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A Very Simple Example

Example (Machinery, Overtime, or Nothing?)

A company makes a product, and believes in increasing future demand.
The manager asks you, the decision expert, whether he should buy new
machinery, use overtime, or do nothing. The upcoming year, demand can
either increase or remain the same.
If we buy new machinery, then the profit at the end of the year will be 440
(in thousands of pounds) if demand increases, and 260 otherwise. On the
other hand, if we use overtime, then the profit will be 420 if demand
increases, and 420 otherwise. If we do nothing, profit will be 370.
According to our best current judgement, demand will increase with
probability at least 0.5, and at most 0.8.

What advice can we give the manager?
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The Basic Elements of a Decision Problem

decisions: {buy new machinery, use overtime, do nothing}
events: {demand increases, demand stays}
rewards: a monetary value, depending on decisions and events

decision maker may have information about the events
(e.g. bounds on the probabilities of the events)
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Decision Trees
Graphical representation of decisions, events, and rewards:

440increase

260stay
machinery

420increase

300stayovertime

370

nothing

decision nodes + decisions

chance nodes + events

rewards

time
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Static and Sequential Decision Problems

The problem we are investigating is of a very simple type. . .

we must make a single decision,

which is followed by the occurence of an uncertain event, and

which is in turn followed by a reward for us,
depending on the decision we made, and the event that occurred

Informally. . .

Definition (Static Decision Problem)

Any decision tree that has

a single decision node at its root,

and no other decision node.

Definition (Sequential Decision Problem)

Any other decision tree.
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The Problem of Choice: Gambles

Observation

in a static decision problem,
each decision branch corresponds to a gamble

440increase

260stay
machinery

420increase

300stayovertime

370

nothing

fmachinery(increase) = 440

fmachinery(stay) = 260
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The Problem of Choice: Gambles

Observation

in a static decision problem,
each decision branch corresponds to a gamble

440increase

260stay
machinery

420increase

300stayovertime

370

nothing

fovertime(increase) = 420

fovertime(stay) = 300
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The Problem of Choice: Gambles

Observation

in a static decision problem,
each decision branch corresponds to a gamble

440increase

260stay
machinery

420increase

300stayovertime

370

nothing

fnothing(increase) = 370

fnothing(stay) = 370
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The Problem of Choice: Choice Function

decision tree
set of

decisions

set of
gambles

set of
optimal
gambles

choice
function

set of
optimal

decisions
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The Problem of Choice: Example

440increase

260stay
machinery

420increase

300stayovertime

370

nothing

set of
decisions

machinery
overtime
nothing

set of
gambles

increase stay

440 260
420 300
370 370

choice
function

set of
optimal
gambles

increase stay

420 300
370 370

set of
optimal

decisions

overtime
nothing

each row is a gamble

what is a good choice function,
under severe uncertainty?
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The Problem of Choice

we know how to go from decision trees to gambles

only one problem left to solve:

what is a good choice function?

a standard choice function: maximize the expectation of the reward

however, as argued in the last few days. . .

under severe uncertainty, we may not be able to identify a unique
probability mass function p which describes our knowledge accurately

still, we may be able to identify a lower prevision P

what are good choice functions for lower previsions?
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The Problem of Choice

Theorem (Approximate Representation Theorem)

For every lower prevision there is a finite set P of probability mass
functions such that, for every gamble f on X ,

P(f ) ' min
p∈P

∑
x∈X

p(x)f (x)

Example (Machinery, Overtime, or Nothing?)

In our example, increase has probability at least 0.5 and at most 0.8, so

P =

p1 p2

increase 0.5 0.8
stay 0.5 0.2

(each column is a probability mass function)

what are good choice functions
for finite sets of probability mass functions?
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Recapitulating

events set of probabilities P
increase stay p1 p2

events
increase 0.5 0.8

stay 0.5 0.2

set of decisions
machinery 440 260
overtime 420 300
nothing 370 370

set of gambles

which of the gambles are optimal?
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Γ-Maximin

(Wald 1945 [15], Gilboa & Schmeidler 1989 [4])

Definition (Γ-Maximin Optimality Criterion)

Choose any gamble whose lower prevision is maximal.

