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SIPT A Summer 2004 lectures on 
Some Decision Theoretic issues for Imprecise Probability Theory 

Teddy Seidenfeld - using joint work with Jay Kadane and Mark Schervish 
Carnegie Mellon University 

OUTLINE 
1. Static (non-sequential) decision theory. 

a. The framework of horse-lotteries and the Anscombe-Aumann theory of 
Subjective Expected Utility [SEU]. 

b. Motivating imprecise probability by with an Impossibility Result for 
Cooperative Groups who try to be Bayes-coherent 

c. Three decision theories that attempt to relax the Bayesian norms and 
their relationship to SEU. 

d. Some limitations using binary comparisons - and how to avoid them! 
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2. Sequential Decisions for Imprecise Probability Theory. 

a. Violations of the independence postulate only - ordering retained. 

b. The value of information and 

c. Dilation {based on work with Larry Wasserman) 

3. Summary �nd some tentative conclusions. 
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Part 1: Some preliminaries. 

In this presentation, the framework of Anscombe-Aumann horse-lotteries is 

convenient for focusing on coherent choice rules generated by uncertainty in the 

decision maker's degrees of belief, while utility may be left determinate. 

We will use L the set of von Neumann-Morgenstern lotteries on a finite set of 

rewards, {rH •••• , r m} 
A von Neumann-Morgenstern lottery lis given a� the distribution 

< al' •••• am> 
where ai � 0 and �i ai = 1, and a1 is the chance of winning reward ri. 

The convex combination of two lotteries, 13 = �11 � (1-�)12 is merely the reward-by­

reward �-mixture of their respective lotteries a3L = f3a1L + (1-(3a2). 
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The fixed finite partition Q = { ro1, ••• , ron} is the space of the agent's uncertainty. 

An option, a horse-lottery h is a function from Q to L, from states to lotteries . 

• • • 

h 
••• 
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For this discussion, the following two IMPORT ANT restrictions will be in place: 

• Act-state independence: no cases of "moral hazards" are considered. 

• State-independent utility: no cases where the value of a prize depends upon 

the state in which it is received. 
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The Anscombe-Aumann SEU theory of preference on horse lotteries is given by 
these 4 axioms: 

AA-1 Strict preference < is a weak order over pairs of horse lotteries. 

< is anti-symmetric, transitive, and non-preference ( ....... ) is transitive indifference. 

AA-2 Independence 

h1 < h2 if and only if ah1 � (1-a)h3 < ah2 EB (l-a)h3• 

AA-3 An Archimedean condition 

For all h1 < h2 < h3 there exist 0 < a, p < 1, 

with 

AA-4 State-independent utility. In words, whenever oo is non-null, between 
two horse lotteries that differ solely in that .one yields b in oo where the other 
yields w, the agent prefers the former act. 
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The central Anscombe-Aumann theorem is this: 

A-A Theorem: A decision maker's binary preferences between horse lotteries 

satisfies these four axioms if and only if preference over horse lotteries is by · 

Subjective Expected Utility maximization with respect to a single pair <p, u>, 

where p is a subjective probability on. the states 

and u is a cardinal (von Neumann-Morgenstern) utility on the rewards. 

Aside: The first three axioms - Ordering, Independence, and Archimedes, 

· constitute the von Neumann-Morgenstern theory of cardinal utility over lotteries. 
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• Motivating the need to relax SEU theory in the direction of imprecise 

probabilities. The case of cooperative Bayesian decision making. 

Consider two SEU decision makers, Dick·and Jane, who wish to form a 

cooperative partnership that will make decisions, constrained by the following 

two principles. 

o The partnership must satisfy the A-A theory of SEU maximization. 

o (Simple) Pareto coordination-if each of Dick and Jane strictly prefers 

one option hl to a second h2, then so too does the partnership. 

For convenience, suppose that Dick and Jane each strictly prefers 

reward r* over reward r*. 
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Possibility/Impossibility Results for Cooperative SEU compromises. 

1. If Dick and .Jane share a common cardinal utility over the rewards, the 

candidate compromises for the group's preferences are given by an 

average of their two personal probabilities, and the common utility. 

2. If Dick and Jane share a common personal probability over the states, the 

. candidate compromises for the group's preferences are given by an 

average ·of their two cardinal utilities, and the common probability. 

