
Exercise 1: Machinery, Overtime, or Nothing?

Consider again the same very simple example. We have done additional market
research, and we now know that demand will increase with probability at least 0.6,
and at most 0.65.

What advice can we give the manager now? Investigate with each optimality
criterion.

Hint: P =
p1 p2

increase 0.6 0.65
stay 0.4 0.35
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Exercise 2: Saving Zion (Or Maybe Not?)

There are two doors. The door to your right leads to the Source and the salvation
of Zion. The door to your left leads back to the Matrix, to her. . . and to the end
of your species. As you adequately put, the problem is choice. But we already
know what you are going to do, don’t we?

−10lose Trinity

−5lose Zion

10save Zion

save Trinity

left

1right

P =

p1 p2 p3

lose Trin 0.1 0.4 0.3
save Trin & lose Zion 0.45 0.3 0.2
save Trin & save Zion 0.45 0.3 0.5

Left, or right? Investigate with your favorite optimality criterion.
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Exercise 3: A Risky Investment

You have the option to invest some money. The market can either improve,
remain, or worsen. The set of probabilities for your lower prevision are tabulated
below. You have the choice between 4 options, summarized in the decision tree
below.

100improve

50
remain

−25
worsen

op
tio

n
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75improve

50
remain

0
worsen

optio
n 2

60improve

55
remain

10
worsen

option 3

35

option
4

P =

p1 p2

improve 0.0 0.3
remain 0.6 0.3
worsen 0.4 0.4

Which options should you definitely not consider? First consider interval
dominance, then consider maximality. Which of these two criteria gives the better
answer?
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Exercise 4

The following is again the very simple example, solved in Python, for Γ-maximin,
Γ-maximax, interval dominance, and maximality, respectively:

>>> from improb.lowprev.lowpoly import LowPoly
>>> from improb.decision.opt import *
>>> lpr = LowPoly(2, credalset=[[.5, .5], [.8, .2]])
>>> gambles = [[440, 260], [420, 300], [370, 370]]
>>> opt = OptLowPrevMaxMin(lpr)
>>> list(opt(gambles))
[[370, 370]]
>>> opt = OptLowPrevMaxMax(lpr)
>>> list(opt(gambles))
[[440, 260]]
>>> opt = OptLowPrevMaxInterval(lpr)
>>> list(opt(gambles))
[[440, 260], [420, 300], [370, 370]]
>>> opt = OptLowPrevMax(lpr)
>>> list(opt(gambles))
[[440, 260], [420, 300], [370, 370]]

Solve Exercises 1, 2, and 3 similarly.
[Hint: The first argument of LowPoly denotes the number of events.]
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Exercise 5 (*)

Let g be any gamble on X , with lower prevision L and upper prevision U. Let c
be any constant. Suppose you have the choice between the uncertain gain g , or
the certain gain c .

Under each of the criteria, determine which of g or c (or both!) are optimal,
under the following circumstances:

I c < L

I L ≤ c ≤ U

I c > U

In Exercise 3, option 4 corresponds to an investment without risk, as it yields the
value c = 35 independently of the market, however, we found that this value was
too low relative to the other options to be optimal.

For what values for c would you change your mind? Again, investigate this using
each of the criteria.
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Exercise 6

State one advantage, and one disadvantage, of solving a sequential decision
problem by normal form backward induction, compared to solving it by normal
form.

Can you think of a situation in which normal form backward induction would be
less efficient than normal form?
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Exercise 7

Solve the following sequential decision problem for maximality, using either normal
form, or normal form backward induction.

1E1

4E2

δ1

2.5δ2

S1

2S2

d1

2.3d2

P =

p1 p2

S1E1 0.2 0.1
S1E2 0.3 0.4

S2 0.5 0.5

[
Hint: P|S1 =

p1 p2

E1 0.4 0.2
E2 0.6 0.8

]
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Exercise 8 (*)

The following program solves the previous exercise in Python for maximality, by
normal form backward induction:

>>> from improb.lowprev.lowpoly import LowPoly
>>> from improb.decision.opt import *
>>> from improb.decision.tree import *
>>> pspace = PSpace(["S1", "S2"], ["E1", "E2"])
>>> E1 = pspace.make_event(["S1", "S2"], ["E1"], name="E1")
>>> E2 = pspace.make_event(["S1", "S2"], ["E2"], name="E2")
>>> S1 = pspace.make_event(["S1"], ["E1", "E2"], name="S1")
>>> S2 = pspace.make_event(["S2"], ["E1", "E2"], name="S2")

(continued on next slide)
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(continued from previous slide)

>>> t3 = Chance(pspace)
>>> t3[E1] = 1
>>> t3[E2] = 4
>>> t2 = Decision()
>>> t2["delta1"] = t3
>>> t2["delta2"] = 2.5
>>> t1 = Chance(pspace)
>>> t1[S1] = t2
>>> t1[S2] = 2
>>> t0 = Decision()
>>> t0["d1"] = t1
>>> t0["d2"] = 2.3
>>> print(t0)
>>> lpr = LowPoly(pspace)
>>> lpr.set_lower(S1 & E1, 0.1)
>>> lpr.set_lower(S1 & E2, 0.3)
>>> lpr.set_precise(S2, 0.5)
>>> opt = OptLowPrevMax(lpr)
>>> for gamble , normal_form_decision in t0.get_norm_back_opt(opt):
... print(normal_form_decision)

Verify the solution. For what value of d2 does d2 become uniquely maximal? If
you found this easy, also solve Exercises 9, 10, and 11, using Python.
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Exercise 9 (*)
Tomorrow, a subject is going for a walk in the lake district. It may rain (E1), or
not (E2). The subject can either take a waterproof (d1), or not (d2). But the
subject may also choose to buy today’s newspaper, at cost c , to learn about
tomorrow’s weather forecast (dS), or not (dSc ), before leaving for the lake district.
The forecast has two possible outcomes: predicting rain (S1), or not (S2). Solve
for maximality, with c = 1.
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P =

p1 p2 p3 p4

S1E1 0.378 0.378 0.378 0.478
S1E2 0.162 0.162 0.262 0.162
S2E1 0.072 0.172 0.072 0.072
S2E2 0.388 0.288 0.288 0.288
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Exercise 10 (**)

Consider again the lake district exercise.

For which values of c is it no longer maximal to buy the newspaper?

(This is the value of information of the newspaper.)
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Exercise 11 (*)

Complete the details of the oil wildcatter example which we discussed during the
lecture, by normal form backward induction, and thereby verify the solution.

(If you have Python, Octave, or Matlab, you can also try to verify the solution by
normal form.)
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