Recipe (Γ-Maximin Optimality Criterion)

1 set up the table with gambles and probabilities

2 calculate the expectation of each gamble
with respect to each probability mass function

3 calculate the minimum expectation of each gamble

4 choose the decision with the highest minimum expectation
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Γ-Maximin: Example

Example (Machinery, Overtime, or Nothing)

increase stay p1 p2 P

increase 0.5 0.8
stay 0.5 0.2

machinery 440 260
overtime 420 300
nothing 370 370

(1) (2) (3) & (4)
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Γ-Maximax

(Satia and Lave 1973 [10], probably others as well)

Γ-maximin seems overly pessimistic; something more optimistic?

Definition (Γ-Maximax Optimality Criterion)

Choose any gamble whose upper prevision is maximal.

Recipe (Γ-Maximax Optimality Criterion)

1 set up the table with gambles and probabilities

2 calculate the expectation of each gamble
with respect to each probability mass function

3 calculate the maximum expectation of each gamble

4 choose the decision with the highest maximum expectation
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Γ-Maximax: Example

Example (Machinery, Overtime, or Nothing)

increase stay p1 p2 P

increase 0.5 0.8
stay 0.5 0.2

machinery 440 260
overtime 420 300
nothing 370 370

(1) (2) (3) & (4)
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Interval Dominance

(Satia and Lave 1973 [10], Kyburg 1983 [8], many others)

get every reasonable option (from pessimistic to optimistic) at once?

Definition (Interval Dominance Optimality Criterion)

Choose any gamble whose upper prevision
exceeds the largest lower prevision.

Recipe (Interval Dominance Optimality Criterion)

1 set up the table with gambles and probabilities

2 calculate the expectation of each gamble
with respect to each probability mass function

3 calculate the minimum and maximum expectation of each gamble

4 choose the decisions whose maximum expectation
exceeds the overall largest minimum expectation
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Interval Dominance: Example

Example (Machinery, Overtime, or Nothing)

increase stay p1 p2 P P

increase 0.5 0.8
stay 0.5 0.2

machinery 440 260
overtime 420 300
nothing 370 370

(1) (2) (3) & (4)
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Maximality

exploits the behavioural interpretation of lower previsions

refines interval dominance (see Exercise 3 later!)

Definition (Partial Ordering Determined by a Lower Prevision)

A lower prevision determines a partial ordering between gambles

f � g whenever P(f − g) > 0

(willing to pay a small amount in order to trade g for f )
(f − g + ε is desirable for some ε > 0)
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Maximality
(Condorcet 1785 [2], Sen 1977 [13], Walley 1991 [16])

Definition (Maximality Optimality Criterion)

Choose any gamble which is undominated with respect to �.

i.e. any gamble f such that g 6� f for all relevant gambles g
i.e. any gamble f such that P(g − f ) ≤ 0 for all relevant gambles g

Recipe (Maximality Optimality Criterion)

1 set up the table with gambles and probabilities

2 set up the table with differences between gambles

3 calculate the sign of the expectation of each difference
with respect to each probability mass function

4 calculate the minimum sign of the expectation of each difference

5 choose the decisions whose differences are all negative or zero

(if you do this cleverly, you may not need to consider every difference!)
24



Maximality: Example

Example (Machinery, Overtime, or Nothing)

increase stay p1 p2 P

increase 0.5 0.8
stay 0.5 0.2

machinery 440 260
overtime 420 300
nothing 370 370

(1) (3) (4)

machinery overtime nothing

−machinery 0

−overtime 0

−nothing 0
(2) & (5)
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A Simple Example
(adapted from Kikuti et al. [7, Fig. 2])

Example (The Oil Wildcatter)

An oil wildcatter must decide whether to drill for oil (d2) or not (d1).
Drilling costs 7 and provides a return of 0, 12, or 27 depending on the
richness of the site. The events S1 to S3 represent the different yields,
with S1 being the least profitable and S3 the most. The subject may pay 1
to test the site before deciding whether to drill; this gives one of three
results T1 to T3, where T1 is the most pessimistic and T3 the most
optimistic. (All rewards in units of $10000.)