3. If Dick and Jane have any difference in their personal probability and do 

not share the same cardinal utility over rewards there are only autocratic 

solutions. One of them makes all the decisions for the partnership! 
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Table L w£{bise lotteries" used in fixing the �pper Ctnd lower 
proba�iliti�s and utilities 
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Table 2. "Horse lotteries" used in sepdrating the set of 
compromises between Dick and Jane 
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QUESTION: How to relax the SEU axioms in order to avoid such results? 
Here are three decision theories that use Imprecise Probabilities in order to do it. 

• r-Maximin: Assign to each horse lottery its minimum of SEU values with 
respect to a (closed) set of probabilities and utilities. Choose from a (closed) 
feasible set of options any horse lottery whose value so assigned is maximum 
in that choice set. 

• Maximality (Sen-Walley): For _each pair of horse lotteries compare them to 
see whether one has .greater SEU value than the other with respect to each 
probability (and utility) allowed. If so, the first is strictly preferred to the 
second. Choose from a (closed) feasible set of options any horse lottery that 
does not have another strictly preferred to it. 

• Coherence (Levi's rule of E-admissiQility): Choose from a (closed) feasible set 
of horse lotteries any one thafmaximizes SEU with respect to one of the 
.allowed probability/utility pairs. · 
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Here is·a useful example illustrating how these 3 rules differ. 
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Axiomatics for these three rules. 

r-Maximin has been represented in the structure of horse-lotteries by Gilboa­
Schmeidler (1989) in the following way: 

They consider the setting where the decision maker has a determinate 
cardinal utility for rewards - so A-A theory applies to constant horse lotteries. 

They retain A-A axioms 1, 3, and 4 - Ordering, Archimedes, and State­
Independent Utility. 

They do not require A-A axiom 2 - Independence - except for constant acts. 

Maximality has, in effect, been axiomatized for an arbitrary set S of 
probability/utility pairs by SSK (1995) in the following way. 

Relax A-A axiom 1 to require only a strict partial order over horse lotteries. 
Retain Independence and State-independent Utility AA-axioms 2 and 4. 
A modified Archimedean axiom 3, as motivated by the following example. 

• Choose from a feasible set of options those that are not strictly preferred by 
any others. 

12 



, _ .. . . . ·. 

' 
. .  ·: 

. . 

�·:.:.: 
. 
:· . 

. ·. ·. 
1 . . .

. .. 
. . 

. u ·( *)· ·· 
x> .r : 

0 

r * 

. ro 

< X < 1 
Figure 7. Example: ofrestrictions of the usual Archl�edean axiom 

. . 



Coherence is the ongoing subject of current work, which I now summarize. 

A coherent choice rule identifies the Bayes-solutions to a decision problem - the 
Bayes solutions taken with respect to the set S. 

That is, given any (closed) set 0 of options, a choice rule C identifies the 

admissible options C[O] = B, for a non-empty subset B C 0. 

Definition: The choice rule is coherent with respect to a set S of prob/util pairs 

if for each b E B there is a pair <p, u> in S such that b maximizes the 

· p-expected u-utility of options from 0, 

and 

B constitutes the set of all such solutions. 
B is the set of Bayes-solutions from 0: solutions that are Bayes with respect to S. 
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Alternatively, we can examine the rejection rule R[O] = 0\ C[O], vvhich identifies 

the inadmissible options in 0. 

When C is coherent, the inadmissible options are those that fail to 

maximize p-expected u-utility for all pairs <p, u> in S: there is unanimity 

over S in the rejection of inadmissible options. 

Three important cases, in increasing order of generality: 

• S is a singleton pair, we have traditional Subjective Expected Utility theory. 

• S is of the form P ® u for a single utility u and a closed, convex set of 
probabilities P, and when all option sets are closed under mixtures, 
we have Walley-Sen's principle of Maximality. 

• When S is a cross product of two convex sets P ® U, we have I. Levi's rule of 
E -admissibility. 
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. There are several themes that lead to a set S that is not a singleton pair. 

Here are 3 examples. 

1 .. Robust Bayesian Analysis - where S reflects a (typically) convex set of 

distributions obtained by varying either/or the prior or the statistical model, 

together with a single loss function. 

