Instead of propagating all the elements in the convex hull only the elements in the Pareto set (reduce complexity!) (de Campos, 2010)

Other algorithms for inference on CNs

- Inner approximation by iterative local search
- Choose a BN consistent with the CN, vary parameters of a single node to improve the solution (da Rocha, Campos \& Cozman, 2003)
- Outer approximation with probability trees (Cano \& Moral, 2002)
- Integer linear programming (de Campos \& Cozman, 2007)
- Branch and bound techniques on vertices
- Instead of propagating all the elements in the convex hull only the elements in the Pareto set (reduce complexity!) (de Campos, 2010)

Other guys

Other IPGMs

- CNs with epistemic irrelevance (de Cooman) and epistemic independence (Cozman)
- Imprecise Markov Chains (Skulj)
- Hierarchical models (Cattaneo)
- Imprecise Markov decision processes (MDP) (Cozman)
- Qualitative probabilistic nets (Van der Gaag)
- Possibilistic networks (PGM with BFs)
- Imprecise decision Trees (Ekenberg, Jaffray)

Still to be formalized

- Imprecise Markov random fields and iHMM
- Imprecise influence diagrams

Links with CNs

- Precise influence diagrams, MAP problems on BNs, ...

CRALC probabilistic logic with IPs (Cozman, 2008)

- Description logic with interval of probabilities
- N individuals $\left(l_{1}, \ldots, I_{n}\right)$,
$P\left(\operatorname{smoker}\left(l_{i}\right)\right) \in[.3, .5], P\left(\right.$ friend $\left.\left(l_{j}, l_{i}\right)\right) \in[.0, .5]$,
$P\left(\operatorname{disease}\left(l_{i}\right) \mid \operatorname{smoker}\left(l_{i}\right), \forall\right.$ friend $\left(l_{j}, l_{i}\right)$.smoker $\left.\left(l_{i}\right)\right)=\ldots$
- \underline{P} (disease)? Inference \equiv updating of a (large) binary CN
- In a sens symbolic (or OO) CNs

Future directions for CNs

- Inference algorithms
- Inference based on Pareto set (de Campos)
- Gibb's sampling
- Joint tree
- Learning CNs from data
- Structural learning (next talk)
- Imprecise EM
- More "bridges" with BNs world
- Continuous variables (Benavoli)
- Undirected Models (random Markov fields with imprecision)
- Applications, applications, applications, applications, applications