P =

p1 p2 p3 p4 p5 p6
T1&S1 0.18 0.18 0.18 0.18 0.26 0.40
T1&S2 0.06 0.06 0.06 0.06 0.20 0.06
T1&S3 0.03 0.03 0.03 0.03 0.03 0.03
T2&S1 0.03 0.03 0.03 0.23 0.03 0.03
T2&S2 0.18 0.18 0.40 0.23 0.18 0.18
T2&S3 0.03 0.03 0.03 0.00 0.03 0.03
T3&S1 0.03 0.03 0.03 0.03 0.03 0.03
T3&S2 0.06 0.20 0.06 0.06 0.06 0.06
T3&S3 0.40 0.26 0.18 0.18 0.18 0.18

Should the wildcatter pay for the test or not? Then, should he drill or not?
27



A Simple Example: Decision Tree

−1d1 −8
S1

4
S2

19
S
3

d2

T 1

−1d1 −8
S1

4
S2

19
S
3

d2
T2

−1d1 −8
S1

4
S2

19
S
3

d2
T
3

dT

0d1 −7
S1

5
S2

20
S
3

d2

d
T
c
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Normal Form Decision

Definition

A normal form decision fixes at every decision node exactly one decision.

Observation

in a sequential decision problem,
each normal form decision corresponds to a gamble
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Normal Form Decision: Example

−1d1 −8
S1

4
S2

19
S
3

d2

T 1

−1d1 −8
S1

4
S2

19
S
3

d2
T2

−1d1 −8
S1

4
S2

19
S
3

d2

T
3

dT

0d1 −7
S1

5
S2

20
S
3

d2

d
T
c

T1S1 T1S2 T1S3 T2S1 T2S2 T2S3 T3S1 T3S2 T3S3
dT (T1d1)(T2d2)(T3d2) −1 −1 −1 −8 4 19 −8 4 19

31



Normal Form Decision: Example

We can find the gamble this for every normal form decision:
T1S1 T1S2 T1S3 T2S1 T2S2 T2S3 T3S1 T3S2 T3S3

dT d1 −1 −1 −1 −1 −1 −1 −1 −1 −1
dT (T1d1)(T2d1)(T3d2) −1 −1 −1 −1 −1 −1 −8 4 19
dT (T1d1)(T2d2)(T3d1) −1 −1 −1 −8 4 19 −1 −1 −1
dT (T1d1)(T2d2)(T3d2) −1 −1 −1 −8 4 19 −8 4 19
dT (T1d2)(T2d1)(T3d1) −8 4 19 −1 −1 −1 −1 −1 −1
dT (T1d2)(T2d1)(T3d2) −8 4 19 −1 −1 −1 −8 4 19
dT (T1d2)(T2d2)(T3d1) −8 4 19 −8 4 19 −1 −1 −1

dT d2 −8 4 19 −8 4 19 −8 4 19
dTc d1 0 0 0 0 0 0 0 0 0
dTc d2 −7 5 20 −7 5 20 −7 5 20

. . . so, we have
I a set of normal form decisions
I a gamble for each normal form decision
I a credal set, so we can calculate lower/upper previsions of gambles and

of their differences

. . . everything keeps working as before!!
(except that now we have normal form decisions, instead of simple
decisions)
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The Problem of Sequential Choice in Normal Form

decision tree
set of

normal form
decisions

set of
gambles

set of
optimal
gambles

choice
function

set of
optimal

normal form
decisions
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Example: Normal Form Solution

>>> opt = OptLowPrevMaxMin(lpr)

>>> list(opt(gambles))

[-7.0, 5.0, 20.0, -7.0, 5.0, 20.0, -7.0, 5.0, 20.0]

>>> opt = OptLowPrevMaxMax(lpr)

>>> list(opt(gambles))

[-7.0, 5.0, 20.0, -7.0, 5.0, 20.0, -7.0, 5.0, 20.0]

>>> opt = OptLowPrevMaxInterval(lpr)

>>> list(opt(gambles))

[-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -8.0, 4.0, 19.0]

[-1.0, -1.0, -1.0, -8.0, 4.0, 19.0, -8.0, 4.0, 19.0]

[-8.0, 4.0, 19.0, -1.0, -1.0, -1.0, -8.0, 4.0, 19.0]

[-8.0, 4.0, 19.0, -8.0, 4.0, 19.0, -8.0, 4.0, 19.0]

[-7.0, 5.0, 20.0, -7.0, 5.0, 20.0, -7.0, 5.0, 20.0]

>>> opt = OptLowPrevMax(lpr)

>>> list(opt(gambles))

[-1.0, -1.0, -1.0, -8.0, 4.0, 19.0, -8.0, 4.0, 19.0]

[-7.0, 5.0, 20.0, -7.0, 5.0, 20.0, -7.0, 5.0, 20.0]