For example, the e-Contamination Model is obtained by using a set of distns: 

{(1-E)J.t + Eq: with J.t a fixed distn, and q E Q, where Q is a set of distributions} 

The idea is that with probability 1-E the intended model f.-t generates the 

data. And with probability E any distribution from Q might generate the 

data. 
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2. Lower Probability with a (closed) convex set of distributions Pand a single u. 

• CAB Smith, P. Walley (and many others), where S is based on one­

sided previsions. 

• r-Maximin applied to convex sets of bets: Gilboa-Schmeidler theory. 

• Dempster-Shafer theory, with a decision rule suggested by Dempster. 

3. Consensus in cooperative group decision making: 

• Levi - where S = P ® U. Pis the convex set representing the group's 

uncertain degrees of belief, and U the convex set of its uncertain values. 

• SSK - S is a set of prob/util pairs that·represent the unrestricted 

Pareto (strict) preferences in a group of coherent decision makers. 
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It is convenient for focusing on coherent choice rules generated by uncertainty in 

the decision maker's degrees of belief, while utility is left determinate. 

We will use L the set of von Neumann-Morgenstern lotteries on two prizes, 
' . 

b ("better") and w ("worse"), 

which serve respectively as the 1 and 0 of the cardinal utility function. 

Thus, a von Neumann-Morgenstern lottery lis given as the mixture 

ab EB (1-a)w, 

with determinate utility a. 

The fixed finite partition Q = { w1, ••• , wn} is the space of the agent's uncertainty. 
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An option, a horse-lottery h is a function from Q to L, from states to lotteries . 

• • • 

h ••• 
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• The final preliminary point is to understand the importance of using a strict 

preference ( <) relation, rather than a weak preference ( <) relation when dealing 

with uncertainty represented by coherent choice rules. 

Here is a simple example using a two-state partition, Q = { ro1, ro2}, corresponding 
to the outcome of a toss of a coin landing tails ( ro1) or heads ( co2). 

Let h.5 be the constant horse lottery that pays off a = .S in either state. 

Let h be the horse lottery that pays w if the tails and b if heads. 

Contrast these two states of uncertainty. 

Sl = {p: p(rol) <p(Wz); the coin is biased for heads} 

82 = {p: p(ro1) <p(ro2); the coin is not biased for tails} 
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In a binary choice from the pair of option 0 = {h, h.5} 

• under S1 only option h maximizes expected utility 

• under S2 both options are coherently admissible. 

h.s 

u • 
I 

� 
• 
• 
• 
• 
• 

0 p(OOz) 1 

Strict preference ( <) but not weak preference ( <) captures this distinction (SSK 95). 
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Limitations using strict preference: a binary comparison between acts. 

Distinct convex sets of distributions that generate the same strict partial order 

. over horse lotteries. 

The general problem is that a strict preference between two of our horse lotteries 

hl < h2 

defines a hyperplane of separation between the (convex) set of those distributions 

that give h2 greater expected utility than hH and those distributions that do not. 

But many distinct (convex) sets of distributions all may agree on these binary 

comparisons. They differ with regard to their boundaries. 
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• Here is an example using three states: Q = { ro1, ro2, ro3}. 

<0,0,1> 

<0,1,0> 

Jt · .  ' ' .. '·\ 

/f) . .  ,· . ' ' ' ' ·. .: : \\ ········· .• ···�· ···! ··�···-·J···· ·•· 

<1,0,0> 
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A related problem is that choice rules that use only binary comparisons 

between options .to determine what is admissible from a choice set, 

even when choice sets include all mixtures are: 

• coherent rules for closed (convex) sets of probabilities (Walley, 1990) 
• and are generally not coherent rules otherwise (SSK&L, 2003). 

That is, such choice rules that reduce to binary comparisons conflate all the 

different sets of probabilities that meet the same set of supporting hyperplanes. 

These sets of probabilities are different at their boundaries only. 

• As we see next, these different (convex) sets of probabilities - though they 
share all the same supporting hyperplanes - are distinguished one from 
another by what they make admissible in non-binary choices. 
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Using a coherent choice rules to distinguish between sets of probabilities 

The following toy-example illustrates how to use a coherent choice rule to "test" 

for the presence/absence of a specific distribution p* E P when S = P ® u, 

regardless the nature of the set P. 