(aside, this shows very nicely that you should always try maximality,
particularly when interval dominance gives you a lot of optimal gambles
where it does not seem to make sense!)
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Why Not Solve Sequential Problems This Way?

even for this very simple problem, the number of normal form
decisions was already pretty large

a lot of calculations required, particularly with maximality

for larger problems, not even manageable by computer

the good news. . .

there are backward induction schemes that can deal with arbitrary
choice functions

the bad news. . .

these algorithms only yields the actual optimal normal form solution if
the choice function satisfies rather restrictive properties

but not all is lost!

maximality satisfies these properties!!

however (almost) no other criterion does
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Backward Induction

idea: use solutions of subtrees to eliminate options in the full tree

For general choice functions several algorithms have been proposed:

Seidenfeld 1988 [11] [12] (extensive form)

Harmanec 1999 [5] (extensive form)

De Cooman & Troffaes 2005 [3] (normal form)

Kikuti et. al 2005 [7] (apparently, normal form)

Huntley & Troffaes 2008 [6] (normal form)
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Normal Form Backward Induction
(Huntley & Troffaes, 2008 [6])

Recipe (Normal Form Backward Induction)

reiterate these steps, until all nodes have been dealt with:

1 find normal form decisions, and corresponding gambles, at final nodes

2 apply choice function conditional on past events, on each set of
gambles

3 replace each final node by its set of optimal gambles

Theorem

If you do this using maximality as optimality criterion, then you are
guaranteed to end up with the optimal normal form decisions at the root.
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Normal Form Backward Induction: Example

−1d1 −8
S1

4
S2
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0d1 −7
S1

5
S2

20
S
3

d2

d
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c
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Normal Form Backward Induction: Example (Stage 1)
1 normal form decisions, and corresponding gambles: trivial
2 apply conditional choice: trivial (single gamble for each node!)
3 replace nodes with sets of optimal gambles

{−1}d1

{g − 1}d2T1

{−1}d1

{g − 1}d2
T2

{−1}d1

{g − 1}d2

T
3

dT

{0}d1

{g}d2

d
T c

with g=
S1 S2 S3

−7 5 20
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Normal Form Backward Induction: Example (Stage 2)
T1 branch

1 normal form decisions and gambles
S1 S2 S3

d1 −1 −1 −1
d2 −8 4 19

2 maximality conditional on T1
I apply the definition of conditional probability on each of the given

unconditional probabilities

P|T1 =

p1 p2 p3
S1 0.531 0.667 0.817
S2 0.408 0.222 0.122
S3 0.061 0.111 0.061

I apply maximality using the resulting conditional probabilities
S1 S2 S3 p1 p2 p3 P

S1 0.531 0.667 0.817
S2 0.408 0.222 0.122
S3 0.061 0.111 0.061

d1 −1 −1 −1
d2 −8 4 19

d2−d1
d1−d2

d1 d2

−d1 0
−d2 0
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Normal Form Backward Induction: Example (Stage 2)
T2 branch

1 normal form decisions and gambles
S1 S2 S3

d1 −1 −1 −1
d2 −8 4 19

2 maximality conditional on T2
I apply the definition of conditional probability on each of the given

unconditional probabilities

P|T2 =

p1 p2 p3
S1 0.065 0.125 0.500
S2 0.870 0.750 0.500
S3 0.065 0.125 0.000

I apply maximality using the resulting conditional probabilities
S1 S2 S3 p1 p2 p3 P

S1 0.065 0.125 0.500
S2 0.870 0.750 0.500
S3 0.065 0.125 0.000

d1 −1 −1 −1
d2 −8 4 19

d2−d1
d1−d2

d1 d2

−d1 0
−d2 0
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Normal Form Backward Induction: Example (Stage 2)
T3 branch

1 normal form decisions and gambles
S1 S2 S3

d1 −1 −1 −1
d2 −8 4 19

2 maximality conditional on T3
I apply the definition of conditional probability on each of the given

unconditional probabilities

P|T3 =

p1 p2 p3
S1 0.061 0.111 0.061
S2 0.408 0.222 0.122
S3 0.531 0.667 0.817

I apply maximality using the resulting conditional probabilities
S1 S2 S3 p1 p2 p3 P