Return to the example of the coin with an unknown bias for landing heads (ro2). 
Consider now the choice problem with these three options 

Let h.5 be the constant horse lottery that pays off a = .5 in either state. 

Let h1 be the horse lottery that pays w if the heads and b if tails. 

Let h2 be the horse lottery that pays w if the tails and b if heads. 

We use the choice problem 0 = {h.5, h1, h2} to "test" for p* 
= (1/2, 1/2) 
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h.s 

u 

0 

• 
• 
• 

p*(w2) = .5 1 

• C[ 0] = {h.5, hH h2}, all three options are admissible, if and only if p* E P. 
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• And if we close the option set under convex combinations, the same holds. 

u 

0 1 
The entire (convex) set of mixed options generated by h1 and h2 is admissible 

if and only if p* E P. 

• This technique generalizes to permit a "test" for an arbitrary distribution 
p on an arbitrary (finite) Q against an arbitrary set P. 
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3. A representation of coherent choice rules. 

The Anscombe-Aumann SEU. theory of preference on horse lotteries is given by 
these 4 axioms: 

AA-1 Strict preference < is a weak order over pairs of horse lotteries. 

· < is anti-symmetric, transitive, and non-preference (-) is transitive indifference. 

AA-2 Independence 

h1 < h2 if and only if ah1 (f) (1-a)h3 < ah2 (f) (1-a)h3• 

AA�3 An Archimedean condition 

For all h1 < h2 < h3 there exist 0 < a, B < 1, 

with 

AA-4 State-independent utility. In words, whenever w is non-null, between 
two horse lotteries that differ solely in that one yields b in w where the other 
yields w, the agent prefers the former act. 

27 



,;- .· •; . . •' 
�"� ; :� :1 �. ! • ,l 

• 

In the language of this presentation, the Anscombe-Aumann SEU Theorem is that 

such a preference over pairs of horse lotteries is represented by a coherent choice 

rule, with P a singleton set comprised by one probability distribution p over Q. 

Sii�ce the first axiom AA-1 is that preference is a weak order, we can use Sen's 

result that the corresponding choice rule satisfies Properties alpha and beta: 

• Property alpha: You·cannot promote an inadmissible option into an 

·. admissible option by adding to .the choice set of options. 

• Property beta: If two options are both admissible from some choice set, then 

whenever both are available, either both are admissible or neither one is. 
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With these two properties, define the (strict) preference relation between two 

·options h1 < h2 to mean that C[{hH h2}] = {h2}, i.e., only h2 is admissible from the 
• pair, 

Then the rest of the axioms are easily expressed in terms of choice rules. 

In our setting, we can generalize Anscombe-Aumann theory to accommodate all 

coherent choice rules, as follows. I will express the axiom in words. Each is 

evidently necessary for a choice rule to be coherent. 

Structural Assumption: 

Each choice set is 0 is closed, to insure admissible options exist. 

29 



• Axiom la: Property alpha- you can't promote an inadmissible option into an 

admissible option by adding to the option set . 

. • Axiom lb: You cannot promote an inadmissible option into an admissible 

option by deleting inadmissible options from the choice set. 

From these two, define a strict partial order < on sets of options as follows. 

Let 01 and 02 be an option sets. Recall that R[ •] is the rejection rule associated 

with the choice rule C[ • ]. 

·. Defn: 

That is, it follows from Axioms la & lb that< is a strict partial order. 
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Axiom 2a Independence is expressed for < over sets of options just as before. 
01 < 02 if and only if a01 (±) (1-a)h < a02 (±) (1-a)h. 

Let H(O) be the result of taking the (closed) convex hull of the choice set 0. That 

is, H augments 0 with all its mixed options - and then close up the set. 

Axiom 2b Convexity If h E  0 and h E R[H(O)J, then h E R[O]. · 

Inadmissible options from a mixed set remain inadmissible even before mixing. 

Note: Axiom 2b is needed to eliminate the choice rules Walley-Sen 
Maximality, and F-Maximin, which are not generally coherent. 
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Axiom-3: The Archimedean condition requires a technical adjustment, as the 

canonical form used by von Neumann-Morgenstern and Anscombe-Aumann 

theory is too restrictive in this setting. 

The_ reformulated version expresses the Archimedean condition as a continuity 

principle compatible with strict preference as a strict partial order. 

Axiom 4 is unchanged from the Anscombe-Aumann theory. 
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Main Result: A choice rule is coherent if and only if it satisfies these 4 axioms. 

Corollary: The coherent choice rule associated with the set P of probabilities on Q 
is unique· to P. Different sets P yield different choice coherent choice rules. 

The emphasis here is on the fact that the set P of probabilities used to 

represent the coherent choice rule is entirely arbitrary. There is no 

. assumption that P is closed, or convex, or even that it is connected. 
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Summary and principal conclusions regarding coherent choice rules when 
the decision maker's degrees of belief are given by a set of probabilities. 

• We saw that some choice rules, Maximality, are coherent only in special 
circumstances, as when the option set 0 is convex and the set P is closed. 

• Coherent choice rules based on binary comparisons between pairs of 
horse lotteries fail to distinguish among different convex sets of 
probabilities, al� of which share the same supporting hyperplanes. SSK-95 

• This is not the case for decision rules like Levi's E-admissibility. 

• A fully gener�l representation exists for coherent choice rules, modeled 
on the A-A theorem. It applies with any set P of probabilities. 

• Coherent choice rules are capable of distinguishing between any two 
different sets of probabilities, regardless their structure. 
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3. Se.quential Decisions for Imprecise Probability Theory. 

a. Violations of the independence postulate only - ordering retain�d. 
applied, e.g., tor-Maximin. 

b. The value of information 
Applied to all three rules:-r-Maximin; Maximality; E-admissibility. 

c. Dilation (based on work with Larry Wasserman) 

First, however, we review static coherence ....;. deFinetti 's "Book" criterion and 

that each of our rules is coherent in this sense. 

35 



Begin with a short review of deFinetti's Book argument for coherent wagering. 

A Zero-Sum (sequential) game is played between a Bookie and a Gambler, 
with a Moderator supervising. 

Let X be a random variable defined on a space Q of possibilities, a space that 

is well defined for all three players by the Moderator. , 

The Bookie's prevision p(X) on the r.v. X has the operational content that, 

when the Gambler fixes a real-valued quantity ax,p(X) 

then the resulting payoff to the Bookie is 

ax,p(X) [X-p(X) ], 

with the opposite payoff to the Gambler. 

Some Measures of Incoherence 3 



A simple version of deFinetti's Book game proceeds as follows: 

1. The Moderator identifies a (possibly infinite) set of random variables {Xi} 

2. The Bookie announces a prevision pi= p(Xi) for each r.v. in the set. 

3. The Gambler then chooses (finitely many) non-zero terms ai =a xi 'P(Xi)· 

4. The Moderator settles up and awards Bookie (Gambler) the respective SUM 

of his/her payoffs: Total payoff to Bookie= "L'/ 1 a;[X;-Pi]. 

Definition: 

Total payoff to Gambler= - "L'/ 1 a; [X; -Pi]. 

The Bookie's previsions are incoherent if the Gambler can choose 

terms ai that assures her/him a (uniformly) positive payoff, regardless 

which state in Q obtains -so then the Bookie loses for sure. 

A set of previsions is coherent, if not incoherent. 

Some Measures of Incoherence 

! 
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Theorem ( deFinetti): 

A set of previsions is coherent if and only if 

each prevision p(X) is the expectation for X under a common (finitely additive) 

probability P. 

That is, 

Two Corollaries: 

Corollary 1: When the random variables are indicator functions for events {E;}, 

so that the gambles are simple bets -with the a's then the stakes in a winner-

take-all scheme -then the previsions Pi are coherent if and only if 

each prevision is the probability Pi = P(E;), for some (f.a.) probability P. 

Some Measures of Incoherence 5 



Aside on conditional probability: 

Definition: A called-off prevision p(X II E) for X, 

made by the Bookie on the condition that event E obtains, 

has a payoff scheme to the Bookie: aXJIE E[ X- p(X II E) ] . 

Corollary 2: Then a called-off prevision p(X II E) is coherent alongside the 

That is, 

(coherent) previsions p(X) for X, and p(E) and E if and only if 

p(X II E) is the conditional expectation under P for X, given E. 

p(X II E) = EP(•IE)[X] = fn X dP( • IE) and is P(X I E) if X is an event. 