S1 0.061 0.111 0.061
S2 0.408 0.222 0.122
S3 0.531 0.667 0.817

d1 −1 −1 −1
d2 −8 4 19

d2−d1
d1−d2

d1 d2

−d1 0
−d2 0
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Normal Form Backward Induction: Example (Stage 2)
dT c branch

1 normal form decisions and gambles
T1S1 T1S2 T1S3 T2S1 T2S2 T2S3 T3S1 T3S2 T3S3

d1 0 0 0 0 0 0 0 0 0
d2 −7 5 20 −7 5 20 −7 5 20

2 maximality
I no past events, so use unconditional probabilities
I apply maximality as usual

T1S1 T1S2 T1S3 T2S1 T2S2 T2S3 T3S1 T3S2 T3S3 p1 p2 p3 p4 p5 p6 P

T1&S1 0.18 0.18 0.18 0.18 0.26 0.40
T1&S2 0.06 0.06 0.06 0.06 0.20 0.06
T1&S3 0.03 0.03 0.03 0.03 0.03 0.03
T2&S1 0.03 0.03 0.03 0.23 0.03 0.03
T2&S2 0.18 0.18 0.40 0.23 0.18 0.18
T2&S3 0.03 0.03 0.03 0.00 0.03 0.03
T3&S1 0.03 0.03 0.03 0.03 0.03 0.03
T3&S2 0.06 0.20 0.06 0.06 0.06 0.06
T3&S3 0.40 0.26 0.18 0.18 0.18 0.18

d1 0 0 0 0 0 0 0 0 0
d2 −7 5 20 −7 5 20 −7 5 20

d2−d1
d1−d2

d1 d2

−d1 0
−d2 0
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Normal Form Backward Induction: Example (Stage 2)

3 replace nodes with sets of optimal gambles

{−1}
T1

{−1, g − 1}
T2
{g − 1}

T3

dT

{g}d
T c
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Normal Form Backward Induction: Example (Stage 3)
dT branch

1 normal form decisions and gambles
T1S1 T1S2 T1S3 T2S1 T2S2 T2S3 T3S1 T3S2 T3S3

s1=(T1d1)(T2d1)(T3d2) −1 −1 −1 −1 −1 −1 −8 4 19
s2=(T1d1)(T2d2)(T3d2) −1 −1 −1 −8 4 19 −8 4 19

2 maximality
I no past events, so use unconditional probabilities
I apply maximality as usual

T1S1 T1S2 T1S3 T2S1 T2S2 T2S3 T3S1 T3S2 T3S3 p1 p2 p3 p4 p5 p6 P

T1&S1 0.18 0.18 0.18 0.18 0.26 0.40
T1&S2 0.06 0.06 0.06 0.06 0.20 0.06
T1&S3 0.03 0.03 0.03 0.03 0.03 0.03
T2&S1 0.03 0.03 0.03 0.23 0.03 0.03
T2&S2 0.18 0.18 0.40 0.23 0.18 0.18
T2&S3 0.03 0.03 0.03 0.00 0.03 0.03
T3&S1 0.03 0.03 0.03 0.03 0.03 0.03
T3&S2 0.06 0.20 0.06 0.06 0.06 0.06
T3&S3 0.40 0.26 0.18 0.18 0.18 0.18

s1 −1 −1 −1 −1 −1 −1 −8 4 19
s2 −1 −1 −1 −8 4 19 −8 4 19

s2−s1
s1−s2

s1 s2

−s1 0
−s2 0
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Normal Form Backward Induction: Example (Stage 3)

3 replace nodes with sets of optimal gambles

{−1 + T3g ,−1 + (T2 + T3)g}dT

{g}dT c

48



Normal Form Backward Induction: Example (Stage 4)
root node

1 normal form decisions and gambles
T1S1 T1S2 T1S3 T2S1 T2S2 T2S3 T3S1 T3S2 T3S3

s1=(T1d1)(T2d1)(T3d2) −1 −1 −1 −1 −1 −1 −8 4 19
s2=(T1d1)(T2d2)(T3d2) −1 −1 −1 −8 4 19 −8 4 19

d2 −7 5 20 −7 5 20 −7 5 20

2 maximality
I no past events, so use unconditional probabilities
I apply maximality as usual
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Normal Form Backward Induction: Example (Stage 4)
root node