• In this sense, the Bookie's conditional probability distribution P( • IE) is the 

norm for her/his static called-off bets. 

• Coherence of called-off previsions is not to be confused with the norm for a 

dynamic learning rule, e.g., when the Bookie learns that E obtains. 

Some Measures of Incoherence 6 
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There are two aspects of deFinetti's coherence criterion that we relax. 

1. Previsions may be one-sided, to reflect a difference between buy and sell prices 
for the Bookie, which depends upon whether the Gambler chooses a positive or 

negative a-term in the payoff ax,p(X) [X-p(X) ] to the Bookie. 

For positive values of a, allow the Bookie to fix a maximum buy-price. 

• Betting on event E, this gives the Bookie's lower probability p *(E), 
+ a [E-p*(E)]. 

For negative values of a, allow the Bookie to fix a minimum sell-price. 

• Betting against event E, this gives the Bookie's upper probability p*(E), 
a- [E -p*(E) J. 

At odds between the lower and upper probabilities, the Bookie rather not wager! 

Some Measures of Incoherence 7 
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This approach has been explored for more than 40 years! 

(See http://www.sipta.org/ the Society for Imprecise Probabilities, Theories and Practices) 

For example, when dealing with upper and lower probabilities: 

Theorem [C.A.B. Smith, 1961] 

• If the Bookie's one-sided betting odds p *( •) and p*( •) correspond, 

respectively, to the infemum and supremum of probability values from a 
convex set of (coherent) probabilities, then the Bookie's wagers are coherent: 
then the Gambler can make no Book against the Bookie. 

• Likewise, if the Bookie's one-sided called-off odds p *( •liE) and p*( •liE) 
correspond to the infemum and supremum of conditional probability values, 
given E, from a convex set of (coherent) probabilities, then they are 
coherent. 

Some Measures of Incoherence 8 
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Say that a one-sided previson is (strictly) favorable to the bookie just in case if 

is strictly preferred to abstaining in a pairwise choice. 

Static coherence result, for each of our 3 decision rules: 

No (finite) set of strictly favorable previsions leads to a sure loss. 

Proof: Use the :.;epresentation theorem for the respective decision rule and 

apply the one-sided version of deFinetti's result, i.e., 

If a one-sided prevision if strictly favorable,. it has positive expected 

value. The sum of finitely many random variables with strictly positive . 

. �xpected value. cannot have negative value in each state of Q. 
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and 

We use sequential.decisions to explore the dynamical properties of our rival 
decision rules. 

The (standard) notation for a sequential decision is to represent 

a choice node with a box 

a chance node with a circle 

·.0 

0 

Lines radiating from a box represent options. 

Lines radiation from a circle represent outcomes of a random variable. 
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Let us consider a decision rule, such as r-Maximin, that violates the 
Independence axiom but retains Ordering. 

One such violation is where. two von Neumann-Morgenstern lotteries are 
Indifferent, but where their simple mixture is strictly preferred to either. 

Consider the following sequential tw9 decision problems. 
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"heads" 

$5.50 � 1 
"tails" 

A __.,.. 

"heads" 

$5.75 ,...., 2 
il 

"tails" 

0· -designates choice points 
e -designates chance points 

=> - designates chosen alternative 

$5.50 ¢::: 

L2 

$5.50 ¢::: 
Lt-c ¢::: 

$4.00 

$4.00 
t 
B 

Figure 5. First version of the sequential deCision: an illustration of sequential 
incoherence for a failure of mixture dominance("betweenness").At choice node 
A option 2 is preferred to option 1. At each choice node B this preference is 
reversed. - ----:::��.. · ' 

' 
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"heads" 

� 
$5.50 ,_ 1 

"tails" 

1- a= .5. 
A __.,.. 

"heads"· 

$5.50 ,..., 2 

"tails" 

1- a= .5 

0 -designates choice points 
• - designates chance points 
=> -designates chosen alternative 

$5.50 ¢:: 

L2 

$5.50 <= 
$Lt-£ ¢= 
� 

$4.00 

$4.00 

t 
B 

. Figure 6, . Second version of the sequential decision: an illustration of sequential 
incoherence for a failure of mixture dominance ("betweenness")� At choice node 
A option 1 is preferred to option 2. The tree results by replacing L1- e.(i =1,2) 
from Figure

. 
6.5 with $:..equivalents under -<. · 

-------·-------
----�----



What we see here is that 

·the decision maker's choices in these sequential decisions are NOT invariant 

over substitution of indifferent outcomes at terminal nodes in the tree. 

General Result: 

• The decision maker who is coherent in the static sense but who violates 

· only the Independence postulate will suffer such sequential incoherence. 

• The decision maker using.E-admissibility will be sequentially coherent· 
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Next, we examine how our three decision rules work to assess the value of new 

information. 

· For this, we begin with an old result about SEU theory: 

• By the standards ofSEU-theory, if we may postpone a terminal decision 

without costs to a acquire new (cost-free) information, we will do so, and have 

a strict preference for doing so in case the new information might alter our 

choice. 
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Outline 

1. Introduction 

2. The expected value of sample information 

a. Countably additive, proper Bayesian 

b. Finitely but not countably additive Bayesian 

c. Improper proper Bayesian 

3. Generalized Bayesian Decision Theory with Sets of 

Probabilities 

a. r- Maximin 

b. E-admissibility 

c. Maximality 

4. Is Ignorance Bliss? 
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2. The Expected Value of Sample Information 

* Intuitive argument 

* Precise argument 

Let U(d, ()) be your utility function, which depends on both your 

decision d and on BEO, the unknown state of the world. You have a 

distribution p(x, B) that jointly describes your probabilities for the 

data XEX and for e. Without the data x, you would choose d to 

maximize 

L l U(d, B)p(x, B)dBdx (1) 

If you were to learn the data x, you would maximize your utility 

with respect to your conditional distribution p( () I x) i. e. maximize 

4 
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l U(d, B)p(B I x)de, (2) 

which has expectation, with respect to the unseen value of x, 

(3) 

The intuitive argument above suggests that (3) is no smaller than 

(1). 

To show this, let d* be a maximizer of (1). [The argument works 

just as well, if such a d* does not exist, for d* to be an E-maximizer 

of (1)]. Then for each x in (2), 

max r U(d,B)p(B I x)dB > r U(d,B)p(B I x)de. 
d ln ln 

Integrating both sides of this inequality with respect to x, yields 

5 
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Ix [maxd In U(d, B)p(B I x)dB] p(x)dx > Ix In U(d, B)p(B I x)dBp(x)dx 
- Ix In U(d, B)p(B, x)dBdx 

as claimed. 

6 

- maxd Ix In U(d, B)p(B, x)dBdx, 
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Example 1 (finitely, but not countably additive distributions) 
Suppose that there are two states of the world, A and B, each of 

which has probability .5 in your current opinion. Imagine that you 

can observe a positive integer n. If A is true, the integer n has a 

geometric distribution, as follows: 

P(niA) == (1/2)(n+l) 
for each integer n > 0. However, if B is the case, the integer n is 

uniformly distributed on the integers in your opinion. 

7 
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If a particular integer, say n == 3, is observed, an easy application of 

Bayes Theorem shows that 

P(Ain == 3) == 1 (7) 
and in fact, this is true whatever value of n is observed. Hence you 

are in the peculiar state of belief that although your prior is even 

between A and B, you know that conditional on the observation of 

N, regardless the value of N, you believe with certainty that A is 

true. Which then is your prior, what you believe now, or what you 

know you would believe if you could observe N? 

Suppose that you currently hold a ticket that pays $1 if B is true, 

and $-1 if A is true. Currently your expected winnings are $0. 

However, you know that if you were to obtain the integer n, your 

expected winnings would be $-1. Would you pay $.50 not to receive 

the data? It seems that you would have to. 

8 
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Example 3 Consider a binary-state decision problem, 0 == {w1, 

w2}, with three feasible options. Option f yields an outcome worth 

1 utile if state w1 obtains and an outcome worth 0 untiles if w2 

obtains. Option g is the mirror image off and yields an outcome 

worth 1 utile if w2 obtains and an outcomes worth 0 utiles if w1 

obtains. Option h is constant in value, yielding an outcome worth 

0.4 utiles regardless whether w1 or w2 obtains. Figure 1 graphs the 

expected utilities for these three acts . 
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Let the mixing variable a equal 1 or 0 as a fair coin lands Heads 

up or Tails up on a toss, so that P(a == 1) == P(a == 0) == .5. 