T1S1 T1S2 T1S3 T2S1 T2S2 T2S3 T3S1 T3S2 T3S3 p1 p2 p3 p4 p5 p6 P

T1&S1 0.18 0.18 0.18 0.18 0.26 0.40
T1&S2 0.06 0.06 0.06 0.06 0.20 0.06
T1&S3 0.03 0.03 0.03 0.03 0.03 0.03
T2&S1 0.03 0.03 0.03 0.23 0.03 0.03
T2&S2 0.18 0.18 0.40 0.23 0.18 0.18
T2&S3 0.03 0.03 0.03 0.00 0.03 0.03
T3&S1 0.03 0.03 0.03 0.03 0.03 0.03
T3&S2 0.06 0.20 0.06 0.06 0.06 0.06
T3&S3 0.40 0.26 0.18 0.18 0.18 0.18

s1 −1 −1 −1 −1 −1 −1 −8 4 19
s2 −1 −1 −1 −8 4 19 −8 4 19
d2 −7 5 20 −7 5 20 −7 5 20

s2−s1
d2−s1
s1−s2
d2−s2
s1−d2
s2−d2

s1 s2 d2

−s1 0
−s2 0
−d2 0
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Normal Form Backward Induction: Example (Stage 4)

3 replace nodes with sets of optimal gambles

{−1 + (T2 + T3)g , g}

these gambles correspond to the normal form decisions:

dT (T1d1)(T2d2)(T3d2), dT c d2

we have solved the problem!!
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What’s Next. . .

Things I have not told you today:

relationships between choice functions [14]

more choice functions
I E-admissibility [9]
I info-gap, satisficing [1]
I extensive form methods [11] [12] [5]

nasty properties of some choice functions:
do not rely on your general intuition about optimality

clever things you can do when your decision problem has additional
structure

we’ve only scratched the surface, but hopefully you have learnt something,
and have some idea of how decisions could be made under severe
uncertainty, and where to look further
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Exercise 1: Machinery, Overtime, or Nothing?

Consider again the same very simple example. We have done additional
market research, and we now know that demand will increase with
probability at least 0.6, and at most 0.65.

What advice can we give the manager now? Investigate with each
optimality criterion.

Hint: P =

p1 p2

increase 0.6 0.65
stay 0.4 0.35
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Exercise 2: Saving Zion (Or Maybe Not?)

There are two doors. The door to your right leads to the Source and the
salvation of Zion. The door to your left leads back to the Matrix, to
her. . . and to the end of your species. As you adequately put, the problem
is choice. But we already know what you are going to do, don’t we?

−10lose Trinity

−5lose Zion

10save Zion

save Trinity

left

1right

P =

p1 p2 p3

lose Trin 0.1 0.4 0.3
save Trin & lose Zion 0.45 0.3 0.2
save Trin & save Zion 0.45 0.3 0.5

Left, or right? Investigate with your favorite optimality criterion.

61



Exercise 3: A Risky Investment
You have the option to invest some money. The market can either
improve, remain, or worsen. The set of probabilities for your lower
prevision are tabulated below. You have the choice between 4 options,
summarized in the decision tree below.

100improve

50
remain

−25
worsen

op
tio

n
1

75improve

50
remain

0
worsen

option 2

60improve

55
remain

10
worsen

option 3

35

option
4

P =

p1 p2

improve 0.0 0.3
remain 0.6 0.3
worsen 0.4 0.4

Which options should you definitely not consider? First consider interval
dominance, then consider maximality. Which of these two criteria gives
the better answer?

62



Exercise 4

The following is again the very simple example, solved in Python, for
Γ-maximin, Γ-maximax, interval dominance, and maximality, respectively:

>>> from improb.lowprev.lowpoly import LowPoly

>>> from improb.decision.opt import *

>>> lpr = LowPoly(2, credalset=[[.5, .5], [.8, .2]])

>>> gambles = [[440, 260], [420, 300], [370, 370]]

>>> opt = OptLowPrevMaxMin(lpr)

>>> list(opt(gambles))

[[370, 370]]

>>> opt = OptLowPrevMaxMax(lpr)

>>> list(opt(gambles))

[[440, 260]]

>>> opt = OptLowPrevMaxInterval(lpr)

>>> list(opt(gambles))

[[440, 260], [420, 300], [370, 370]]

>>> opt = OptLowPrevMax(lpr)

>>> list(opt(gambles))

[[440, 260], [420, 300], [370, 370]]

Solve Exercises 1, 2, and 3 similarly.
[Hint: The first argument of LowPoly denotes the number of events.]
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Exercise 5 (*)
Let g be any gamble on X , with lower prevision L and upper prevision U.
Let c be any constant. Suppose you have the choice between the
uncertain gain g , or the certain gain c .

Under each of the criteria, determine which of g or c (or both!) are
optimal, under the following circumstances:

c < L

L ≤ c ≤ U

c > U

In Exercise 3, option 4 corresponds to an investment without risk, as it
yields the value c = 35 independently of the market, however, we found
that this value was too low relative to the other options to be optimal.

For what values for c would you change your mind? Again, investigate this
using each of the criteria.
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Exercise 6

State one advantage, and one disadvantage, of solving a sequential
decision problem by normal form backward induction, compared to solving
it by normal form.

Can you think of a situation in which normal form backward induction
would be less efficient than normal form?
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Exercise 7

Solve the following sequential decision problem for maximality, using either
normal form, or normal form backward induction.

1E1

4E2

δ1

2.5δ2

S1

2S2

d1

2.3d2

P =

p1 p2

S1E1 0.2 0.1
S1E2 0.3 0.4

S2 0.5 0.5

[
Hint: P|S1 =

p1 p2

E1 0.4 0.2
E2 0.6 0.8

]
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Exercise 8 (*)

The following program solves the previous exercise in Python for
maximality, by normal form backward induction:

>>> from improb.lowprev.lowpoly import LowPoly

>>> from improb.decision.opt import *

>>> from improb.decision.tree import *

>>> pspace = PSpace(["S1", "S2"], ["E1", "E2"])

>>> E1 = pspace.make_event(["S1", "S2"], ["E1"], name="E1")

>>> E2 = pspace.make_event(["S1", "S2"], ["E2"], name="E2")

>>> S1 = pspace.make_event(["S1"], ["E1", "E2"], name="S1")

>>> S2 = pspace.make_event(["S2"], ["E1", "E2"], name="S2")

(continued on next slide)
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(continued from previous slide)

>>> t3 = Chance(pspace)

>>> t3[E1] = 1

>>> t3[E2] = 4

>>> t2 = Decision()

>>> t2["delta1"] = t3

>>> t2["delta2"] = 2.5

>>> t1 = Chance(pspace)

>>> t1[S1] = t2

>>> t1[S2] = 2

>>> t0 = Decision()

>>> t0["d1"] = t1

>>> t0["d2"] = 2.3

>>> print(t0)

>>> lpr = LowPoly(pspace)

>>> lpr.set_lower(S1 & E1, 0.1)

>>> lpr.set_lower(S1 & E2, 0.3)

>>> lpr.set_precise(S2, 0.5)

>>> opt = OptLowPrevMax(lpr)

>>> for gamble , normal_form_decision in t0.get_norm_back_opt(opt):

... print(normal_form_decision)

Verify the solution. For what value of d2 does d2 become uniquely
maximal? If you found this easy, also solve Exercises 9, 10, and 11, using
Python.
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Exercise 9 (*)
Tomorrow, a subject is going for a walk in the lake district. It may rain
(E1), or not (E2). The subject can either take a waterproof (d1), or not
(d2). But the subject may also choose to buy today’s newspaper, at cost
c , to learn about tomorrow’s weather forecast (dS), or not (dSc ), before
leaving for the lake district. The forecast has two possible outcomes:
predicting rain (S1), or not (S2). Solve for maximality, with c = 1.

10− c
E1

15− c
E2

d1

5− c
E1

20− c
E2

d
2

S 1

10− c
E1

15− c
E2

d1

5− c
E1

20− c
E2

d
2

S
2

d S

10
E1

15
E2

d1

5
E1

20
E2

d
2

d
S
c

P =

p1 p2 p3 p4
S1E1 0.378 0.378 0.378 0.478
S1E2 0.162 0.162 0.262 0.162
S2E1 0.072 0.172 0.072 0.072
S2E2 0.388 0.288 0.288 0.288
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Exercise 10 (**)

Consider again the lake district exercise.

For which values of c is it no longer maximal to buy the newspaper?

(This is the value of information of the newspaper.)
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Exercise 11 (*)

Complete the details of the oil wildcatter example which we discussed
during the lecture, by normal form backward induction, and thereby verify
the solution.

(If you have Python, Octave, or Matlab, you can also try to verify the
solution by normal form.)
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