Assume, also, that a is independent of the states, 0, over which the 

pure options are defined, for that each P E P, P(a, w) == .5P(w). 

As a modification of Example 3, consider the mixed options m, and 

n, defined as follows. 

m==af E9(1-a)g 

n == ag E9 (1-a)f. 

Thus, m is the mixed act that uses the fair coin to bet on w1 if 

Heads and to bet on w2 if Tails .  Likewise, n is the dual mixed act 

that uses the same fair coin to bet on w2 if Heads and to bet on w1 

if Tails .  

13 



Utility 
axis 

Ol I 
0.25 0.75 

Figure 1: Expected utilities for three acts in Example 3. The thicker 

line indicates the surface of Bayes solutions. 
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/Status quo 
1 

If �a - m-.40 +0.05 
/ �b -n-.40 /3.1 

3 A 3.2a -- m-.35 

� H 3.2b 
� / "'- n-.35 

0 � ---- +0.05 T� 3.1 c::E- 3.2a - m . .35 
3.2b 

� n-.35 

Figure 2: Sequential Decision Problem 1 
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/Status quo 
1 �� lf 2 - m-.40 / / 

� 
3.1 

3 r 3.2 -- m-.35 

V

H 

� ---- +0.05 T� 3.1 
� 3.2 - m-.35 

Figure 3: Sequential Decision Problem 2 
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Sequential Decision Problem 2: Here, at each of the two 

terminal choice nodes that might be reached under the sequential 

option, both options are E-admissible. Then, it is permissible for 

the decision maker who decides by E-admissibility to choose the 

constant (worth .05) if the sequential option is taken at the initial 

choice node. But .05 is an inadmissible option at the initial choice 

node, since m - .40 is s trictly preferred to .05. Hence, it appears 

that in this sequential decision problem, E-admissibility does not 

require a decision maker to assign a non-negative value to potential 

cost-free information. Of course, since, E-admissible options are 

always a subset of the options permissible by Maximality, to the 

extent that this phenomenon is a problem with E-admissibility as 

the decision rule, it is only more so of a problem for decision 

makers using Maximality. 
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Dilation of sets of probabilities (work with Larry Wasserman) 

The familiar Bayesian result is that coherent agents who share information, use 

Bayes' rule for updating,, and who do not have extreme "prior" views· will come to 

agree in their "posterior" opinions. 

·Savage (1954) argued this for shared iid data from a statistical model 

Blackweli-Dubins (1962) showed that the result holds even without a common 

. statistical model, providing that the coherent agents have mutually absolutely 

continuous joint opinions - they agree on all "null" events. 
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In contrast with such merging of opinions when opinions are given each by a 

single coherent probability, say that when uncertainty is represented by a set·P of 

probabilities, 
' ' 

the random variable B dilates the uncertainty about the event A when, for all 

possible values B = b 
infp p(A I b) < infp p(A) - < supp p(A) < supp p(A I b). 

That is, when B dilates A, the uncertainty in A is sure to increase by learning B, 

at least when updating is by Bayes' rule. 

The previous examples showing when Maximality and E-admissibility allow that 

new cost-free information may be given a negative value, are cases of dilation. 
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Basic Dilation results: 

• If B dilates A, with respect to the set P of probabilities, then A and B are 

independent for some probability p in P. 

• If a randomizer is.available, and Pis non-trivial, dilation may be created. 

• If Pis a symmetric-neighborhood model, then the only case where P is · 

immune to dilation for some pair of random variables is if P is the �ensity 

ratio model. 

• In a case like the £-contamination model, which is also a lower-probability 

model, the conditions for dilation have a simple geometric flavor. 

• Moreover, the £-contamination model is also a D-S Belief model, and in such 

cases Bayes-updating is the same as Dempster-updating. Hence, dilation 

applies equally to the D-S theory. 
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Conclusion: 

.. -;::···· 

. IMPRECISE PROBABILITY THEORY NEEDS A VIABLE THEORY OF 

SEQUENTIAL DECISION MAKING. 

-Or, at least, 

.WE DO NOT YET HAVE AN IMPRECISE PROBABILITY THEORY OF 

EXPERIMENTAL DESIGN. 
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